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Abstract

In this paper, the discrete Burr type Il distribution is introduced using the general approach of discretizing a

continuous distribution and proposed it as asuitable lifetime model. The equivalence of continuous and discrete Burr type Il
distribution is established. Some important distributional properties and estimation of the parameters, reliability, failure rate
and the second rate of failure functions are discussed based on the maximum likelihood method and Bayesian approach.
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1. Intro duction

An important aspect of lifetime analysis is to find a
lifetime distribution that can adequately describe the ageing
behavior of the device concerned. Most of the lifetimes are
continuous in nature and hence many continuous life
distributions have been proposed in literature. On the other
hand, discrete failure data are arising in several common
situations forexample:

- Reports on field failure are collected weekly, monthly
and the observations are the number of failures, without a
specification of the failure times.

A piece of equipment operates in cycles and
experimenter observes the number of cycles successfully
completed prior to failure. A frequently referred example is
copier whose life length would be the total number of copies
it produces. Another example is the number of on/off cycles
of a switch before failure occurs, see Laiand Xie[1].

In the last two decades, standard discrete distributions like
geometric and negative binomial have been employed to
model life time data. Usually, if the discrete model is used
with lifetime data, it is a mu ltinomial distribution. This arises
because effectively the continuous data have been grouped,
see Lawless[2]. However, there is a need to find more
plausible discrete lifetime distributions to fit to various types
of lifetime data. For this purpose, discretizing popular
continuous lifetime distributions can be helpful in this
manner, since, it effects on speed, accuracy and
understandability of the generated data using these discrete
lifetime models.

1.1. Discretizing a Continuous Distribution

* Corresponding author:

a.ali94@hotmail.com (Afaaf A. AL-Huniti)

Published online at http://journal.sapub.org/ajms

Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

A continuous failure time model can be used to generate a
discrete model by introducing a grouping on the time axis. If
the underlying continuous failure time X has the reliability
function (RF), R(X) =P[X>x],

and times are grouped into unit intervals so that the
discrete observed variable is dX = [X], the largest integer
part of X, the probability mass function (pmf) of d X can be
written as

p(x) =PldX=x]=Plx <dX <x + 1]
= R(X)-R(x+1);x=012.. 1)

The pmf of discrete random variable (dX), can be viewed
as discrete concentration ofthe pdf of X. The firstand easiest
in this approach is the geometric distribution with pmf

p(x) =0¥(1-0)=0*—-0"*1 : x=012..
this is obtained by discretizing the exponential distribution
with RF
R(x) = e ™,
= 0x.

The interests in discrete failure data came relatively late in
comparison to its continuous analogue. The subject matter
has to some extent been neglected. It was only briefly
mentioned by few scientists. Khan, Khalique and
Abouammoh[3], discussed two discrete  Weibull
distributions (type | and type II), and suggested a simple
method to estimate the unknown parameters for one of them,
since the usual methods of estimation are not easy to apply.
Kulasekera[4] presented approximate maximum likelihood
estimators of the parameters of a discrete Weibull
distribution under censoring.

A discrete analogue of the normal distribution was
obtained[5], that is characterized by maximum entropy,
specified mean and variance, and integer support on (—oo, o).
Szablowski[6], introduced new natural parameters in a
formula defining a family of discrete normal distributions,
where one of the parameters is closely related to the
expectation and the other to the variance of that family. The
discrete version of the normal and Rayleigh distributions

A,x>0. Here 8=¢,(0< 0 <1).
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were also proposed by Roy[7],[8] respectively. The discrete
Weibull models were obtained[9], in order to model the
number of cycles to failure when components are subjected
to cyclical loading. In addition, some distributional
properties for these models were presented.

A discrete version of the Laplce (double exponential)
distribution was derived by Inusah and Ko zubowski[10], and
discussed some of its statistical properties and statistical
issues of estimation under the discrete Laplace model. The
discrete Burr type XII and Pareto distribution were
obtained[11], using the general approach of discretizing and
then, some important distributional properties and estimation
of reliability characteristics were proposed.

A discrete inverse Weibull distribution was proposed[12],
which is a discrete version of the continuous inverse Weibull
variable, defined as X where X denotes the continuous
Weibull random variable. The discrete version of Lindley
distribution was introduced[13], by discretizing the
continuous failure model of the Lindley distribution. Also, a
compound discrete Lindley distribution in closed form is
obtained after revising some of its properties.

A discrete generalized exponential distribution of asecond
type (DGEy(a,p)), was presented[14], which can be
considered as another generalization of the geometric
distribution.

A discrete analog of the generalized exponential
distribution (DGE(a,p)) was presented[15], which can be
viewed as another generalization of the geometric
distribution, and some of its distributional and moment
properties were discussed. Burr type |l distribution
proposed as a lifetime model, see[16], the author discussed
the distributional and the reliability properties of Burrlli(c,
K).

In this paper, a discrete analogue of the Burrlll(c, k)
distribution is introduced, since, it plays an important role in
environment and other allied sciences. It is called discrete
Burr type Il distribution denoted by dBurrlll(c, 8). This
distribution is suggested as a suitable lifetime model to fit a
range of discrete lifetime data. The rest of the paper is
organized as follows: In Section 2, Burrlll(c, k) distribution
is given with its reliability characteristics. The discrete
analogue of Burrlll(c, k) distribution is developed with its
distributional properties and reliability characteristics along
with a graphical description. In Section 3, some important
results on dBurrlll(c, 6 ) are proved. The maximum
likelihood (ML) and Bayes estimations in dBurrlll(c, 6) are
illustrated in detail through asimulation studies in Section 4.

2. The Model

2.1. Continuous Burr Type 111 Distribution

A lifetime rv X follows the Burr type Il distribution
Burrlll(c, k) if its pdf is given by

O 1
00,10 = { g et g oyt

otherwise
x> 0,(c,k > 0) @

Discrete Burr Type lii Distribution

the corresponding survival function (RF), failure rate
function (HRF) and the second rate of failure function
(SHRF) are respectively given by

RGO =1-[1+ X‘C];k , x>0,(ck>0). 3
—c-1 —cy—k-1
h(x) :% , x>0,(ck>0). (4)
and
N _ R(x) 1-(1+x )7k
h* () = log [R (x+1) log [1 {1+(1+x) cyk ]
X > 0, (c k> 0). (5)

2.2. Discrete Burr 111 Distribution

Based on the reliability function of continuous Burrlll rv
X, which is given by (3), the R(x) for dBurrlll(c, 8)
distribution at integer points of X, is given by

RO) = 1—ps @)
where 8 =e™* and (0 <6 < 1). (6)

Here, note that R(x) is same for Burrlll(c, k) distribution
and dBurrlll(c, 6) distribution at the integer points of x Also,
it is a positively skewed distribution.

Now, by using (1), the pmf of the discrete Burr type Il
distribution with the parameters ¢ and 8, dBurrlll(c,0), can
be define as

p(x) = R()-R K+ 1)

= QlgdL+(1+)™} _ glog 1+x™9) 'y =012, . @)
2.2.1. The Failure Rate h(x) is Given by
The HRF or the failure rate function is given by
pG) glog i}{ﬂ.+(1+x)_c}_elog @+x~% _
hG) =5 = YT ,X=012,.. (8)

to study the behaviors of this function see Fig.(3).

2.2.2. The Second Rate of Failure h*(x) is Given by

For discrete distributions, failure rate h(x) is a conditional
probability with unity as its upper bound. It was pointed out
that calling this the failure rate function might add to the
confusion that is already common in industry that failure rate
and failure probability are sometimes mixed-up[9]. To solve
this problem they introduced second rate of failure
h* (x)with the same monotonicity as h(x) .

FordBurrlll(c, 8) we have

~ log [

h*(x) =log [ R(X)
Remark:

Note that the expressions for R(x),h(x)and h*(x) for
dBurrllli(c ,8) can be directly obtained from those of
Burrlll(c, k) distribution, by setting

(k= —loge) = (6 =e).

1_p'0g 1+x7%
1—glog iz(1+(1+x)*ﬁ}]' (9)

2.2.3. The r™® Moment of dBurrlll(c, 8) is Given by

i, = E(X7) = Z X p()

= Z;’:Oxf[f;&) —RKx + D]. (10)

In particular:
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(i) The mean of lifetime p of dBurrlli(c,8) can be
obtained by using (10) as follows

by =p= Z;OZO X[elog H1+(1+x)™°} _ glog (1+x_c)]. (11)
(ii) The second moment is given by
B, = Z;"zo X2[9I09§2{L‘L+(1+x)_c} — glog (1+x—°)]. (12)

(iiiy The variance V(c,8) of dBurrlll(c,0) can be
obtained by using (11) and (12) as follows

V(c, g) = i, — uz — z Xz[elog HL+(1+x) glog (l+x_c)]
x=0

_[Z)czo=0 X[elog A+ _ glog (1+x’°)]]2 (13)

0.6
mean(x) 04 ; \ 7]
+++ AN
Variance(x) N
----- 02, S
0 -Iq_+-HH_H—'—L‘|||l"IIIIIII
0 10 20 30

X

Figure 1. Plot for the mean and the variance of dBurrlli(c, 0)

Obviously, from Fig.(1), the mean of dBurrlli(c, 0) is
decreasing. Also, the variance of dBurrlll(c, 0) is decreasing
and it's noticeable fromthe graph that the mean is decreasing
faster than the variance. Although the variance for
dBurrlli(c, 6) tends to increase at the beginning but after that
it adopts the same behavior as the mean.

(iv) The 3™ moment is given by

g = Z;ozo X3[elogi3{@1+(1+x)’c} — glog (1+x’°)] (14)

(v) The 4** moment is given by

by =22, X4[9|ogiz@1+(1+x)*°} — glog (1+x*c)] (15)

(vi) The skewness a5 of dBurrlll(c,0) can be obtained

by using (11), (12), (13) qnd (14) as follows

g — 2 +p°

O3 = V372

_ +x ¢
Yoo x3[00 {1+ (10 c}-0' (e )]

= 3
[V]2

—Cy_plog(1+x~°)
2HZ;OZOXZ[eIog{1+(1+x) } 0

+u3
3 (16)
\4H
(vii) The kurtosis a, of dBurrlll(c, 8) can be obtained by
using (11), (12), (13), (14) and (15) as follows
By — 4ligp + Blipp® — 3p?

o, = Ve
_ +xC
Z;O:OXA[GIOQ {1+(14+x)~c}—g'0g (1+x )]
[VI?

147
_ —c
A X x°[0"e {1+Qamg=el-al 4HCy
[V]?
2y 2r0log {1+(1+>()*C]—9|0g (179 a4
+6U Xx=0x"[0 e 1-3u (17)

2.2.4. The Probability Generating Function G(t) for
dBurrlll(c, ) is Given by

6 = E(t¥) = Z *p()
x=0

— Z,‘f’:o tx [elogzz§é1+(1+x)—°} — glog (1+x_°)] (18)

It is difficult to get closed form analytical expression for
the probability generating function, one need to evaluate this
numerically, given specific parameters values.

In particular, the mean of lifetime p of dBurrlll(c, 8) can
be obtained by using the first derivative of (18), which is
known as the first factorial moment and it is given by
() () = Z;O:O X[GIOg H1+(1+x) 7} _ glog (1+x™ )] =un (19

It is clear that the second factorial moment can be obtained
by getting the second derivative of (18) as follows

(i) pry = 6(1) = X2 Ix(x — 1)][09+(+07F _
6logl+x—c. (20)
More generally, the ™ factorial moment is given by
(iii) uy =G (1)

= D e = D& = 2)... G~ r+ D] [gloerEm™
x=0

— g9 ] r=1,2, ..
From (19) and (20) the variance V(c,8) of dBurrlll(c, 6)
is given by
(iv) vV(c,0) = G(1) +pu—p?
- Z X26/08 (110} 1 _ gloa {1+(1:)™]
x=0

— x2glog 1+x7% [1 + glog (1+x’°)]

+2x2 [elog {1+(1+x) " }+log (1+x_°)] (21)

2.2.5. The Characteristic Function ¢, (w) for dBurrlli(c, 8)
is Given by

@y ((0) - E(eixm) — Z;O:o eixm[ glog Hl+(1+x)" _
glog (1+x‘c)] (22)

and since,

o1 d o, (w)
He = o dor

lo=0; r=212..

then,
I = Z Xr[elogi@l+(1+x)’°} — glog (1+x’°)]
x=0

which is clearly the same result in (10).

2.3. Graphical Description

The curves of two populations of dBurrlll(c, 8) are plotted
in Fig.(2), the first curve p1(x) when (6 =.75andc=
1) and the the second one , p2(x)when(8 = .25and ¢ =
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.5). The curves of the corresponding failure rate function and
the second rate of failure function of dBurrlll(c,0) are
illustrated in Fig.(3) and Fig.(4), respectively. Fig.(3)
demonstrate some of the possible shapes of h(X) for selected
values of 6 where (c=.1), the first curve h1(x) at (6 = .2)
and the second one, h2(x) at (6 = 2). It is obvious that h(X)
is a decreasing function. In Fig.(4) some of the possible
shapes of h*(x) represented for selected values of 8 and ¢
where (6 = .1land c=.5) in the first curve S1(x) and
(6 = .99 and c=1.5) in the second one, S2(Xx).

0.1 T
p1(x)
®  o.05+ —
pP2(X)
0 T T ? P PO 0 an
0 5 10

X
Figure 2. Plot of the probability mass function of dBurrlli(c, 6)

0.6 T T

hix) 0.4 =

hA%)
e 0.2I- —

TITTTT]’OTTT?

X
Figure 3. Plot of the failure rate function for dBurrlli(c, 6)
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0.15 T
six) 0.1 7]
(3.X3]
S2(x)
0.05 ]
(€]
0 OB 000064
0 5 10

X

Figure 4. Plot of the second rate of failure for dBurrlll(c, 6)

3. Some Results on dBurrlll(c, 8)

3.1. Result (1)

If  X~Burrlll (c,k), then Y=[X] ~ dBurrlll (c ,0)
with 6 = e,

Discrete Burr Type lii Distribution

Proof
Ply>yl=P[IXI >y]=PIX=yl=1- (1 +y )&
=1 — glog (1+y™©) . y=0,12.
Thus, Y=[X] ~ dBurrlll (c, 0).

3.2. Result (2)

Let X;s(i=1,2,..n) be non-negative independently
and identically distributed

(iid) integer valued rv's and Y = 1rnin Xi.

<i<n
Then, Y is dBurrlll (c,0") if and only if X is
dBurrlli(c, 6).
Proof

Let X; (i=1,2,...n) beiid dBurrlli(c, 8), then,

RO) =1 -9+ x=01,2,..
consider,vy = 0,1,2, ...

R(y) = PIY >yl = [PIX, > yl]" = 1 - (g")s t+y™),
thus, Y~dBurrlil (c,8").
Conversely,
let R(y) = 1 — (8")P9(1+y™):y = 0,1, 2, ..., then,

R0 = [PIX, = x1] = [PIX, = XIJF = 1 — ()8 @+x):
=012,..

3.3. Result (3)
If X non-negative rv and (t) is a positive number.

Then, X, = [X']~dBurrlll (%9) if and only if
X~Burrlll (c, k).
Proof

Let X~Burrlll (c,k). Then,vx =0,1,2, ...
PIX, = x] =P[[X]=xl=PIX'>x]

1
P [x > xt‘] =1-(1+x/)y*

=1- elog (l+x_C/t) .

x=012,..,
thus, X;~dBurrlll (59)
Conversely,
let X,~dBurrlll (£,6), thenvy = 0,1,2,...
R.(y) = P[X, =yl =[PIx!] > y]
1 1
=PIxt 2yl = P[X 2 yi|= Ry ()
Where,
1 log (1+y_tg>
Ry (yt) =PlX, =yl=1-0

c
) =1-(L+y D™
substituting yt =x {x will cover the whole interval
(0, ) for varying t}, we get
Ry () = PIX >l
=1-(1+x°)7% x>0,
which is the RF of Burrlll (¢, k).
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3.4.Result (4)

If X~Burrlll (c, k), then Y=[log(1+X~¢)] ~ Geo(0), the
geometric distribution with 8 = e,
Proof

Consider,

PlY > y] = P[llog(1 + X=¢)] > y] = Pllog(1 + X~°¢) > y]
1 1
:p[xz(ey_l)—c]:p[xz_l]
(e/ -1
1
=P [X > (&Y — 1)_C]
=1-— [1 — glog (1+GeY -1) ]
=1-[1-& 1=¢; y=01,2..,
this is RF of geometric rv. Thus, Y~ Geo(0).

3.5. Result (5)

If X~Burrlll (c,k), then Y=[log(1+X¢)~1]~ Geo(%),

where 8 = ek,
Proof
Consider,

PlY >yl =Pl[log(1 + X~¢)™] >yl
= Pl—log(1 + X¢) > y]
=P[-y > log(1 + X )] = PleY >1 + X~°]
=P|X < (e - 1)‘%]

=1-[1-go00+E-D) =g _[1-97 ]=
7Y ;y=012..

That is RF of geometric rv. Thus, Y~ Geo(g). The

following figure summarizes some of the results on
dBurrlli(c, 6).

If (x1,...xn) be non- ™,
negative (iid) '
integer valued
rv's.Then,

Y=min(x1,..,.xn) is
dBurrlll (c,0) iff

_ (x1,...,xn) is

dBurrlli(c,0).

“‘\H A
. N \
If x~Burr(c,k). If x~Burr(c,k)
| Then .Then
Y= [log(1+x7)] Y=[log(1+x)]
~Geo(1/6) ~Geo(0) _
\ y Some results ‘-\\ Vi
. - : on = e P g
S— \ dBurrlll(c,0) | e
'_.‘l\ /.I.
N Vi
", & : \‘.
If X non-negativerv
and (t) is a positive
né%berﬂ.hen‘ | If x~Burr(c,k). then
xi=[x"] ~dBurrlll (c/t, 8) VS BIRC RN Ca,
iff x~Burr(c,k). )
\\\.__ I LY 4

Figure 5.  Summary of some resultson dBurrlll(c, 8)
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4. Estimation of the Parameters of
dBurrlll(c, 8)

4.1. Estimation of the Parameters Based on the ML
Method

Let n items be put on test and their lifetimes are recorded
as Xy, X5, ..., X, . If these X;'s are assumed to be iid rv's
following dBurrlll(c, 8), their IikeIihood function is given by

L(c.0:x) = l_[p(xl)

— Hn [glog L+ (1+x; ) C} — glog (L+x;~ C)]‘ (23)
and (23) can be rewritten as follows -
L(C e X) Hn elog (1+x; )[e@(xl c) 1]Y (24)

where ¢(x;,c) = log! [’{1:1(:"_‘3) }]
Now, to find the two log-likelihood equations we need
first to obtain the log-likelihood function WhICh is given by
logL = X, [log(1 + x, ~¢)log® + log{e®™i¢) — 1}]. (25)

4.1.1. Case | ( ¢ is Known and 6 is Unknown)

In this case, the MLE of the unknown parameter 0 is 8,
that is the solution of the following likelihood equation, with
an observed sample this equation can be solved using an
iterative numerical method. _—

c (X,
T = N[O =0 1)

The solution of this equation will provide the MLE of
0 by using numerical co mputation.

The MLE's of the reliability, the failure rate and the
second rate of failure functions are obtained based on the
invariance property of the ML, respectively as follows

RG) = 1 — gloa o),
h(x) _ glog HL+(1+x)"%}_glog (1+x~C)

1—@log (1+x—C) ,
and

1_glog @+x7%)
1—glog FL+A) %} |

h*(x) = log

4.1.2. Case Il ( cand 0 are Unknown)

In this case, the solution of the following likelihood
equations provide the MLE's of the unknown parameters
@and ¢, which are denoted by 8and ¢, respectively.
With an observed sample these equations can be solved
using an iterative numerical method.

So those, the first derivatives with respect to 6 and c, of
the log-likelihood equation (25), are given by

adlogl log (1+><I ) Q)(x,c)e‘z)(xl ¢)-1

" =204[ 5000, 1-0 (D
dlogl _ sy (=xi %)logB.logx; , logoe "(x;,0)02(Xi:?) _
ac _Z =il 1+x;~C g0(x.) _q 1=0 (9
where
0 (%6 = xi~6{1+(1+x3) ~}log xi—(1+x; =€) (1+x;) Clog (1 +x})]

{1+ (1+x) 7} +xi )

By using numerical computation, the solution of these
normal equations will provide the MLE of 6 and c.

The MLE's of the reliability, the failure rate and the

Discrete Burr Type lii Distribution

second rate of failure functions are obtained based on the
invariance property of the ML, respectively as follows

R(x) = 1 — §loo (@),

@logdL+(L +x)~¢ _ glog (1+x)

h(x) = T geeand ;

1 — flog 1+x=%)
h*(x) =lo .
00 g 1 — QlogifL+(1+x)~}

4.2. Estimation of the Parameters based on Bayesian
Approach

4.2.1. Case | ( ¢ is Known and 0 is Unknown)

Assume that the prior knowledge of 6 is adequately
represented by beta distribution with parameters (a) and (1)
then the pdf of the prior density of 6 is given by

@) =a0®t ;0<6<1
m(0) «x 6271, (26)

Combine the likelihood function (23) and the prior density

(26) to obtain the posterior density of 6 as follows

m(0]x) oc a+EWL-L _ga*rIwz-1  (27)
Then
(8]x) = Q(c) **EW171[1 - 6] (28)
where, w; = logi#l + (x; + 1)}, w, = log(1 +

xi—cand w=(W2—-w1l).
Now, obtaining the marginal distribution for x, by
integrating (27) ove{ 0 leads to:

1
Q) :f R —f ga+Zw2-1 dg
0

A
T@+Xwy) [at+Xw,]
w

T@rIw)latIw]
= (S;)T where § = (a+Xw;)andt=a+Xw,. (29)

So, from (28) and (29), O|x distributed as followes:
n(olx) = 29 gs-i1_go] ; 0<6<1 (30)

Assuming a squared error loss function and informative
prior, the Bayes estimate of the parameter 6 is given by

m e
= E(G |_) T G+D[E+e+1] (31)

Based on binary loss function, which is the mode
of m(6]x), the highest post estimate (HPE) of the parameter
6 is given by

1
- [6+m 1] ‘ (32)
Assuming a modified LINEX loss function, the Bayes
estimate of the parameter 9 is given by
. E() _ (3-2[s+w—2]
0 .
E(ez) T (5-D[+w—1]
Also, under General entropy loss function, the Bayes
estimate of the parameter 6 is given by

= (B0 T = [ ] = (@9

Now, from (30) considering a function of 6 where
(6“° =2) in order to get a well known form for the posterior
density of the new parameter 6, then n(z|g) will be at the

(33)

1
a
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following form
[
n(z|x) = “l#.zi_l[l -z, 0<z<1
which means that, z~f i, 2).

Assuming a squared-é”rror loss function and informative
prior, the bayes estimate of the parameter 6 is given by
&
2)

(6°) = E(zly) = 32 (35)

Based on binary loss function, which is the mode
of (z|x), the highest post estimate (HPE) of the parameter

6¢ is given by
)
(677 = S
Assuming a modified LINEX loss function, the bayes
estimate of the parameter 6% is given

(36)

by )
EGe) _ (5-20)
) =—r—= 37
() Eoy  ©® (37)

Also, under General entropy loss function, the bayes
estimate of the parameter 91‘” is given by

(0°) = [E(®°) ™) 7= [roeaoy] - (39)

4.2.2. Case Il ( cand 0 are Unknown)

Assume that: ¢ is distributed as a non-informative prior, 6
is distributed as beta distribution where, ¢ and 6 are
independent.

The joint prior density of ¢ and 6 can be written as
follows:

n(c,8) o« %ea—l . 0<8<1,c>0 (39

Combine the likelihood function (23) and the joint prior
density (39) to obtain the joint posterior density ofcand 6
as follows

T[(C, 9|§) (4 %ea+2w1—1 _fea+ZW2—1 (40)

1
o —OTEVITHL - 6]
where, w; = logfl + (x, + 1)™°}, w, = log(1 +

Xi—cand w=(W2—w1l)
The joint posterior density (40) can be rewritten as follows

n(c,6]x) = K=0*Zwi-1[1— o]  (41)
where K, is constant given by

K1= fooo %Q_l(C)dC,
and Q‘l(cl) is given by (29) as follows
QO = [y orEwiide — [y vl de = oo
where §=(a+2Xw;), t=(@+2ZW,), ®= (W, —
2wy), wy = logil + (x; + 1)~}
and w, =log(1+ x,7¢).

“1
K 1:-1(; Emdc

5.Conclusions

The purpose of this paper is to explore a new lifetime
distribution suitable for modeling discrete data, that was

achieved by applying the general approach of discretizing a
continuous distribution on the continuous model of Burr type
Il in order to introduce the discrete version of it, which is
called discrete Burr type Il distribution dBurrlll(c, 8). In
this paper, we carry out a theoretical study of the obtained
distribution discussing its distributional properties and
reliability characteristics along with a graphical description.
Also, we obtained and proved some important results on
dBurrlll(c, 8). In addition, estimation of the parameters is
discussed based on the maximum likelihood method and
Bayesian approach.
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