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Abstract  In this paper, the discrete Burr type III distribution is introduced using the general approach of discretizing a 
continuous distribution and proposed it as a suitable lifetime model. The equivalence of continuous and discrete Burr type III 
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1. Intro duction 
An important aspect of lifetime analysis is to find a 

lifetime d istribution that can adequately describe the ageing 
behavior of the device concerned. Most of the lifet imes are 
continuous in nature and hence many continuous life 
distributions have been proposed in literature. On the other 
hand, discrete failure data are arising in several common 
situations for example: 

· Reports on field  failure are collected weekly, monthly 
and the observations are the number of failures, without a 
specification of the failure times. 

· A piece of equipment operates in cycles and 
experimenter observes the number of cycles successfully 
completed prior to failure. A frequently referred example is 
copier whose life length would be the total number of copies 
it produces. Another example is the number o f on/off cycles 
of a switch before failure occurs, see Lai and Xie[1]. 

In the last two decades, standard discrete distributions like 
geometric and negative binomial have been employed to 
model life time data. Usually, if the discrete model is used 
with  lifet ime data, it is a  multinomial distribution. This arises 
because effectively the continuous data have been grouped, 
see Lawless[2]. However, there is a need to find more 
plausible discrete lifetime d istributions to fit to various types 
of lifet ime data. For this purpose, discretizing popular 
continuous lifetime d istributions can be helpful in this  
manner, since, it effects on speed, accuracy and 
understandability of the generated data using these discrete 
lifetime models. 

1.1. Discretizing a Continuous Distribution  
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A continuous failure time model can be used to generate a 
discrete model by introducing a grouping on the time axis. If 
the underlying continuous failure t ime X has the reliab ility 
function (RF), R (x) = P[X ≥ x ], 

and times are grouped into unit intervals so that the 
discrete observed variable is dX = [X], the largest integer 
part of X, the probability mass function (pmf) of dX can be 
written as 

p(x) = P[dX = x ] = P[ x ≤ dX < 𝑥𝑥 + 1 ] 
=  R (x)– R (x + 1);  x = 0,1,2 …     (1) 

The pmf o f d iscrete random variab le (dX), can be viewed 
as discrete concentration of the pdf of X. The first and easiest 
in this approach is the geometric distribution with pmf   

p(x) = θx (1 − θ) = θx − θx +1    ;     x = 0,1,2, … 
this is obtained by discretizing the exponential distribution 
with RF 
R(x) = e−λx;      λ , x > 0.     Here   θ = e−λ  , (0 <  𝜃𝜃 < 1). 

= θx .  
The interests in discrete failure data came relat ively late in  

comparison to its continuous analogue. The subject matter 
has to some extent been neglected. It was only briefly 
mentioned by few scientists. Khan, Khalique and 
Abouammoh[3], d iscussed two discrete Weibull 
distributions (type I and type II), and suggested a simple 
method to estimate the unknown parameters for one of them, 
since the usual methods of estimat ion are not easy to apply. 
Kulasekera[4] presented approximate maximum likelihood 
estimators of the parameters of a discrete Weibull 
distribution under censoring. 

A discrete analogue of the normal distribution was 
obtained[5], that is characterized  by maximum entropy, 
specified mean and variance, and integer support on (−∞ , ∞). 
Szab lowski[6], introduced new natural parameters in  a 
formula defining a family of discrete normal distributions, 
where one of the parameters is closely related to the 
expectation and the other to the variance of that family. The 
discrete version of the normal and Rayleigh distributions 
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were also proposed by Roy[7],[8] respectively. The discrete 
Weibull models were obtained[9], in order to model the 
number of cycles to failu re when components are subjected 
to cyclical loading. In addition, some d istributional 
properties for these models were p resented. 

A discrete version of the Laplce (double exponential) 
distribution was derived by Inusah and Kozubowski[10], and 
discussed some of its statistical propert ies and statistical 
issues of estimation under the discrete Laplace model. The 
discrete Burr type XII and Pareto distribution were 
obtained[11], using the general approach of d iscretizing and 
then, some important distributional properties and estimation 
of reliab ility characteristics were proposed. 

A discrete inverse Weibull distribution was proposed[12], 
which is a discrete version of the continuous inverse Weibull 
variable, defined as X-1 where X denotes the continuous 
Weibull random variable. The d iscrete version of  Lindley 
distribution was introduced[13], by discretizing the 
continuous failure model of the Lindley d istribution. Also, a 
compound discrete Lindley distribution in closed form is 
obtained after revising some of its properties. 

A discrete generalized  exponential distribution of a second 
type (DGE2(α,ρ)), was presented[14], which can be 
considered as another generalizat ion of the geometric 
distribution. 

A discrete analog of the generalized exponential 
distribution (DGE(α,ρ)) was presented[15], which can be 
viewed as another generalization of the geometric 
distribution, and some of its distributional and moment 
properties were discussed. Burr type III distribution 
proposed as a lifetime model, see[16], the author discussed 
the distributional and the reliability properties of BurrIII(c, 
k). 

In this paper, a  discrete analogue of the BurrIII(c, k) 
distribution is introduced, since, it plays an important role in 
environment and other allied sciences. It is called discrete 
Burr type III d istribution denoted by dBurrIII(c,  θ). This 
distribution is suggested as a suitable lifet ime model to fit  a 
range of d iscrete lifet ime data. The rest of the paper is 
organized as follows: In Section 2, BurrIII(c, k) distribution 
is given with its reliab ility characteristics. The discrete 
analogue of BurrIII(c, k) distribution is developed with its 
distributional properties and reliability characteristics along 
with a graphical description. In Section 3, some important 
results on dBurrIII(c,  θ ) are proved. The maximum 
likelihood (ML) and Bayes estimat ions in dBurrIII(c, θ) are 
illustrated in detail through a simulation studies in Section 4. 

2. The Model 
2.1. Continuous Burr Type III Distribution 

A lifetime rv X fo llows the Burr type III distribution 
BurrIII(c, k) if its pdf is given by 

f(x|c, k) = � 0                                    ,        otherwise
ckx−c −1(1 + x−c )−k−1 ,       x > 0, (c, k > 0)

�  (2)  

the corresponding survival function (RF), failure rate 
function (HRF) and the second rate of failu re function 
(SHRF) are respectively given by 

R(x) = 1 − [1 + x−c ]−k   ,   x > 0, (c, k > 0).  (3) 

h(x) = ck x −c−1(1+x−c )−k−1

1 −[1+x−c ]−k  ,   x > 0, (c, k > 0).   (4) 

and 
h∗ (x) = log � R(x)

R (x+1)
� = log � 1−(1+x−c )−k

1−{1+(1+x)−c }−k �  
  x > 0, (c, k > 0).             (5) 

2.2. Discrete Burr III Distribution 

Based on the reliability function of continuous BurrIII rv  
X, which is given by (3), the R(x)  for dBurrIII(c,  θ ) 
distribution at integer points of X, is given by 

R(x)  =  1 − θlog (1 +x−c) ,   
where  θ = e−k   and (0 < θ < 1).       (6) 

Here, note that R(x)  is same for BurrIII(c, k) distribution 
and dBurrIII(c, θ) distribution at the integer points of x. Also, 
it is a positively skewed distribution. 

Now, by using (1), the pmf of the discrete Burr type III 
distribution with the parameters c and θ, dBurrIII(c ,θ), can 
be define as 

p(x) = R (x)– R (x + 1) 
=  θlog {1 +(1+x)−c} − θlog (1 +x−c)  , x = 0,1,2,… (7) 

2.2.1. The Failure Rate  𝐡𝐡(𝐱𝐱) is Given by 

The HRF or the failure rate function is given by 

h(x) = p (x)

R  (x) = θ log {1+(1+x )−c}−θ log (1+x −c)

1 −θ log (1+x −c)  , x = 0,1,2, … (8) 

to study the behaviors of this function see Fig.(3). 

2.2.2. The Second Rate of Failure  𝐡𝐡∗(𝐱𝐱) is Given by 

For discrete distributions, failure rate h(x) is a conditional 
probability with un ity as its upper bound. It was pointed out 
that calling this the failure rate function might add to the 
confusion that is already common in industry that failure rate 
and failu re probability are sometimes mixed-up[9]. To solve 
this problem they introduced second rate of failu re 
h∗ (x)with the same monotonicity as  h(x)  . 

For dBurrIII(c , 𝜃𝜃) we have 

h∗ (x) = log � R(x)

R (x+1)
� = log � 1 −θ log (1+x −c)

1−θ log {1+(1+x )−c}�.  (9) 

Remark: 
Note that the expressions for R(x) , h(x) and h∗ (x) for 

dBurrIII(c , θ ) can  be directly obtained from those of 
BurrIII(c, k) d istribution, by setting 

(k = −logθ) ≡ �θ = e−k �. 

2.2.3. The 𝐫𝐫𝐭𝐭𝐡𝐡  Moment of dBurrIII(c , 𝜽𝜽) is Given by 

μ̀r = E(Xr ) = � xr p(x)
∞

x=0

 

      = ∑ xr [R(x) − R(x + 1)]∞
x =0 .         (10) 

In particular:  
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(i) The mean  of lifet ime 𝜇𝜇 of dBurrIII(c , 𝜃𝜃 ) can be 
obtained by using (10) as follows  

μ̀1 = μ = ∑ x�θlog {1+(1+x)−c } − θlog (1+x−c ) �.∞
x=0    (11) 

(ii) The second moment is given by 

μ̀2 = ∑ x2�θlog {1+(1+x)−c } − θlog (1+x−c ) �∞
x=0 .   (12) 

(iii) The variance   V(c, θ)  of  dBurrIII(c , θ ) can be 
obtained by using (11) and (12) as follows 

V(c, θ) = μ̀2 − μ2 = � x2�θlog {1 +(1+x)−c} − θlog (1 +x−c) �
∞

x=0

 

−[∑ x�θlog {1+(1+x)−c} − θlog (1+x−c ) �∞
x=0 ]2   (13) 
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Figure 1.  Plot for the mean and the variance of dBurrIII(c, 𝛉𝛉) 

Obviously, from Fig.(1), the mean of dBurrIII(c,  θ) is 
decreasing. Also, the variance of dBurrIII(c, θ) is decreasing 
and it's noticeable from the graph that the mean is decreasing 
faster than the variance. Although the variance for 
dBurrIII(c, θ) tends to increase at the beginning but after that 
it adopts the same behavior as the mean. 

(iv) The 3𝑟𝑟𝑟𝑟  moment is given by 

μ̀3 = ∑ x3�θlog {1+(1+x)−c } − θlog (1+x−c ) �∞
x=0    (14) 

(v) The 4𝑡𝑡ℎ  moment is given by 

μ̀4 = ∑ x4�θlog {1+(1+x)−c } − θlog (1+x−c ) �∞
x=0   (15) 

(vi) The skewness 𝛼𝛼3  of dBurrIII(c , θ) can be obtained 
by using (11), (12), (13) and (14) as fo llows 

α3 =
μ̀3 − 2μ̀2μ + μ3

V3/2  

=
∑ x3[θlog {1+(1+x)−c }−θ log �1+x −c�

]∞
x =0

[V]
3
2

 

−  
2μ ∑ x2[θlog{1+�1+x)−c�−θlog�1+x−c�

]+μ3∞
x=0

[V]
3
2

  (16) 

(vii) The kurtosis 𝛼𝛼4  of dBurrIII(c , θ) can be obtained by 
using (11), (12), (13), (14) and (15) as follows 

α4 =
μ̀4 − 4μ̀3μ + 6μ̀2μ2 − 3μ4

V2  

=
∑ x4[θlog {1+(1+x)−c }−θ log �1+x −c�

]∞
x =0

[V]2  

−
4μ ∑ x3[θlog {1+(1+x)−c }−θ log (1+x −c) ]∞

x =0

[V]2  

+ 6 μ2 ∑ x2[θ log {1+�1+x )−c�−θlog �1+x −c�
]−3μ4∞

x =0
[V]2    (17) 

2.2.4. The Probability Generat ing Function 𝐆𝐆(𝐭𝐭) for 
dBurrIII(c , 𝛉𝛉) is Given by 

G(t) = E(tx ) = � tx p(x)
∞

x =0

 

= ∑ tx [θlog {1+(1+x)−c } − θlog (1+x−c ) ]   ∞
x=0  (18) 

It is difficu lt to get closed form analyt ical expression for 
the probability generating function, one need to evaluate this 
numerically, g iven specific parameters values. 

In particular, the mean of lifet ime μ of dBurrIII(c , θ) can  
be obtained by using the first derivative of (18), which is 
known as the first factorial moment  and it is given by 
(i) G̀(1) = ∑ x�θlog {1+(1+x)−c } − θlog (1+x−c ) �∞

x=0 = μ.   (19) 
It is clear that the second factorial moment  can be obtained 

by getting the second derivative of (18) as follows 
(ii) μ[2] = G̀̀(1) = ∑ [x(x − 1)]�θlog {1 +(1+x)−c} −∞

x =0
θlog1+x−c.   (20) 

More generally, the rth   factorial moment is given by 
(iii) μ[r] = Gr (1) 

= �[x(x − 1)(x − 2) …  (x − r + 1)]�θlog {1 +(1+x)−c}
∞

x =0

− θlog (1+x−c ) ]; r = 1, 2, … 
From (19) and (20) the variance   V(c, θ) of  dBurrIII(c , θ) 

is given by 
 (iv ) V(c, θ) =  G̀̀(1) + μ − μ2  

= � x2θlog {1+(1+x)−c }�1 − θlog {1+(1+x)−c }�
∞

x =0

− x2θlog (1+x−c ) �1 + θlog (1 +x−c) � 

+2x2[θlog {1+(1+x)−c }+log (1+x−c ) ]      (21) 

2.2.5. The Characteristic Function 𝛗𝛗𝐱𝐱 (𝛚𝛚) for dBurrIII(c , 𝛉𝛉)  
is Given by 

φx (ω) = E(eixω ) = ∑ eixω [∞
x=0 θlog {1+(1 +x)−c} −

θlog (1+x−c ) ]      (22) 
and since, 

μ̀r = 1
(i)r [d r𝜑𝜑𝑥𝑥 (𝜔𝜔)

d ωr ]ω =0 ;     r = 1, 2, …  

then, 

 μ̀r = � xr �θlog {1+(1+x)−c } − θlog (1+x−c ) �
∞

x=0

 

which is clearly the same result in (10). 

2.3. Graphical Description 

The curves of two populations of dBurrIII(c , θ) are plotted 
in Fig.(2), the first curve p1(x) when (θ = .75 and c =
1) and the  the second one , p2(x) when(θ = .25 and c =
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.5). The curves of the corresponding failure rate function and 
the second rate of failu re function of dBurrIII(c , θ ) are 
illustrated in Fig.(3) and Fig.(4), respectively. Fig.(3) 
demonstrate some of the possible shapes of h(x) for selected 
values of θ where (c=.1), the first curve h1(x) at (θ = .2) 
and the second one, h2(x) at (θ = 2). It is obvious that h(x) 
is a decreasing function. In Fig.(4) some of the possible 
shapes of h∗(x) represented for selected values of θ and c 
where ( θ = .1 and c=.5) in the first curve S1(x) and  
(θ = .99 and c=1.5) in the second one, S2(x). 
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Figure 2.  Plot of the probability mass function of dBurrIII(c, 𝛉𝛉) 
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Figure 3.  Plot of the failure rate function for dBurrIII(c, θ) 
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Figure 4.  Plot of the second rate of failure for dBurrIII(c, θ) 

3. Some Results on dBurrIII(c, 𝜽𝜽) 
3.1. Result (1 ) 

If  X~BurrIII (c, k),  then Y=[X]  ~  dBurrIII (c , θ ) 
with  θ = e−k . 

Proof 
P[Y ≥ y] = P�[X] ≥ y� = P[X ≥ y] = 1 − (1 + y −c)−k  

= 1 − θlog (1+y−c )   ;     y = 0, 1, 2, . 
Thus, Y=[X] ~ dBurrIII (c , θ). 

3.2. Result (2 ) 

Let Xi
′ s (i = 1, 2, … n)  be non-negative independently 

and identically d istributed 
 (iid) integer  valued rv′s and  Y = min

1 ≤i≤n
Xi . 

Then, Y is dBurrIII (c , θn ) if and only if  Xi  is 
dBurrIII(c , θ). 
Proof  

Let Xi  (i = 1,2, … n) be iid dBurrIII(c , θ), then, 

R(x) = 1 − θlog (1+x−c) ;     x = 0, 1, 2, … 
consider,∀y = 0, 1, 2, …  

R(y) = P[Y ≥ y] = [P[X1 ≥ y]]n = 1 − (θn )log (1+y−c ) ,    

thus, Y~dBurrIII (c, θn ). 

Conversely, 

let R(y) = 1 − (θn )log (1+y−c ) ; y = 0, 1, 2, …, then, 

R(x) = �P[X1 ≥ x] � = [P[X1 ≥ x]]
1
n = 1 − (θ)log (1+x−c ) ;   x

= 0, 1, 2, …    

3.3. Result (3 ) 

If X non-negative rv and (t) is a positive number. 
Then,   Xt = [Xt ]~dBurrIII �c

t
, θ�  if and only if  

X~BurrIII (c, k). 
Proof 

Let X~BurrIII (c, k). Then,∀x = 0, 1, 2, …  

P[Xt ≥ x]   = P[[Xt] ≥ x] = P[Xt ≥ x]  

P �X ≥ x
1
t �  = 1 − (1 + x−c /t )−k  

= 1 − θlog �1 +x−c/t �   ;     x = 0, 1,2, … , 

thus, Xt ~dBurrIII �c
t

, θ�. 
Conversely,  
let Xt ~dBurrIII �c

t
, θ�, then,∀y = 0, 1, 2, …  

Rt (y) = P[Xt ≥ y] = [P[Xt ] ≥ y] 

            = P[Xt ≥ y] = P �X ≥ y
1
t � = RX �y

1
t �,  

Where, 

RX �y
1
t � = P[Xt ≥ y] = 1 − θ

log �1 +y−c
t � 

= 1 − (1 + y −c
t )−k , 

substituting y
1
t = x {x will cover the whole interval 

(0, ∞)for varying t}, we get  
RX (x) = P[X ≥ x]  

             = 1 − (1 + x−c )−k ;    x > 0,  
which is the RF of BurrIII (c, k). 
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3.4. Result (4 ) 

If X~BurrIII (c, k), then Y=[log(1+X−c )] ~ Geo(θ), the 
geometric distribution with θ = e−k . 
Proof 

Consider, 
P[Y ≥ y] = P�[log(1 + X−c )] ≥ y� = P[log(1 + X−c ) ≥ y] 

           = P �X ≥ (ey − 1)−
1
c � = P �X ≥

1

(ey − 1)
1
c

� 

 = P �X ≥ (ey − 1)−
1
c � 

= 1 − �1 − θlog �1+(ey −1)�   � 
                  = 1 − [1 − θy   ] = θy    ;     y = 0, 1, 2, …, 

this is RF of geometric rv. Thus, Y~ Geo(θ). 

3.5. Result (5 ) 

If X~BurrIII (c, k),  then Y=[log(1+ X−c )−1 ] ~  Geo( 1
θ

), 
where  θ = e−k . 

Proof 
Consider, 

P[Y ≥ y]   = P[[log(1 + X−c )−1]  ≥ y]

= P[−log(1 + X−c ) ≥ y] 

= P[−y ≥ log(1 + X−c )] = P[e−y ≥ 1 + X−c ] 

= P �X ≤ (e−y − 1)−
1
c � 

= 1 − �1 − θlog �1 +(e−y −1)�   � = 1 − [1 − θ−y    ] =

θ−y   ;   y = 0, 1, 2, …, 

That is RF of geometric rv. Thus, Y~  Geo( 1
θ

). The 
following figure summarizes some of the results on 
dBurrIII(c , θ). 

 

Figure 5.  Summary of some results on dBurrIII(c, 𝜽𝜽) 

Some results 
on 

dBurrIII(c,θ)

If (x1,...,xn) be non-
negative (iid) 

integer valued 
rv's.Then, 

Y=min(x1,...,xn) is 
dBurrIII (c,θⁿ) iff

(x1,...,xn) is
dBurrIII(c,θ).

If x~Burr(c,k) 
.Then

Y= [log(1+xˉ°)] 
~Geo(θ)

If x~Burr(c,k). then 
Y= [X]~dBurrIII (c,θ)

If  X non-negative rv 
and (t) is a positive 

number. Then,

xΐ=[x΅] ~dBurrIII  (c/t, θ)

iff x~Burr(c,k). 

If x~Burr(c,k) .
Then 

Y= [log(1+xˉ°)ˉ¹] 
~Geo(1/θ)
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4. Estimation of the Parameters of 
dBurrIII(c, 𝛉𝛉) 

4.1. Estimation of the Parameters Based on the ML 
Method 

Let  n items be put on test and their lifetimes are recorded 
as  X1 , X2 , … , Xn . If these Xi 's are assumed to be iid  rv's 
following dBurrIII(c , θ), their likelihood function is given by 

L�c, θ; x� = � 𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖 =1

 

              = ∏ [𝜃𝜃log {1+(1+𝑥𝑥𝑖𝑖 )−𝑐𝑐} − 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙 (1 +𝑥𝑥𝑖𝑖
−𝑐𝑐 ) ],    𝑛𝑛

𝑖𝑖=1   (23) 
and (23) can be rewritten as follows 

L�c, θ;  x� = ∏ θlog (1+xi
−c) [θ∅(xi ,c ) − 1],n

i=1   (24) 

where   ∅(𝐱𝐱𝐢𝐢 , c) =  log[{1+(1+𝐱𝐱𝐢𝐢)−c }
(1+𝐱𝐱𝐢𝐢−c ) ]. 

Now, to find the two log-likelihood equations we need 
first to obtain the log-likelihood function which is given by 

logL = ∑ [log(1 + xi
−c )logθn

i=1 + log{θ∅(xi ,c ) − 1}].  (25) 

4.1.1. Case I ( 𝐜𝐜 is Known and 𝛉𝛉 is Unknown) 

In this case, the MLE of the unknown parameter θ is θ�, 
that is the solution of the following likelihood equation, with 
an observed sample this equation can be solved using an 
iterative numerical method. 

∂ logL
∂θ

= ∑ [n
i =1

log (1+xi
−c )

θ�
+ ∅(xi ,c )θ� ∅�xi ,c�−1

θ�∅�x i ,c�−1
] = 0  (1) 

The solution of this equation will p rovide the MLE of 
θ by using numerical computation. 

The MLE`s of the reliability, the failure rate and the 
second rate of failure functions are obtained based on the 
invariance property of the ML, respectively as follows 

  R(x) = 1 − θ�log (1+x−c ), 

  h(x) = θ�log {1+(1+x )−c}−θ�log (1+x −c)

1 −θ�log (1+x −c) , 
and  

  h∗ (x) = log � 1−θ�log (1+x −c)

1−θ�log {1+(1+x )−c}�.      

4.1.2. Case II ( 𝐜𝐜 𝐚𝐚𝐚𝐚𝐚𝐚  𝛉𝛉 are Unknown) 

In this case, the solution of the following likelihood 
equations provide the MLE`s of the unknown parameters 
θ and  c,   which  are denoted by  θ� and c�,   respectively.  
With an observed sample these equations can be solved 
using an iterative numerical method. 

So those, the first derivatives with respect to θ and c, of 
the log-likelihood equation (25), are g iven by 

∂ logL
∂θ

= ∑ [n
i =1

log (1+xi
−c )

θ�
+ ∅(xi ,c )θ� ∅�xi ,c�−1

θ�∅�x i ,c�−1
] = 0   (1) 

∂ logL
∂ c

= ∑ [n
i =1

(−xi
−c�)log θ .log xi

1+xi−c� + log θ ∅′ (xi ,c� )θ ∅�x i ,c��

θ ∅�x i ,c��−1
] = 0  (2) 

where 

∅′ (xi , c�) =
[xi−c�{1+�1 +𝐱𝐱𝐢𝐢)−c��log xi−(1+xi−c�)(1+𝐱𝐱𝐢𝐢)−c� log (1 +xi)]

{1 +�1+𝐱𝐱𝐢𝐢)−c��(1 +xi−c�)
  

By using numerical computation, the solution of these 
normal equations will provide the MLE of θ  and c. 

The MLE`s of the reliability, the failure rate and the 

second rate of failure functions are obtained based on the 
invariance property of the ML, respectively as follows 

R(x) = 1 − θ� log �1 +x−c��, 

h(x) =
θ� log {1+(1 +x)−c�} − θ�log (1+x−c�)

1 − θ� log (1 +x−c�)
; 

h∗ (x) = log �
1 − θ�log (1+x−c�)

1 − θ� log {1 +(1+x)−c�}
�. 

4.2. Estimation of the Parameters based on Bayesian 
Approach 

4.2.1. Case I ( 𝐜𝐜 is Known and 𝛉𝛉 is Unknown) 

Assume that the prior knowledge of θ  is adequately 
represented by beta distribution with parameters (a) and (1) 
then the pdf of the  prior density of θ is given by 

π(θ) = 𝑎𝑎θ𝑎𝑎 −1         ;   0 < 𝜃𝜃 < 1 
π(θ)  ∝  θa−1 .       (26) 

Combine the likelihood function (23) and the prior density 
(26) to obtain  the posterior density of θ as follows 

  π�θ|x� ∝  θa+∑ w 1−1 − θa+∑ w 2 −1    (27) 
Then 

  π�θ|x� =  𝑄𝑄(𝑐𝑐) θa +∑ w 1−1[1 − θω ]       (28) 
where,  w1 = log{1 + (xi + 1)−c } ,  w2 = log(1 +

xi−cand ω=(w2−w1). 
Now, obtaining the marginal distribution for 𝑥𝑥,  by 

integrating (27) over θ leads to: 

𝑄𝑄 −1(𝑐𝑐) = � θa +∑ w 1−1 dθ −
1

0
� θa +∑ w 2−1 dθ

1

0
 

=
1

(a + ∑ w1)
−

1
[a + ∑ w2 ]

 

=
ω

(a + ∑ w1). [a + ∑ w2]
 

= ω
(δ)( τ)

;  where  δ = (a + ∑ w1) and τ = a + ∑ w2 . (29) 

So, from (28) and (29),  𝜃𝜃|𝑥𝑥  distributed as followes: 
π�θ|x� =

(δ) ( τ)
ω

.θδ −1[1 − θω ]  ;    0 < 𝜃𝜃 < 1  (30) 
Assuming a squared-error loss function and informat ive 

prior, the Bayes estimate of the parameter θ is given by 
θ∗ = E�θ�x� =

(δ)( τ)
(δ+1)[δ +ω+1 ]

 .        (31) 

Based on binary loss function, which is the mode 
of  π�θ|x�, the highest post estimate (HPE) of the parameter 
θ is given by 

θ∗ = [ δ−1
δ+ω−1

]
1
𝜔𝜔 .                (32) 

Assuming a modified LINEX loss function, the Bayes 
estimate of the parameter θ is given by 

θ∗ =
E(1

θ)

E( 1
θ2)

=
(δ −2)[δ+ω −2]
(δ −1)[δ+ω −1]

 .          (33) 

Also, under General entropy loss function, the Bayes 
estimate of the parameter θ is given by 

θ∗ = [E(θ−q )]−1
q = [ (δ)( τ)

(δ+ω −q )(δ−q )
]−1

𝑞𝑞.      (34)   

Now, from (30) considering a function of θ  where 
(θω = z) in order to get a well known form for the posterior 
density of the new parameter θω , then π�z|x� will be at the 
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following form 

π�z|x� =
(δ)( τ)

ω2 . 𝑧𝑧
𝛿𝛿
𝜔𝜔 −1[1 − z];     0 < 𝑧𝑧 < 1    

which means that, 𝑧𝑧~β � δ
ω

, 2�.  
Assuming a squared-error loss function and informat ive 

prior, the bayes estimate of the parameter θω  is given by 

(θω )∗ = E�z�x� =
( 𝛿𝛿

𝜔𝜔 )

( 𝛿𝛿
𝜔𝜔 +2)

 .            (35) 

Based on binary loss function, which is the mode 
of π�z|x�, the highest post estimate (HPE) of the parameter 
θω  is given by 

(θω )∗ =
� δ

ω −1�

( δ
ω )

 .                  (36) 

Assuming a modified LINEX loss function, the bayes 
estimate of the parameter θω  is given 
by 

(θω )∗ =
E( 1

θω )

E( 1
(θω )2)

=
(δ−2ω)

(δ)            (37) 

Also, under General entropy loss function, the bayes 
estimate of the parameter θω  is given by 

(θω )∗ = [E((θω )−q )]−1
q = [ δ( τ)

[δ+ω (1−q )](δ−q ω) ]−1
𝑞𝑞 .     (38) 

4.2.2. Case II ( 𝐜𝐜 𝐚𝐚𝐚𝐚𝐚𝐚  𝛉𝛉 are Unknown) 

Assume that: c is distributed as a non-informat ive prior, θ 
is distributed as beta distribution where, c  and θ  are 
independent. 

The joint prior density of c and θ  can be written as 
follows: 

π(c, θ)  ∝  1
c

θa −1 . ;   0 < θ < 1 , c > 0    (39) 
Combine the likelihood function (23) and the joint prior 

density (39) to obtain the joint posterior density of c and  θ 
as follows 

π�c, θ|x� ∝  1
c

θa +∑ w 1−1 − 1
c

θa+∑ w 2 −1        (40) 

∝   
1
c

θa+∑ w 1−1[1 − θω ] 

where, w1 = log{1 + (xi + 1)−c } ,  w2 = log(1 +
xi−cand ω=(w2−w1) 

The jo int posterior density (40) can  be rewritten as follows 
  π�c, θ|x� = K 1

c
θa +∑ w 1−1[1 − θω ]    (41) 

where  K, is constant given by 
K−1 = ∫ 1

c
Q −1(c)dc

∞
0 , 

and  Q −1(c) is given by (29) as follows 
Q −1(c) = ∫ θa+∑ w 1 −1 dθ −

1
0 ∫ θa+∑ w 2−1 dθ

1
0   = ω

(δ)( τ)
; 

where  δ = (a + ∑ w1),  τ = (a + ∑ w2),  ω = (∑ w2 −
∑ w1),  w1 = log{1 + (xi + 1)−c } 

and  w2 = log(1 + xi
−c ) . 

K−1 = �
1
c

ω
(δ)( τ)

dc
∞

0
. 

5.Conclusions 
The purpose of this paper is to explore a new lifetime 

distribution suitable for modeling  discrete data, that was 

achieved by applying the general approach of discretizing a 
continuous distribution on the continuous model of Burr type 
III in order to introduce the discrete version of it, which is 
called d iscrete Burr type III distribution dBurrIII(c, θ). In  
this paper, we carry  out a theoretical study of the obtained 
distribution discussing its distributional properties and 
reliability  characteristics along with a g raphical description. 
Also, we obtained and proved some important results on 
dBurrIII(c, θ). In addition, estimat ion of the parameters is 
discussed based on the maximum likelihood method and 
Bayesian approach. 
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