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Abstract  Analysts are often interested in obtaining component reliabilit ies by analyzing system life data. Making a series 
system assumption and applying a competing risk model generally does this. In practice, the data consists of a system 
life-length and a subset of components that contains the true cause of system failure (the true cause of system failure is 
masked from our knowledge). We consider a series system composed of independent Weibull components with common 
shape parameter and different scale parameters. It is shown that the IFRA-ness of the system is measured by the common 
shape parameter, which is also known as the aging factor. We derive the consistency and asymptotic normality of the MLEs 
of the scale parameters under random masking.  
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1. Introduction 
In  indus t rial p rob lems , we are o ften  interested  in 

estimating component reliab ilit ies from system lifet ime data. 
In this context, the competing risk model is normally used. 
That  is, component reliab ility  from system life-data is 
generally  est imated  by  assuming  a series  system and 
applying a competing risk model, where the system life-data 
and  als o the cause o f system failu re are known. The 
combined  data can  then be employed  to  est imate life 
distribution of the system and each of its components. In 
practice, however, th is type of analysis is confounded with a 
problem of masking (the exact cause of failure is unknown). 
It is mentioned in[4] that “… investigation of cause of failu re 
is expensive and time consuming, and hence sometimes the 
cause of failure is not observed, even if the failure t ime is 
recorded”. When a large computer system fails in the field, 
analysis is usually performed (see[7]) such that  a  s mall 
subset of components, perhaps a circuit  card, is identified as 
the cause of failure. In an attempt to repair the system as 
quickly  as possib le, the ent ire subset of components is 
replaced and exact failing component may be investigated 
further. We call the data, fo r which cause o f failure is 
narrowed to a subset of components, masked because the 
true cause of failure is masked from our knowledge. The 
resulting quantities obtained are then the system-life and the 
partial in formation on  the cause of failu re.[4] considered a 
model involving a series system of two components in which 
n systems are put on test and only for m (<n) systems, the 
failure t imes and the cause of failu re were noted while the  
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remain ing n-m observations include only the failure times 
(i.e ., n -m is the number of masked data).  

The model in[4] was extended by[7] and[2] to a model 
where they allowed an arbitrary number of components in 
series and random masking. They assumed the lifetime of the 
i-th component to be exponential with unknown but constant 

parameter λ i . They obtained the closed form expression 
for the MLEs of the parameters when the system has two 
components. For the case of three component system, they 
used the Picard’s method to obtain approximate solution to 

the MLE of λ i , i=1,2,3. In[3], the general 
multi-component system is discussed and they proved 
consistency of the MLEs under certain conditions. 

No study has been reported so far for the above model 
taking the aging of the component into consideration. Aging 
is an important aspect in reliability to deal with. We consider 
a series system consisting of two components having 
Weibull  

),( βα jW  with distribution function  
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where ),( αβθ jj = . Let );( θ jtf
 denote the density of 

),( βα jW . 
The paper is organized as fo llows. In Sect ion 2, we show 

that the IFRA (increasing failure rate average)-ness of the 
series system consisting of Weibul components with 
common shape parameter α  is measured by α . In 
Section 3, we develop the likelihood function for a 
n-component series system. In Section 4, we establish the 
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consistency and asymptotic normality of the estimates of the 

scale parameters .2,1, =jjβ  

2. Notion of Aging 
The following definit ion is due to[1]. 
Definition 2.1: A system with exchangeable units 

{1,2…,n} age or wear out with respect to age, if their joint 
survival function  

),...,(),...,( 111 yyyXyX nnn FP =>>  
is Schur concave. 

Theorem 2.1 (see[1]): Let XX n,...,1 be the 
independent lifetimes of n units, each with specified 
univariate distribution F. Suppose further that )(ln xF  is 
concave when finite. Then 
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is Schur-concave. 
Consider a series system composed of n independent 

Weibull components with common shape parameter α . 
Then it is easy to see, in the light of the above theorem, that  

(ⅰ) the system age positively if α >1, 
(ⅱ) the system age negatively if  α <1, and, 
(ⅲ) the system has no age if  α =1. 
Hence α is the aging factor for the system. 
We shall now prove that the IFRA-ness of a 

component/system is measured by α . To this end, we g ive 
the following definition. 

Definition 2.2 (see[6]): Let F and G be continuous life 
distributions. We say, F is more IFRA than G if 

)()( bb MM GF > for all 0<b<1, where )(bM F is 
defined by 

∫
∞

=
0

)()()( xdFbxFbM F
        (2.1) 

Theorem 2.2 : Consider two series systems ∑∑ 21and . 

Let ∑i be composed of n independent Weibull components 

with common shape parameter .2,1, =iα  Then ∑1
is more 

IFRA than ∑2
if and only if αα 21 > . 

Proof: Let XX n,...,1 be the independent lifetimes of n  
components of the series system. Let X i

follow Weibull 

),( βα jW , j=1,…,n. Now if ),,...,min( 1 XX nY =  then  
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Now, form (2.1), we have  
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which is an increasing function of α , for 0<b<1. Hence the 
theorem fo llows. 

3. The likelihood Function 
Consider n series systems each having J components. The 

random life-lengths of the j-th component in the i-th system, 

i=1,…,n and j=1,…,J, is denoted by T ij . Let T i denote 
the life-length of the i-th system so that 

),...,min( 1 TTT iJii =           (3.1) 

for i=1,…,n.  We assume that T ij
’s are independent. The 

random variables TT njj ,...,1
constitute a random sample 

from a common absolutely continuous distribution 
);( θ jj tF  with probability density );( θ jj tf . Let 

);(1);( θθ jjjj tt FF −=  denote the reliability (survival) 
function of the j-th component at time t.  

After the failure of the i-th system at t ime ti
, an analysis 

of the possible cause of failu re may be carried out and as a 
result, a non-empty set, say si

, is identified which is known 

to contain the true cause of failure. Before the analysis, si
is 

unknown and considered random. Such a random set is 
denoted by .Si

Let Ki
be the random index of the 

components causing the failure of the i-th system. ( Ki
is 

assumed to be unique). Only when }{ jsi = , we will know 

that jK i = , in any other case, we can only state that Ki

∈ si
(i.e ., the true cause of failure is masked from our 

knowledge). 

The observations niST ii ,...,1),,( = are assumed to 
be independent and the observed data is expressed as 

nist ii ,...,1),,( = . 

The maximum likelihood estimate can now be obtained by 
maximizing the fo llowing expression (see[3]): 
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4. Consistency and Asymptotic 
Normality 



 American Journal of Mathematics and Statistics 2013, 3(1): 17-20  19 
 

The likelihood (3.2) seems to be intractable analytically  
when 3≥J . Therefore, we consider a series system with 

two independent ),( βα
j

W , j=1,2, components.  

Suppose nnn 1221 ,,  
are the number of observations 

,,...,1),,( nist ii = such that 
 

}2,1{},2{},1{ === sss iii and  respectively. From 
(3.2) one can obtain the log-likelihood function 
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The MLEs are easily shown to be 
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It is known that  
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(see[5], p.356). 
We have for j=1,2, 
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which fo llows under the assumption (see[3]) that  
( ) ( )2/}2{1/}1{ 2211 ===== KSKS PP    (4.8) 

Hence, by the Slutskey’s Lemma,  
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Similarly, one can show 
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 is a consistent estimate of .2,1, =jjβ  
Now we shall establish the asymptotic normality of 

.2,1, =jjβ α
 By the Lindeberg-Levy Central Limit 

Theorem, we have 
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Hence, from (4.7) and the Slutskey’s lemma, we have  

.2,1,,^
2

=













j

n
j

jANisj
β

ββ

α
α

α

 

5. Conclusions 
So far the masked data have been studied for the system 

composed of exponential components. Though there are 
some papers (see[8], for example) addressing Weibull 
distribution, no attention is paid to the aging aspect of the 
situation. In this paper, we have considered a simple series 
system composed of two Weibull components having the 
common shape parameter. We have taken the shape 
parameters to be the same, because (as shown in this paper) it 
is the aging factor of interest and it characterizes the 
IFRA-ness of a system. So, by  taking the shape parameters to 
be common, we are basically assuming that the system is 
consisting of components with the same amount of 
IFRA-ness. 
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