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Abstract  Interest in self-organized (SO), multi-robotic systems is increasing because of their flexibility, robustness, and 
scalability in performing complex tasks. This paper describes a decentralized task allocation model based on both task 
stimulus intensity and a responding threshold. The response threshold method was developed through observations of social 
insects. It allows a swarm of insects with a relatively low-level of intelligence to perform complex tasks. In this work, an 
agent based simulation environment is developed incorporating these ideas. The mission scenario simulated in this study is a 
wide area search and destroy mission in an initially unknown environment. The mission objectives are to effectively allocate 
a UAV swarm to both optimize coverage of the search space and attack a target. Rule based behaviours were used to create 
UAV formations. Two sets of simulations with different swarm size and target numbers were performed. The simulation 
results show that with task stimulus intensity and a responding threshold, the UAV swarm demonstrates emergent behaviour 
and individual vehicles respond adaptively to the changing environment.  
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1. Introduction 
With recent technological advances in autonomous 

control and communication, multi-robotic systems are 
receiving a great deal of attention due to their increased 
ability to carry out complex tasks in a superior manner when 
compared to single-robotic systems. Multiple autonomous 
agents working in-group exceed the sum of the performance 
of the individuals. Currently, the human factor associated 
with the UAV (unmanned aerial vehicle) operators’ 
workload is one of the key limitations to increasing future 
UAS (unmanned aerial system) effectiveness[1]. Such a 
requirement not only increases the expense of UAV 
operations, but also makes coordination among UAVs more 
complex. For these reasons, research is required to 
investigate methods of increasing UAV autonomy and 
interoperability, while reducing global communication and 
human operator reliance. 

The cooperative control of UAVs is a complex problem 
that is dominated by uncertainty, limited information, and 
task coupling. Due to the complexities of the inherent 
problems, centralized decision and control algorithms are 
traditionally adapted to optimise timing and task constraints. 
One of the mission scenarios considered in the literature is 
cooperative moving target engagement. Kingston &  
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Schumacher in their paper solved this problem with a mixed 
integer linear program that addressed task timing constraints 
and agent dynamic constraints to generate a flyable path[2]. 
A genetic algorithm (GA) is used to efficiently search the 
space of possible solutions and provide the cooperative 
assignment[3]. Schumacher and Chandler also addressed the 
problem of task allocation for a wide area search munitions 
scenario[4]. A network flow optimization model is used to 
develop a linear program for optimal allocation of powered 
munitions to perform several tasks, such as search, classify, 
attack and finally damage assessment of potential targets. 
Cooperative task assignment within an adversarial 
environment was addressed in[5][6]. In their work, a 
cooperative task assignment was computed with the 
additional knowledge of the future implications of a UAV’s 
actions. This was done to improve the expected performance 
of the other UAVs. In order to implement a centralized 
controller, consensus has to be reached under 
communication constraints. False information and 
communication delay strongly negates the benefits of 
cooperative control[7]. Alighanbari in his thesis[8] 
developed the unbiased distributed Kalman consensus 
algorithm which he proved converged to an unbiased 
estimate for both static and dynamic communication 
networks. Despite its benefits, the use of a centralized 
controller lacks significant robustness, is computationally 
complex and depends on high degree of global information. 
Such requirements make the implementation of centralized 
approach intractable in real-life missions.  

In contrast, decentralized decision and control algorithms, 
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trade optimality and predictability, with robustness and 
adaptation to environmental changes. A self-organized (SO) 
system, or swarm, is typically a decentralized control system 
made up of autonomous agents that are distributed in the 
environment and follow stimulus response behaviours[9]. 
Examples from social insects, such as foraging and the 
division of labour show that SO systems can generate useful 
emergent behaviours at the system level. Self-organised, 
swarm based systems do not require a centralised plan or 
deliberate action from individuals. They therefore have the 
potential to reduce mission planning and therefore the 
amount of intelligence required in control systems design. 
Moreover, self-organised, swarm based systems demonstrate 
robustness and scalability. This means that adding or 
subtracting agents to or from the system may not 
significantly affect the overall performance and emergent 
behaviours of the system. 

Significant research effort has been invested in recent 
years into the design and simulation of intelligent swarm 
systems[10]. Intelligent swarm systems can generally be 
defined as decentralized systems, comprised of relatively 
simple agents which are equipped with the limited 
communicational, computational and sensing abilities 
required to accomplish a given task[11]. Gaudiano, et al. in 
their studies, tried to apply quantitative methodologies to 
evaluate the performance of UAV swarms under a variety of 
conditions[12]. In Price’s research, ten self-organization 
rules were implemented whose weight factors were collected 
into a single fitness function. This function was further 
refined using a genetic algorithm within the simulation[13]. 
Another widely adopted mechanism is digital pheromone 
maps that imitate the foraging behaviour of ants. Digital 
pheromones are modelled on the pheromone fields of the 
individual vehicles. By synchronizing their maps the UAVs 
coordinate to avoid redundant searches[14]. Hauert, et al. 
had been investigating the potential of using a swarm of 
UAVs to establish a wireless communication network[15]. 
They applied artificial evolution to develop neuronal 
controllers for the swarm of homogenous agents.  

This study designs a swarm controller to enable a swarm 
of UAVs to search for and attack targets. The concept of 
employing swarms of weapons was explored in[16]. In this 
concept, the individual of the swarm may be less capable 
than conventional weapons, but through cooperation across 
the swarm, the swarm exhibits behaviours and capabilities 
that can exceed those demonstrated by conventional systems 
that do not employ cooperation. To implement a swarm 
system, they designed a rule set of discrete behaviours, 
which was governed by interactive subsumptive logic. 
Building upon their research, we adopted an adaptive task 
controller based on task stimulus to optimize the 
performance of the swarm. In their design, once the targets 
were discovered, the weapons would home in on them. 
Through communication, other weapons had knowledge of 
how many weapons had been committed to a given target. 
Simple rules prevent excessive numbers of weapons from 
being expended on a single target. Our approach also takes 

into consideration the value of the targets and the time left in 
the mission. Thus the weapons would not be largely 
expended in the early stage of the mission, especially on low 
value targets, which leaves an inadequate number of UAVs 
to search for the remaining targets. 

The remainder of this paper is structured as follows. 
Section II describes the mission in detail and the simulation 
tools used in this study. In section III, we present the task 
controller. The results of the simulation are given in section 
IV while section V concludes the paper.  

2. Simulation Environment 
In this section, we present the simulation tool and the 

overview of the simulated mission scenario. 

2.1. Simulation Tool 

Agent-based simulations of complex adaptive systems are 
becoming an increasing popular tool in the artificial life 
community. The application of agent-based simulations in 
combat modelling had been explored by Ilachinski[17]. He 
argued that agent-based models are most useful when they 
are applied to complex systems that can be neither wholly 
described nor can be built by conventional models based on 
differential equations. Agent-based models are designed to 
allow users to explore evolving patterns of system-level 
behaviour that derive collectively from low-level 
interactions among their agents. 

In this study, the SWARM simulator, developed by the 
Santa Fe Institute was used to construct the simulation 
environment[18]. It provides a conceptual framework for 
designing, describing, and conducting experiments on 
agent-based models. This framework allows independent 
agents to interact via a schedule of discrete events. Bharathy 
et al. provided an architectural frame for generic agents, 
which comprised three external domains within an agent to 
interact with the agent’s environment: perception domain, 
action domain and communication domain[19]. Within the 
SWARM framework, the agents communicate both with 
each other and with their environment via messages. 
SWARM supplies a basic system library that manages a 
dynamic list of objects and handles message passing between 
objects. In our design, two different objects were modelled, 
namely the UAVs and their targets. The internal functions of 
the objects, which describe the rule set of behaviours, handle 
the messages that are sent to the object and modify their 
internal states. 

2.2. Mission Description 

In applying these theoretical concepts to a UAV swarm 
application, we designed the following wide area search and 
attack scenario. This scenario aims to search for targets 
within the defined area and destroy or degrade targets. The 
following is a list of assumptions and functionalities we use 
in our simulation: 
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● The vehicles considered in this study are relatively 
simple platforms with the smallest effective payload and 
with a minimal set of onboard detection devices to sense the 
environment and one another other. One concept of such 
platform is called the Low Cost Autonomous Attack System 
(LOCAAS), which has a range of 100 nautical miles as well 
as laser radar with automatic target recognition to identify 
potential targets[20]. 

● The mission area is defined as a rectangular region. 
Each UAV is aware of the terrain boundaries and will turn as 
it approaches a boundary to remain within the target area. 
The UAV has only enough fuel to fly over the mission area 
once.  
● The UAV’s were modelled as identical agents in the 

simulator. Each UAV is equipped with a global positioning 
system (GPS) navigation system for autonomous waypoint 
navigation, a circular sensor to detect the position of other 
UAVs within a specified radius and a limited range 
communication system. 
● The UAV’s fly at constant altitude but at a variable 

speeds. Their vehicle dynamics will be discussed in next 
section. 
● The UAVs can change modes between search and 

attack. They can only change mode from search to attack 
once. The UAVs are themselves weapons which are 
destroyed in the attack process. The attack will have 80 
percent chance of being successful.  

● The targets are stationary and randomly distributed 
within target area. The potential targets could be relocatable 
air defence sites or vehicles in columns. The targets may be 
of high or low value. The stimulus of high value targets is set 
to be twice that of the low value targets. The onboard target 
recognition software has the ability to recognize the target 
type. The location and the nature of the targets are unknown 
to each UAV. Each target is assumed to be an array of 
ground vehicles or air defence units. In this simulation, each 
target array must be hit by 8 UAVs to be destroyed. The 
status of the target will degrade as the number of UAV 
attacks increase, so that the stimuli that attract UAV attacks 
will decrease. The mission control strategy based on task 
stimulus will be discussed in section III. 

The mission was started with two groups of UAVs 
entering the mission area from the left side (Figure 1). The 
UAVs were assumed to be deployed from a cargo aircraft, 
though this could have been a ship or ground transport. The 
reason for deploying them in two groups was to encourage 
them distribute themselves evenly across the space during 
the mission. In[21], the feasibility of using cargo aircraft for 
the mass delivery of standoff munitions is investigated. The 
UAV’s spread out immediately after release and form a loose 
formation using a six rule set (discussed in subsection B 
below) to hunt for targets (Figure 2). As shown in the figure, 
the targes within a circle were the ones that had been 
detected. The UAV’s shown in green began the attack. 
Through communication, other UAVs that met certain 
proximity requirements became aware of the identified 

targets. However, the onboard task controller would decide 
whether to attack the targets or proceed to search for other 
targets.  

 
Figure 1.  Mission Start 

 
Figure 2.  Search and Attack 

3. Dynamic Mission Control 
In this section, the rule set of behaviours and task 

controller is discussed. 

3.1. Rule sets of Movement 
The behaviours of the UAVs are built upon rule sets 

describing formation maintenance and target interaction. The 
mathematical definition of the rules is inspired from previous 
research[13]. This study extended the previous research by 
introducing two behavior logic modes on top of the rules, 
which are the search mode and target engagement mode. The 
switch between behavior modes is controlled by the task 
controller, which will be discussed in detail in next section. 
In this study, six rules are used to govern the movement of 
the vehicle: cohesion, alignment, separation, collision 
avoidance, target avoidance and goal seeking. When the 
UAVs are in the search mode, every rule is active, causing 
the vehicles to spread out while preserving intervehicle 
communication. Once the target engagement mode is 
triggered, the UAVs are committed to the attack phase and 
only collision avoidance and goal seeking rules are active.  

Each of these rules is mathematically defined below.  
1) Rule 1: Cohesion 
The cohesion rule makes UAVs attract each other by 

orientating their acceleration vectors in the direction of the 
local flock center provided that the distance between them is 
greater than some set value. 
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1) Rule 3: Separation 
The separation rule enables each UAV to maintain a 

distance between itself and its neighbours to prevent sensor 
overlap. It applies a repulsion vector that points away from 
neighbouring UAVs. The magnitude of the repulsion vectors 
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2) Rule 4: Collision Avoidance 
The collision avoidance rule works in a similar manner to 

separation rule but with a lower separation distance. 
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3) Rule 5: Target Avoidance 
The target avoidance rule keeps a UAV from flying over 

detected targets. It works in a similar manner to the 
separation rule in that it provides a repulsion vector away 
from a known target. 
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4) Rule 6: Goal Seek 
The goal seek rule guides a UAV to fly toward the next 

waypoint or target position if it is in attack mode. 
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i
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a desired acceleration vector 𝐚𝐚 for each UAV.  
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The desired acceleration is limited by maximum linear and 
radial acceleration. The calculation of velocity and position 
use the following equations: 
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3.2. Task Controller  
In Bonabeau, et al[10], a task allocation model based on a 

response threshold was developed through the observation of 
social insects. The response threshold refers to the likelihood 
of reacting to a task associated stimulus. A response 
threshold θ, expressed in the units of stimulus intensity, is an 
internal variable that determines the tendency of an 
individual to respond to the intensity of the stimulus S and 
perform the task. A response function Tθ(S) which is the 
probability of performing the task as a function of stimulus 
intensity 𝑠𝑠, is given by: 
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where n > 1determines the steepness of the threshold. As we 
can see from this function: for S << θ, the probability of 
engaging a task is close to 0, and for S >> θ, this probability 
is close to unity. 

The mission objectives investigated in this paper focus on 
the effective allocation of weapons to maximise the coverage 
of the search space and attacks on targets. Use of flocking 
rules discussed above equally distributed the swarm in the 
search space and then re-adjusted its formation after an 
attack. One of the most challenging aspects that might affect 
the efficiency of the mission is how to allocate the swarm 
assets to each task. The tasks include search and the selection 
of the target to attack. An attack on a target causes the 
number of searching UAVs be reduced. An attack in the 
early stage of the mission will leave an inadequate number of 
UAV’s to search and destroy the remaining targets. In order 
to use fewer vehicles to cover a greater target area, we 
designed a target area with a limited size. As a consequence, 
the UAVs fly over the search area once and so attacking 
targets after searching the whole area was not an option. It 
was important to make the UAVs decide when to attack and 
which target to attack. This study attempted to address these 
issues utilising the way self-organising and collective 
behaviour emerge from interactions among individuals and 
local environmental changes. We designed an adaptive task 
allocation model based on task stimulus intensity and 
responding threshold to maximise the performance of the 
swarm. 
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This task control algorithm runs in each UAV at each time 
interval and calculates the probability that an individual 
should change its mode to attack. It is assumed that target 
array Ti takes N UAVs to attack successfully so as to be 
totally destroyed after it is detected. The discrete time 
dynamics of the stimulus intensity related to Ti is updated by: 
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where α, β and γ are coefficients that control the influences 
of  θ. dij denotes the distance between Ui and Tj. The last 
term of equation (13) forces the UAVs to be more likely to 
attack the targets that are nearest to them if multiple targets 
are discovered. Each UAV at every time interval will decide 
whether to attack a target or proceed to search for other 
targets based on this probability. This controller will make a 
UAV choose a target with high stimulus intensity and 

spatially closer. Because the swarm self-organizes, the 
mission planning requirements are significant relaxed. 
Mission planning can be accomplished as an emergent 
behaviour, rather than as decisions sent to individual 
vehicles. The proposed task control algorithm is shown in 
figure 3. 

 
Figure 3.  Task control flow chart 

4. Simulation Results 

 

Figure 4.  Simulation result with 40 UAVs and 8 targets 
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Figure 5.  Simulation result with 50 UAVs and 10 targets 

Two sets of simulations with different swarm size and 
target numbers were performed to test the mission control 
algorithm, namely: (1) 40 UAVs and 8 targets and (2) 50 
UAV’s and 10 targets. The simulations were run in batch 
mode 30 times for each setting. The simulation results are 
shown in figures 4 and 5. In the simulations, half of the 
targets were of high value while half were of low value. The 
position and status of the targets were unknown to the 
simulated UAVs before being detected. Each target was 
assumed to take potentially 8 UAVs to be totally destroyed. 
Each attack had an 80 percent chance of being successful. To 
evaluate the mission performance, we assumed that an attack 
on a high value target received 2 hit points, while an attack 
on low value target received 1 hit point. The best situation 
was that all UAVs would attack a high value target and thus 
receive the most hit points. The attack ratio is actual points 
received in a mission divided by maximum points. The target 
detection ratio is the ratio of detected targets to total targets. 
The simulation results demonstrate the change of mission 
performance on attack and search as the value of θ in 
equation (13) is varied. 

As is evident from the simulation results, both 
experiments with different swarm size and target numbers 
show the same pattern. We use θ = 0, β = 0 as the baseline 
case. Because when θ = 0, β = 0, the stimulus intensity of the 
target has no effect, so the swarm will attack every target 
immediately after it is detected until the target is totally 
destroyed. This is similar to the swarm behaviour used in 
previous research[13][16]. In this case, the mission 
performance of the swarm is not efficient because the UAVs 
attack any detected targets regardless of the value of the 
target and this may leave an inadequate number of UAVs to 
search for new target. As can be seen from the results, the 
target detection ration is extremely low. With θ increasing, 
the UAVs become less likely to attack a target with low 
stimulus intensity and pay more attention to high value 
targets. However, the target stimulus intensity will increase 
for each time step, the UAVs will still choose to attack low 
value target before running out of fuel if no more high value 
targets are detected. After θ passes a certain point, the attack 
ratio will fall because searching becomes more attractive 

than attacking. The last strategy we used for comparison was 
to let the UAVs only attack high value targets and ignore low 
value targets. As is shown, this strategy is not as efficient as 
the one with the optimum θ setting, because it runs the risk of 
wasting significant UAV resource if not enough high value 
targets are detected.  

5. Conclusions  
We have presented a formulation for a swarm of UAVs 

engaged in a wide area search and destroy mission in an 
unknown environment. We have used flocking behaviour to 
control the movement of the UAVs while searching the 
target area, as the rule based behaviour helps the vehicles to 
quickly disperse after deployment and readjust the formation 
as required. We have developed a decentralized mission 
control mechanism based on task stimulus intensity and a 
responding threshold, which can optimize the performance 
of the swarm. The simulation results show that, by using this 
mechanism, a swarm of UAVs demonstrates emergent 
behaviour through self-organisation, and individual vehicles 
respond adaptively to the changing environment.  

The simulation scenario presented here is very simplified 
in comparison to a real mission. One weakness being the 
mission control mechanism only allocates UAVs to a certain 
target. A more sophisticated cooperative control algorithm is 
needed to control UAVs attacking multiple targets, 
especially when possible adversary action of the target is 
taken into consideration. 

Nomenclature 
a = acceleration vector 
Wi = waypoint i 
NBi = set of neighbours of UAV i 
Pi = position vector of agent i 
Vi = velocity vector of agent i 
r = interaction range between UAVs 
dc = distance below which the collision avoidance rule 

take effect 
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ds = separation distance from other UAVs 
dt = separation distance from target 
norm(V) = normalize vector V 
wfi = weight factor for each rule 
S = stimulus intensity 
θ = response threshold 
Pij = probability that Ui attack Tj 
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