Left Quasi-Artinian Modules

Falih A. M. Aldosray*, Omaima M. M. Ahenkiti

Department of Mathematics, Umm Al-Qura University, Makkah, P.O. Box 56199, Saudi Arabia

Abstract In this paper we study a new class of left quasi-Artinian modules. We show: If \(R \) is a left quasi-Artinian ring and \(M \) is a left \(R \)-module, then (a) \(\text{Soc}(M) \) ess \(M \) and (b) \(\text{Rad}(M) \) small in \(M \). Then we prove: if \(I \) is a non-nilpotent left ideal in a left quasi-Artinian ring, then \(I \) contains a non-zero idempotent element. Finally, we show that a commutative ring \(R \) is quasi-Artinian if and only if \(R \) is a direct sum of an Artinian ring with identity and a nilpotent ring.

Keywords Modules with Chain Conditions, Left Quasi-Artinian Modules and Nilpotent Rings

1. Introduction

By ring we mean an associative ring that need not have an identity. In this paper, we study a new class of left quasi-Artinian Modules, which is a generalization of left Artinian modules. First we study the problems of finding conditions which are equivalent to the definition of left quasi-Artinian Module (Theorem 1.2). Then we show that the class of left quasi-Artinian Modules is Q-closed, S-closed and E-closed.

In section two we study the module structures over left quasi-Artinian ring, in particular we prove that if \(R \) is a left quasi-Artinian ring, then every finitely generated left \(R \)-module \(M \) is a left quasi-Artinian (Theorem 2.1). Finally we show that: if \(R \) be a ring, \(N = N(R) \), then \(R \) is a left quasi-Artinian if and only if \(N \) is nilpotent and each of the \(R/N, N/N^2, N^2/N^3, \ldots \) is left quasi-Artinian \(R \)-module (Theorem 2.4).

In section three we describe the ideal structures and we give some classification, in particular we prove that if \(I \) is a non-nilpotent left ideal in a left quasi-Artinian ring, then \(I \) contains a non-zero idempotent element (Theorem 3.2). Next we prove that if \(R \) is a semi-prime left quasi-Artinian ring and \(I \) be a non-zero left ideal of \(R \), then \(I = Re \) for some non-zero idempotent \(e \) in \(R \) (Theorem 3.5).

1.1. Definitions and Basic Properties

Let \(M \) be a left \(R \)-module. We say that \(M \) is a left quasi-Artinian Module if for every descending chain \(N_1 \supseteq N_2 \supseteq \ldots \supseteq N_n \supseteq \ldots \) of left \(R \)-submodules of \(M \), there exist \(m \in \mathbb{Z}^+ \) such that \(R^m N_m \subseteq N_n \) for all \(n \).

It is clear that any left Artinian module is left quasi-Artinian and it is easy to prove the following

Lemma 1.1

Let \(M \) be a left \(R \)-module.

(a) If \(RM = 0 \), then \(M \) is a left quasi-Artinian.

(b) If \(R \) has an identity and \(M \) is unitary, then \(M \) is left quasi-Artinian if and only if \(M \) is left Artinian.

Now we prove the following which is a characterization of left quasi-Artinian modules.

Theorem 1.2

Let \(M \) be a left \(R \)-module. Then the following conditions are equivalent:

\(\zeta \) of left \(R \)-submodules of \(M \) such that (a) In every non-empty collection \(K \in \zeta \), then \(RK \in \zeta \), there exists a minimal element.

that if

(b) For every descending chain of left \(R \)-submodules \(N_1 \supseteq N_2 \supseteq \ldots \)

\(R^m N_1 \supseteq R^m N_2 \supseteq \ldots \) there exists \(m \in \mathbb{Z}^+ \) such that a descending chain terminates.

(c) \(M \) is left quasi-Artinian.

(d) For every non-empty collection \(\zeta \) of left \(R \)-submodules of \(M \), there exists \(N \in \zeta \) and \(m \in \mathbb{Z}^+ \) such that \(R^m N \subseteq K \) for any \(K \in \zeta \), \(K \subseteq N \).

Proof:

(a \(\Rightarrow \) b) Suppose that \(N_1 \supseteq N_2 \supseteq \ldots \supseteq N_n \supseteq \ldots \) is a descending chain of left \(R \)-submodules of \(M \) but the descending chain \(R^m N_1 \supseteq R^m N_2 \supseteq \ldots \supseteq R^m N_n \supseteq \ldots \) of left \(R \)-submodules of \(M \) does not terminate for all \(m \in \mathbb{Z}^+ \).

Therefore the collection \(\zeta = \{ N_1, N_2, \ldots, RN_1, RN_2, \ldots, R^m N_1, R^m N_2, \ldots \} \) is a nonempty collection of \(R \)-submodules and for all \(N \in \zeta \) we have \(RN \in \zeta \). Hence \(\zeta \) has no minimal element, which
is a contradiction.

(b) ⇒ (c) Let \(N_1 \supseteq N_2 \supseteq \ldots \supseteq N_n \supseteq \ldots \) be any descending chain of left \(R \)-submodules of \(M \) then there exists \(m \in \mathbb{Z}^+ \) such that \(R^m N_1 \supseteq R^m N_2 \supseteq \ldots \supseteq R^m N_n \supseteq \ldots \) form a descending chain of left \(R \)-submodules of \(M \) and by (b) there exists \(s \in \mathbb{Z}^+ \) such that \(R^m N_s = R^m N_n \) for all \(n \geq s \), but \(R^m N_s \subseteq N_n \) for all \(n \geq s \). Take \(t = \max \{m, s\} \) then \(R^t N_t \subseteq N_n \) for all \(n \), hence \(M \) is a left quasi-\(\text{Artinian} \).

(c) ⇒ (d) Let \(\zeta \) be a non-empty collection of left \(R \)-submodules of \(M \) such that for each \(N \in \zeta \) and \(m \in \mathbb{Z}^+ \), there exists \(K \in \zeta \) such that \(K \subseteq N \), but \(R^m N \not\subseteq K \). Now let \(N_1 \in \zeta \) then there exists \(N_2 \in \zeta \) such that \(R N_1 \not\subseteq N_2 \), where \(N_1 \supseteq N_2 \), but \(N_2 \in \zeta \), hence there exists \(N_3 \in \zeta \), such that \(R^2 N_2 \not\subseteq N_3 \). Continuing in this manner we can construct an infinite descending chain \(N_1 \supseteq N_2 \supseteq \ldots \supseteq N_n \supseteq \ldots \) of left \(R \)-submodules of \(M \) such that \(R^m N_m \not\subseteq N_{m+1} \), \(m=1,2,\ldots \). Hence \(R^m N_m \not\subseteq N_n \) for some \(n \), which is a contradiction.

(d) ⇒ (a) Let \(\zeta \) be a non-empty collection of left \(R \)-submodules of \(M \) such that \(RK \subseteq \zeta \) for all \(K \in \zeta \). Then \(R^m K \subseteq \zeta \), for all \(m \in \mathbb{Z}^+ \). But \(R^m K \subseteq \zeta \) for all \(m \in \mathbb{Z}^+ \), hence by (d) there exists an \(s \in \mathbb{Z}^+ \) such that \(R^s K \subseteq \zeta \). Therefore if \(m \geq s \), then \(R^s K = R^m K \) and \(\zeta \) has a minimal element.

Next we prove the following:

Proposition 1.3

Let \(M \) be a left \(R \)-module. If \(RM \) is left \(\text{Artinian} \), then \(M \) is left quasi-\(\text{Artinian} \).

Proof:

be a descending chain of left \(R \)-submodules of \(M \). Let \(N_1 \supseteq N_2 \supseteq \ldots \)

\(R \)-submodules of \(M \) such that \(R N_1 \supseteq R N_2 \supseteq \ldots \) is a descending chain of then \(R M \). But \(RM \) is left \(\text{Artinian} \), hence there exists \(s \in \mathbb{Z}^+ \) such that \(R N_s = R N_n \). Further \(R^s N_s \subseteq R N_n \). For all \(n \) Hence \(M \) is left quasi-\(\text{Artinian} \).

Remark: The converse of Proposition 1.3 needs not be true as the following example shows:

Let \(M = \begin{bmatrix} Q & 0 \\ Q & 0 \end{bmatrix} \) and \(R = \begin{bmatrix} 0 & 0 \\ 0 & Q \end{bmatrix} \). Then \(M \) is left quasi-\(\text{Artinian} \).

\[R \text{-module, but } RM = \begin{bmatrix} 0 & 0 \\ 0 & Q \end{bmatrix} = R \text{ is not left \(\text{Artinian} \).} \]

Now let \(\mathcal{M} \) be a class of modules. Then we say that \(\mathcal{M} \) is \(S \)-closed if \(N \) is a submodule of \(M \) and \(M \in \mathcal{M} \), then \(N \in \mathcal{M} \). We say that \(\mathcal{M} \) is \(Q \)-closed if \(M \in \mathcal{M} \) and \(N \) is a submodule of \(M \), then \(M/N \in \mathcal{M} \). We say that \(\mathcal{M} \) is \(E \)-closed if \(N \) is a submodule of \(M \) and \(N, M/N \in \mathcal{M} \), then \(M \in \mathcal{M} \).

Proposition 1.4

Let \(\mathcal{M} \) be the class of left quasi-\(\text{Artinian} \) modules. Then (a) \(\mathcal{M} \) is \(S \)-closed. (b) \(\mathcal{M} \) is \(Q \)-closed. (c) \(\mathcal{M} \) is \(E \)-closed.

Proof:

(a) is clear

(b) Suppose that \(M \) is a left quasi-\(\text{Artinian} \) \(R \)-module and \(N \) is submodule of \(M \). Let \(\pi: M \to M/N = \overline{M} \) be the natural homorphism of left quasi-\(\text{Artinian} \) module onto \(\overline{M} \). Then \(N \supseteq N_2 \supseteq \ldots \) is a descending chain of submodules of \(\overline{M} \), and \(N \supseteq N_2 \supseteq \ldots \) is a descending chain of \(R \)-submodules of \(M \), where \(N_i = \pi^{-1}(\overline{N}_i) \) but \(M \) is left quasi-\(\text{Artinian} \), hence there exists \(m \in \mathbb{Z}^+ \) such that \(R^m N_m \subseteq N_n \) for all \(n \). But \((N_k) = \overline{N}_k \). Hence \(R^m N_m \subseteq \overline{N}_n \) for all \(n \). Therefore \(\overline{M} \) is left quasi-\(\text{Artinian} \).

(c) Suppose that \(N \) be a \(R \)-submodule of \(M \) and \(N, M/N \in \mathcal{M} \). Let \(\mathcal{M} \) be a descending chain of left \(R \)-submodules of \(M \). Then \(N_1 \supseteq N_2 \supseteq \ldots \)

\(N_1 \cap N \supseteq N_2 \cap N \supseteq \ldots \) is a descending chain of \(R \)-submodules of \(N \). But \(s \in \mathbb{Z}^+ \) such that left quasi-\(\text{Artinian} \), hence there exists \(N \)

\[N^s(N_s \cap N) \subseteq N_n \cap N \] for all \(n \). Now \(N_1 + N/N \supseteq N_2 + N/N \supseteq \ldots \) is a descending chain of submodules of \(M/N \) and \(N_1 + N/N \) is left quasi-\(\text{Artinian} \), therefore there exists \(k \) such that \(R^k(N_k + N/N) \subseteq N_n + N/N \) for all \(n \). That is \(R^k(N_k + N/N) \subseteq N_n + N/N \) for all \(n \). Now let \(m = \max\{s, k\} \) Then \(R^m (N_m + N/N) \subseteq N_n \cap N \) and \(R^m (N_m + N/N) \subseteq N_n \cap N \) for all \(n \).

Now \(R^m N_m = R^m [N_m \cap (N_m + N/N)] \)

\[\subseteq [N_m \cap (N_m + N/N)] \] by modular law, therefore \(R^m N_m = N_m \cap (N_m + N/N) \) for all \(n \). Hence \(R^m N_m \subseteq R^m N_m \subseteq N_m \) for all \(n \). Therefore \(M \) is left quasi-\(\text{Artinian} \). An immediate consequence of Proposition 1.4, we have the following:

Corollary

Let \(\mathcal{M} \) be the class of quasi-\(\text{Artinian} \) modules. If \(M = A + B \)
where A, B in \(\mathfrak{M} \) then \(M \in \mathfrak{M} \).

Remark: Suppose that \(R \) has \(1, \) so \(M = M_1 \oplus M_2 \) where
\[
M_1 = \{ lm : m \in M \} \quad \text{and} \quad M_2 = \{ m - lm : m \in M \}.
\]
Here \(M_1 \) is unitary and left quasi-Artinian if and only if \(M \) is left \(\mathfrak{M} \). \(R M_2 = 0 \) quasi-Artinian if and only if \(M_1 \) is left Artinian. And \(M \) is left Artinian if and only if \(M_1 \) and \(M_2 \).

2. The Submodule Structures

In this section we study the submodules structure by consider modules over left quasi-Artinian ring. First we prove the following

Theorem 2.1

Let \(R \) be a left quasi-Artinian ring. Then every finitely generated left \(R \)-module is quasi-Artinian.

Proof:

Let \(L \) be a finitely generated left \(R \)-module, then \(L = R x_1 + R x_2 + \cdots + R x_n \) where \(0 \neq x_i \in M, \ 1 \leq i \leq n \). If \(n = 1 \) then \(M \) is cyclic and therefore isomorphic to \(R/L \) where
\[
L = \{ a \in R \mid ax_1 = 0 \}.
\]
Since \(R/L \) is left quasi-Artinian, so is every factor module. Assume inductively that the Theorem holds for modules which can be generated by \(n - 1 \) or fewer elements. Then \(Rx_1 \) is left quasi-Artinian and
\[
M/Rx_1 \cong (Rx_1 + Rx_2 + \cdots + Rx_n)/Rx_1 \cong (Rx_2 + \cdots + Rx_n)/Rx_1 \cap (Rx_2 + \cdots + Rx_2)
\]
which is left quasi-Artinian. Therefore \(M \) is left quasi-Artinian. Let \(R \) be a ring and \(M \) is a left \(R \)-module. Then
\[
(a) \ Soc(M) = \sum \{ K \leq M : K \text{ is simple in } M \}
\]
\[
= \cap \{ L \leq M : L \text{ is essential in } M \}
\]
\[
(b) \ Rad(M) = \cap \{ K : K \text{ is maximal submodule in } M \}
\]
\[
= \sum \{ L : L \text{ is small submodule in } M \}
\]

Theorem 2.2

Let \(R \) be a left quasi-Artinian ring and \(M \) is a left \(R \)-module. Then

(a) \ SocM ess \(M \)

(b) \ RadM s max \(M \)

Proof:

(a) \(\rho_x : R \rightarrow Rx \) such that \(\rho_x (r) = rx \) for \(r \in R \) is a homomorphism of \(R \) onto the submodule \(Rx \) with
\[
\text{Kernel } \ker \rho_x = \{ r \in R \mid rx = 0 \}.
\]
So \(R/\ker \rho_x \cong Rx \). But \(R \) is left quasi-Artinian, hence by Proposition 1.4, \(Rx \) is left quasi-Artinian. We claim that \(Rx \) contains a minimal submodule. To prove this let \(l = \{ N \subseteq Rx \mid 0 \neq x \in M, N \leq M \} \) be a nonempty collection of \(R \)-submodule of \(Rx \) and \(J \in l \) then \(J = Ry \) for some \(0 \neq y \in M \). But \(J/\ker \rho_y = (\ker \rho_y) y = R^2 y \subseteq Ry = J \in l \). But \(l \) has a minimal element, hence \(Soc(R) \neq 0 \). But \(Soc(Rx) = Rx \cap Soc(M) \), hence \(Soc(M) \) is a \(\mathfrak{M} \).

(b) First we show that \(Rad(M) = J M \) where \(J = J(R) \).

Since for any left \(R \)-module \(M \) the factor module \(R/M \) is simple, \(J = \{ m \in M \mid \text{ for any } \lambda \in \mathbb{C}, \lambda m = 0 \} \). Therefore \(J(R) \) is annihilator of every simple \(R \)-submodule of \(M \), hence \(J(R) \) is left Artinian if and only if \(J(R) \) is semi-simple.

Conversely since \(J(R) \) is semi-simple then we have \(Soc(M) = R \). Therefore \(Soc(M/JM) = R/M \) (J(R)/J) = R/M (0) = M/JM \). Hence \(M/JM \) is semi-simple. By Theorem 2.2, since \(Rad(M) \) is small in \(M \), then \(M/JM \) is semi-simple.

Corollary 2.3

Let \(R \) be left quasi-Artinian ring and \(M \) left \(R \)-module, then \(M \) is finitely generated if and only if \(M/Rad(M) \) is finitely generated.

Proof:

By Theorem 2.2, since \(Rad(M) \) is small in \(M \), then the result follows.

By the nil radical \(N = N(R) \) of a ring \(R \) we mean the sum of all nilpotent ideals of \(R \), which is a nil ideal. It is well known [7, P.28 Theorem 2], that \(N \) is the sum of all nilpotent left ideals of \(R \) and it is the sum of all nilpotent right ideals of \(R \).

Now we give another characterization of left quasi-Artinian ring, namely the following:

Theorem 2.4

Let \(R \) be a ring. \(N = N(R) \) be the nil radical of \(R \), then \(R \) is a left quasi-
\[N \]

(n) nilpotent and each of \(R/N, N/N^2 , N^2/N^3 \), ..., Artinian if and only if it is left quasi-Artinian.

Proof:

Suppose \(R \) is left quasi-Artinian. Then by [3, Corollary 2.3] \(N \) is nilpotent. Now let \(R = L \). Then \(M \) is left quasi-Artinian. \(R \)-module and \(N^i \) is an ideal of \(R \) for all \(i \). Therefore \(N^i \) is a \(R \)-submodule of \(M \) for all \(i \). By Proposition 1.4, \(R/N^i \) is left quasi-Artinian for all \(i \). Also \(N^i/N^{i+1} \) is a \(R \)-submodule of \(R/N^{i+1} \) so each \(N^{i+1}/N^{i+1} \) is left quasi-Artinian.

To prove the converse, note that since \(R/N \cong R/N^2 \), if it follows from Proposition 1.4, that \(R/N^2 \) is left quasi-Artinian \(R \)-module and by induction \(R/N \) is left quasi-Artinian for all \(i \). But \(N \) is nilpotent, hence there exists \(m \in \mathbb{Z}^+ \) such that \(N^m = 0 \), therefore \(R \cong R/N^m \) is left quasi-Artinian \(R \)-module.
Hence R is left quasi-Artinian ring.

3. The Ideal Structures

In this section we study the ideal structures in a left quasi-Artinian ring. Note that if $R=I=R_1+R_2$ where R_1,R_2 are left quasi-Artinian. Let $I_1 \supseteq I_2 \supseteq \ldots$ be a descending chain of left ideals of R. Then $R_1I_1 \supseteq R_1I_2 \supseteq \ldots$ is a descending chain of left ideals of R_1 and $R_2I_1 \supseteq R_2I_2 \supseteq \ldots$ is a descending chain of left ideals of R_2 but R_1,R_2 are left quasi-Artinian rings, hence there exist r,s such that $R_1^r(R_1I_1) \subseteq R_1I_n \subseteq I_n$ and $R_2^s(R_2I_1) \subseteq R_2I_n \subseteq I_n$. Let $m=\max\{r,s\}$. Then $R_1^m(R_1I_1) \subseteq R_1I_n \subseteq I_n$ and $R_2^m(R_2I_1) \subseteq R_2I_n \subseteq I_n$ for all n. But $R_1=\bigoplus_{i=1}^{m} R_1^i \oplus R_1^{m+1}$ and $R_2=\bigoplus_{i=1}^{m} R_2^i \oplus R_2^{m+1}$, hence $R^{m+1}I_1 = R_1^m(R_1I_1) + R_2^m(R_2I_1) \subseteq I_n$ for all n and $R^{n+1}I_1 \subseteq R^{n+1}I_n \subseteq I_n$ for all n. Therefore R is a left quasi-Artinian.

Theorem 3.2

Let I be a non-nilpotent left ideal in a left quasi-Artinian ring, then I contains a non-zero idempotent element.

To prove this we need the following lemma.

Lemma 3.3

Let R be a left quasi-Artinian ring. Then every non-nilpotent left ideal of R contains a minimal non-nilpotent left ideal.

Proof:
Let I be a non-nilpotent left ideal of R and suppose that I does not contain a minimal non-nilpotent left ideal of R. Then $0 \neq I^2 \subseteq RI \subseteq I$ and RI is not nilpotent. Therefore there exists a non-nilpotent left ideal $I_1 \nsubseteq RI \subseteq I$. Hence $0 \neq I_1^3 \subseteq R^2I_1$ and R^2I_1 is not nilpotent. In this way we can find a non-nilpotent left ideal $I_n \nsubseteq R^{n-1}I_{n-1} \subseteq I_{n-1}$ then $0 \neq I_{n+1} \subseteq R^nI_n$ and R^nI_n is not nilpotent and so on. Hence $I \supseteq I_1 \supseteq I_2 \supseteq \ldots \supseteq I_n \supseteq \ldots$ is an infinite descending chain of left ideals of R which is a contradiction. Therefore I contains a minimal non-nilpotent left ideal of R.

Proof of Theorem

Let I be non-nilpotent non-nilpotent left ideal of R. Since R is a left quasi-Artinian ring, then by Lemma 3.3, I contains a minimal non-nilpotent left ideal K. Since $K^2 \neq 0$ then there exists $x \in K$ such that $xK \neq 0$. However $xK \subseteq K$ and xK is a left ideal of R, hence by minimality of K we have $xK=K$. Therefore there exists $e \in K$ such that $xe=x$ and since $xe^2=xe$ we get that $x(e^2-e)=0$.

Now, let $K_0=\{a \in K \mid xa=0\}$, therefore K_0 is a left ideal of R and $K_0 \subseteq K$ since, $xK \neq 0$, for all $x \in K$.

Therefore we must have $K_0=0$ and $(e^2-e) \in K_0$. Hence $e^2=e$. Since $xe=x \neq 0$ we have that $e \neq 0$. Now, $Re \subseteq K$ is a left ideal of R and contains $e^2=e \neq 0$.

so that $Re \neq 0$, then $e \in Re=K \subseteq I$. Hence $e \in I$.

Corollary 3.4

If R is left quasi-Artinian ring, then every nil left ideal of R is a nilpotent.

Proof:
Let N be a non-zero nil left ideal of R and suppose that N is not nilpotent. Then by Theorem 3.2, there exists a nonzero idempotent element e and $e \in N$. Therefore e is nilpotent which is a contradiction. Hence N must be nilpotent.

Next we prove the following theorem.

Theorem 3.5

Let R be a semi-prime left quasi-Artinian ring and I be a nonzero left ideal of R, then $I=Re$ for some nonzero idempotent e in R.

Proof:
Since I is not nilpotent, it follows from Theorem 3.2, that I contains a non-zero idempotent element say, e. Let $A(e)=\{x \in I \mid xe=0\}$ then the set of left ideals $L=\{A(e) \mid 0 \neq e^2=e \in I\}$ is not empty. Now, if $A(e) \subseteq L$, then $RA(e) \subseteq L$. Now since I is a left ideal of R, then $re \in I$, where $r \in R$, $e \in I$, therefore $0 \neq re^2=re \in I$. But R is a left quasi-Artinian, hence by Theorem 1.2, R has a minimal element $A(e_0)$, say. Either $A(e_0) \neq 0$ or $A(e_0)=0$. If $A(e_0) \neq 0$, then $A(e_0)$ must have an idempotent e_1, say. By definition of $A(e_0)$, $e_1 \in I$. Consider $e_2=e_0+e_1-e_0e_1$, then
Theorem R/N is a finite direct sum of its minimal ideals, each of which is a simple Artinian ring, that is
\[R/N \cong \bigoplus_{i=1}^{n} \bar{N}_i, \]
where $\bar{N}_i = \langle \bar{e}_i \rangle$ is a minimal ideal of R/N
which is a simple Artinian ring. But a finite direct sum of Artinian is again Artinian, hence $\bigoplus_{i=1}^{n} \bar{N}_i$ is an Artinian ring and R/N is a semi-simple Artinian. But \bar{N}_i is a semi-simple Artinian so, it has an identity element. Therefore $\bigoplus_{i=1}^{n} \bar{N}_i$ is an Artinian ring with identity. Hence,
\[R \cong \bigoplus_{i=1}^{n} \bar{N}_i \oplus N \]
and R is a direct sum of Artinian ring with identity and nilpotent ring.

Finally we prove the following which characterizes the prime ideals in left Quasi-Artinian rings.

Theorem 3.8

Let R be a commutative quasi-Artinian ring and I be a minimal ideal in R. Then $ann(I)$ is a maximal ideal.

To prove this we need the following

Lemma 3.9

If R is a commutative quasi-Artinian ring and every prime ideal of R is maximal.

Proof:

Let P be a prime ideal of R, then R/P is a prime ring. Now R/P is a semi-prime quasi-Artinian ring. Therefore by Corollary 3.5 R/P is a semi-simple Artinian. Hence by Wedderburn’s Theorem R/P is a finite direct sum of minimal ideals, each of which is a simple Artinian ring. But a prime ring cannot be written as a direct sum of non-trivial ideals, hence R/P is a simple ring. Therefore P is maximal.

An immediate consequence of Lemma 3.9 we have the following

Corollary 3.10

If R is a quasi-Artinian ring, then $J(R) = \text{rad}(R) = N(R)$, where $J(R)$ is the Jacobson radical of R and $\text{rad}(R)$ is the prime radical of R.

Proof of Theorem 3.8

By Lemma 3.10, it is enough to show that $\text{ann}(I)$ is a prime ideal in R.

Let $x, y \in R$ such that $x, y \notin \text{ann}(I)$. Then $xI \neq 0$ and $yI \neq 0$, but $xI \subseteq I$ and $yI \subseteq I$. But I is a minimal ideal of R, hence $xI = I$ and $yI = I$. Therefore $0 \neq xy \in I$ and $xy \notin \text{ann}(I)$, and $\text{ann}(I)$ is a prime ideal of R.

Corollary 3.6

Any semi-prime left quasi-Artinian ring is a semi-simple left Artinian.

Proof:

By Theorem 3.5 every non-zero left ideal of R is generated by a non-zero idempotent e, say. But we know that e acts as right identity for the left ideal $I = Re$, and since R is itself an ideal, hence R has an identity element. Therefore R is left Artinian. Now, $J(R)$ is nilpotent, and R is a semi-prime ring, implies that $J(R) = 0$. Hence R is a semi-simple.

Now we describe left quasi-Artinian rings using the non-commutative version of Wedderburn Theorem. In particular we prove the following

Theorem 3.7

A commutative ring R is quasi-Artinian if and only if R is a direct sum of an Artinian ring with identity and a nilpotent ring.

To prove this we need the following

Lemma 3.8

Let R be a left quasi-Artinian ring and N be the nil radical of R. Then R/N is a semi-simple Artinian ring.

Proof:

Since N is nilpotent and R/N is left quasi-Artinian, it follows that R/N is a semi-prime left quasi-Artinian. Therefore by Corollary 3.5, R/N is a semi-simple Artinian ring.

Proof of Lemma 3.8

Suppose that R is a direct sum of an Artinian ring with identity and a nilpotent ring, since any Artinian ring and any nilpotent ring are quasi-Artinian, it follows that R is a quasi Artinian ring.

To prove the converse. Let $N = N(R)$ be a nil radical of R. Then by Corollary 3.4 N is nilpotent and by Lemma 3.8, R/N is a semi-simple Artinian ring. Therefore by Wedderburn's
REFERENCES

