
American Journal of Intelligent Systems 2012, 2(5): 118-128
DOI: 10.5923/j.ajis.20120205.06

Developing a Novel Shared-Clock Scheduling Protocol for
Highly-Predictable Distributed Real-Time Embedded

Systems

Mouaaz Nahas

Department of Electrical Engineering, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, KSA

Abstract The Controller Area Network (CAN) protocol is widely used in the development of distributed real-time
embedded systems. It has previously been shown that a “Shared-Clock” (S-C) scheduling algorithm can be used along with
CAN protocol to implement time-triggered network architectures. Previous work in this area has led to the development of
four S-C scheduling protocols called TTC-SCC1, TTC-SCC2, TTC-SCC3 and TTC-SCC4 schedulers. This paper first
reviews the four schedulers. Second, the paper provides a more general model for the TTC-SCC2 scheduler. Third, the
limitations of the various S-C schedulers are discussed and an alternative S-C scheduling protocol is developed; which is
referred to as TTC-SCC5 scheduler. The five schedulers are then evaluated and compared against a number of criteria
including jitter behavior and resource requirements for practical implementation on low-cost embedded microcontrollers.
The results presented in the paper show that the TTC-SCC5 scheduler is advantageous over the others since it integrates their
key features while maintaining low implementation costs.

Keywords Time-Triggered, Co-Operative, Shared-Clock, Scheduler, Controller Area Network, Master, Slave, Jitter,
Message Latency, Failure Detection Time

1. Introduction
Over recent years, researchers have considered various

ways in which time-triggered software architectures can be
employed in low-cost embedded systems where reliability is
a key design concern[1,2,3,4,5,6]. Previous work in this area
has considered the development of both single- and
multi-processor designs. In the case of multi-processor
designs, it has been demonstrated that a “Shared-Clock”
(S-C) communication architecture – used in conjunction with
“Time-Triggered Cooperative” (TTC) scheduling
algorithm[7,8] – can provide a simple, flexible and
predictable platform for many systems[1]. In such
distributed systems, the Controller Area Network (CAN)
protocol[9] provides high reliability communication at low
cost[10,11,12,13].

CAN has been widely used in automotive and other
industrial arenas[10]. As a consequence of its popularity,
most modern microcontroller families have members with on
- chip hardware support for this protocol (e.g.[14,15,16,17]).
CAN protocol can still be an appropriatesolution due to its
deep roots in the automotive industry as well as its

* Corresponding author:
mouaaz.nahas@googlemail.com (Mouaaz Nahas)
Published online at http://journal.sapub.org/ajis
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

simplicity, low implementation costs and widespread
availability[18]. Moreover, experience gained with CAN
over the past years allows the creation of extremely reliable
systems using this protocol[19]. However, since CAN is
usually viewed as “event-triggered” protocol[20], the use of
a S-C architecture in combination with CAN hardware helps
to achieve a time-triggered network operation[1].

The original S-C scheduling protocols were introduced in
2001 by Michael Pont[1]. In a more recent study[21], a set of
possible implementations of the S-C protocol including
those presented in[1] were compared and documented. In
particular, the study described four S-C scheduling protocols
and discussed their strengths and weaknesses. Since each
protocol employs a TTC algorithm and a S-C scheduler on
top of CAN network, such protocols will be referred to in this
paper as “TTC-SCC1”, “TTC-SCC2”, “TTC-SCC3” and
“TTC-SCC4” protocols1. Among the four protocols, authors
demonstrated that the two protocols “TTC-SCC3” and
“TTC-SCC4” provide a better match for the needs of various
embedded applications. In our previous studies[22,23], we
attempted to improve the timing behavior of the TTC-SCC1
scheduler by proposing a range of data coding techniques
which reduce the jitter caused by the CAN hardware
bit-stuffing mechanism[10].

The present paper reviews the four schedulers in detail and
introduces a new (novel) S-C scheduler – referred to here as
“TTC-SCC5” scheduling protocol – which attempts to

 American Journal of Intelligent Systems 2012, 2(5): 118-128 119

address the key limitations in the previous protocols while
achieving high resource efficiency. The paper also provides
a more general and flexible model (design) for the
TTC-SCC2 protocol for use in wider applications.

The remainder of this paper is organized as follows:
Section 2 provides an overview of the S-C scheduling
architecture. The implementation of this protocol along with
TTC scheduler on CAN hardware is discussed in Section 3.
Sections 4 - 7 provide overview of the previously developed
TTC-SCC1 to TTC-SCC4 schedulers. Section 8 introduces
the new TTC-SCC5 scheduler. For all schedulers, strengths
and weaknesses are presented just after description of the
scheduler in its corresponding section. Empirical results for
the purpose of evaluation and comparison of all TTC-SCC
schedulers are presented in Section 9. The overall paper
conclusion is drawn in Section 10.

2. Shared-Clock (S-C) Scheduler
The “Shared-Clock” (S-C) architecture, developed in[1],

was aimed to provide a simple and low-cost software
framework for time-triggered systems without requiring
specialized hardware. The S-C scheduler operates as follows
(Figure 1). On the Master node, a conventional (co-operative
or hybrid2) scheduler operates and the system is driven by
periodic interrupts generated from an on-chip timer. On the
Slave nodes, a very similar scheduler operates. However,
on the Slaves, no timer is used: instead, the Slave scheduler
is driven by interrupts generated through the arrival of
periodic “Tick” messages sent from the Master node. By
doing so, all nodes will be synchronized according to one
reference clock (which is the Master clock).

Figure 1. Simple architecture of Shared-Clock (S-C) scheduler

Overall, the S-C scheduler is extremely simple and
supports a number of low-cost (but effective) error-handling
mechanisms[1]. The network communications follow a
Time-Division Multiple Access (TDMA) protocol, and the
system behavior is highly-predictable[21]. In such a
scheduling protocol, the Master Tick message holds data for
a particular Slave or a group of Slaves. The first byte of the
transmitted data is therefore reserved for the Slave or Group
Identifier (ID) to which the tick message is addressed. Only
the addressed Slave(s) must reply a form of
acknowledgement “Ack” message to the Master straight
after the Tick message is received (see[1] for more details).

3. Time-Triggered Cooperative
Shared-Clock CAN (TTC-SCC)
Scheduler

The S-C scheduler can be implemented on a wide range of
network protocols used in the design of multi-processor
embedded systems, such as CAN, RS-485, TTP and FlexRay.
The work presented in this study is, however, focused on
implementations using CAN network protocol. The
multi-processor systems considered in this study are based
on the following three-level implementations:
●TTC scheduler implemented in each individual node to

achieve time-triggered operations of scheduled tasks.
●CAN network protocol implemented as a hardware

platform on which the communicating nodes transmit their
messages.
●S-C scheduling protocol – implemented on top of the

CAN – as a software platform to achieve time-triggered
communications between the nodes connected in the
embedded network.

The resulting system is best described as a “TTC-SCC”
scheduler (or scheduling protocol). Overall, the use of
TTC-SCC scheduler can be so attractive due to its utilization
of the error handling features offered by the underlying CAN
hardware, whilst – at the same time – allowing the network to
behave in a highly-predictable time-triggered manner.

4. TTC-SCC1 Scheduling Protocol
An overview of the original TTC-SCC scheduler

implementation (which is referred to as TTC-SCC1) is
presented in this section. The particular implementation
discussed in this section is based on that described in detail
elsewhere (see:[1, 21]).

4.1. Implementation

The TTC-SCC1 scheduler is a simple version of the
TTC-SCC scheduling protocol. TTC-SCC1 follows a Time
Division Multiple Access (TDMA) protocol in which the
Master node communicates with only one Slave node per
tick interval. The scheduler is based on the following
arrangements: first byte of the transmitted data is reserved
for the Slave Identifier (ID) to which the Master “Tick”
message is addressed. Only the addressed Slave will reply an
acknowledgement “Ack” message to the Master where this
message must be sent back within the same tick interval in
which the “Tick” message is received.

The described mechanism is used by the Master to detect
network and node failure. More clearly, at each tick interval,
the Master node checks if a valid “Ack” message is received
from the addressed Slave in the previous tick. If not, then the
necessary actions might be taken, for example, starting a
backup Slave, or going into a safe mode. If a correct “Ack”
message has been received from that Slave, the Master will
send Tick message on the CAN bus which addresses the next
Slave node, and so on.

Figure 2 below illustrates an example of the TDMA round
(cycle) for a TTC-SCC1 network with one Master and three
Slaves, where “Tick” messages originate from the Master
and the “Ack X” message is transmitted back from “Slave X”.

Master Slave 2Slave 1 Slave N

Tick messages (from master to slaves)

Acknowledgement
message

Acknowledgement
message

Acknowledgement
message

120 Mouaaz Nahas: Developing a Novel Shared-Clock Scheduling Protocol for Highly-Predictable
Distributed Real-Time Embedded Systems

The figure shows that TTC-SCC1 follows a round-robin
message scheduling approach in which all Slaves are given
equal time to transmit their messages. The figure clearly
shows that the TDMA round in the TTC-SCC1 is equal to the
number of Slaves multiplied by the width of the tick interval.
Given that N is the number of Slaves and T is the tick interval,
the TDMA round can be calculated as follows:

TDMA1 = NT (1)
To implement TTC-SCC1 scheduler, only two CAN

messages are exchanged within a tick interval: “Tick” and
“Ack” messages. The “Tick” message is assigned a higher
priority than the “Ack” message. This is because the Master
Tick messages are used to generate the timing beat of the
whole network and manage the transmission of messages.
Therefore, the first CAN Message Object (CMO 0) in the
Master node must be configured to send “Tick” messages
where the second CAN Message Object (CMO 1) must be
configured to receive “Ack” messages. The same
configurations are to be considered in the Slave nodes.
However, in Slaves, CMO 0 is configured to receive “Tick”
messages from the Master and CMO 1 is configured to send
“Ack” messages to the Master. Furthermore, the timer
interrupt on the Master node is enabled to generate periodic
interrupts for triggering the Master scheduler and, hence,
sending “Tick” messages to the Slaves. On the Slave nodes,
the CAN interface will be configured to generate a CAN
interrupt on arrival of a valid “Tick” message, while Slave
timer interrupts are totally disabled.

Overall, CAN messages can have up to eight bytes data
bandwidth. However, in any S-C scheduler, one byte in each
(Tick or Ack) message is reserved for Slave ID. This allows
up to seven bytes per message for data transfers between
nodes. Please note that the Slave ID byte in the Ack message
is used by the Master to check that a given Slave has
responded correctly and hence has no failure.

4.2. Strengths

The TTC-SCC1 is very simple and allows the creation of
low-cost, time triggered CAN-based networks with highly
predictable patterns of behavior.

4.3. Weaknesses

Slave-to-Slave communication is not permitted as all
communication is directed via the Master node (through
“Tick” and “Ack” messages). This causes the transmission
time of data between any two Slaves to be comparatively
long.

Also, the time taken to detect the failure of any Slave node
can be very long, since the Master checks the status of all
Slaves only once per TDMA round. As the TDMA round
goes larger, the failure detection time would increase
correspondingly. Using Figure 3, where M is the Master Tick
message length, the worst-case failure detection time for the
TTC-SCC1 scheduler is calculated as:

Worst-case failure detection time = TDMA1 + T – M
= (N+1) T – M (2)

In the example shown in Figure 3, the Master would take
around four Tick intervals (i.e. TDMA plus one additional
tick) to detect a failure on Slave 1.

Moreover, tasks running on the Slave nodes will suffer
from high jitter due to CAN bit-stuffing in the Master Tick
messages[10]. A set of results which show such
characteristics is provided in Section 9.2).

5. TTC-SCC2 Scheduling Protocol
The TTC-SCC2 scheduler provides a small (but effective)

modification to the original TTC-SCC1 scheduler. An
overview of the TTC-SCC2 scheduling protocol is presented
in this section. The particular implementation discussed in
this section is adapted from that which has been described in
detail elsewhere[1,21].

Figure 2. TDMA round for a four-node system using TTC-SCC1 scheduler

Figure 3. Failure detection time in TTC-SCC1

Tick Ack1

Tick interval Time

Master
Tick

Slave
Tick

TDMA round

Tick Ack2 Tick Ack3 Tick Ack1

Tick Ack1

Time

Master
Tick

Slave
Tick

Tick Ack2 Tick Ack3 Tick Ack1 Tick

Failure on S1 just after it
sends its Ack1 message

Failure on S1 is
detected by Master

TDMA T

M

 American Journal of Intelligent Systems 2012, 2(5): 118-128 121

5.1. Implementation

The round-robin approach used in the TTC-SCC1
scheduler to communicate with the Slave nodes may not be
efficient in some networks. For example, in some
applications, the Master node may need to communicate
with a particular Slave node more frequently than the other
Slaves. This is (for example) to check the Slave’s status or
acquire some data samples. In order to achieve this, an
enhanced implementation of the scheduler is required: this is
referred to here as “TTC-SCC2”.

The TTC-SCC2 scheduler provides a flexible TDMA
round. For example, the status of Slave 1, in the example
shown in Figure 2 may need to be checked more frequently
than the status of Slave 2 and Slave 3. In this case, the
TDMA round used must be amended to meet such an
application requirement. An example of appropriate TDMA
round that can be used for such a system is illustrated in
Figure 4. In the example in the figure, the TDMA round is
equal to four tick intervals (i.e. 4T). This can be broken down
into 2T (for Slave 1 Ack message which is allowed to
transmit twice in the TDMA round) plus 2T (for Slaves 2 and
Slave 3 Ack messages, each is transmitted once in the
TDMA round). More generally, for N Slaves, the TDMA
round can be calculated as follows:

TDMA2 = (2N-2)T (3)
In general, TTC-SCC2 scheduler has been intended to

meet the requirements of any real-time control application.
Therefore, the configuration of the TDMA round in such a
scheduler is considered an application-specific design
parameter which allows the Master to communicate with
Slaves in an arbitrary way. For example, consider the system
illustrated in Figure 5. Here, the system has five Slaves and
the TDMA round is equal to 8T. It is impossible to find a
general formula which can be used to calculate the TDMA
round for any system implemented using TTC-SCC2
scheduler. Instead, the TDMA round for a given system will

be dependent on the number of Slaves as well as the message
scheduling pattern used for that particular system.

Overall, to implement the TTC-SCC2 scheduler, the same
configuration for CAN message objects – as described in
Section 4.1 is used. The only difference between the two
schedulers is, again, the way the system talks to the various
Slaves.

5.2. Strengths

The TTC-SCC2 is also very simple and allows the
creation of low-cost, time triggered CAN-based networks
with highly predictable patterns of behavior.

In contrast to TTC-SCC1, the TTC-SCC2 scheduler
provides higher flexibility in the way the Master
communicates with Slaves, resulting in reduced
communication latencies between critical Slaves and the
Master. This feature may in turn fulfill the requirements of
many real-time applications.

5.3. Weaknesses

As with the TTC-SCC1 scheduler, Slave-to-Slave
communication is not permitted, causing the transmission
time of data between any two Slaves to be comparatively
long.

Also, the time taken to detect the failure of any Slave node
can be very long, since the Master checks the status of some
Slaves only once per TDMA round. Using Figure 6, where
DXX is the distance between successive ticks allocated for a
given Slave, the worst-case failure detection time for the
TTC-SCC2 scheduler is calculated as:

Worst-case failure detection time = DXX + T – M (4)
In the example shown in Figure 6, the Master would take

approximately three Tick intervals to detect a failure on
Slave 1.

Also, tasks running on the Slave nodes will suffer from
high jitter due to CAN bit-stuffing in the Master Tick
messages (same as in the TTC-SCC1 scheduler).

Figure 4. A simple TDMA configuration for a four-node system using TTC-SCC2 scheduler

Figure 5. A TDMA configuration for a six-node system with arbitrary pattern using TTC-SCC2 scheduler

Tick Ack1

Time

Master
Tick

Slave
Tick

TDMA round

Tick Ack2 Tick Ack1 Tick Ack3 Tick Ack1
Tick

interval

Tick Ack
1

Time

Master
Tick

Slave
Tick

TDMA round

Tick Ack
2 Tick Ack

1 Tick Ack
1 Tick Ack

3 Tick Ack
2 Tick Ack

4

Tick interval

Tick Ack
5

122 Mouaaz Nahas: Developing a Novel Shared-Clock Scheduling Protocol for Highly-Predictable
Distributed Real-Time Embedded Systems

Figure 6. Failure detection time in TTC-SCC2

Figure 7. A simple TDMA configuration for a four-node system using TTC-SCC3 scheduler

6. TTC-SCC3 Scheduling Protocol
To resolve some of the outlined shortcomings of the

TTC-SCC1 and TTC-SCC2 schedulers, the TTC-SCC3 was
developed. An overview of this scheduling protocol is
presented in this section. Note that the particular
implementation discussed here has been described in detail
elsewhere[21].

6.1. Implementation

The TTC-SCC3 scheduler provides the facility for all
Slave nodes to transmit their Ack messages within one tick
interval. As with TTC-SCC1 and TTC-SCC2, each time a
Tick message is sent from the Master, an ID is also sent
within the message. However, with TTC-SCC3, this is a
“Group ID” (rather than a Slave ID). This simply means that
– if there is more than one Slave in a particular group – all
Slaves in the group will send their Ack messages
simultaneously. In this case, it is the responsibility of the
CAN controller to deal with any collision between messages.
Thereafter, the Master node needs to ensure that all Slaves in
the group addressed in the Tick message have replied back

before transmitting the next Tick message, and so on.
To better explain the TTC-SCC3 scheduler, assume a

four-node system as illustrated in Figure 7. The figure shows
how Slave Ack messages can be scheduled in a simple
TTC-SCC3 scheduler, where the three Slaves are permitted
to transmit in the same tick interval. In this case, the TDMA
round is equal to the tick interval.

In a more complicated scenario, assume that a system has
N Slaves. The scheduler has the option to schedule the Ack
messages for all N Slaves in one tick interval, or alternatively
divide them between two tick intervals. For example, m
Slaves can send Ack messages in the first tick interval while
the remaining N-m Slaves send Ack messages in the second
tick interval (where m < N). In general, the TDMA in such a
scheduler can be extended across multiple tick intervals.
Figure 8 illustrates two possible ways to schedule messages
in a seven-node system using TTC-SCC3 scheduler. In
Configuration A, the TDMA round consists of two tick
intervals, each allocated for three Slaves to send their Ack
messages. In contrast, the TDMA round in Configuration B
is extended across three tick intervals, so that in each interval
only two Slaves can send their Ack messages.

Tick Ack1

Time

Master
Tick

Slave
Tick

Tick Ack2 Tick Ack1TickAck1 Tick

Failure on S1 just after it
sends its Ack1 message

Failure on S1 is detected
by Master

Dxx T

M

Tick Ack1

TDMA round
= Tick interval

Time

Master
Tick

Slave
Tick

Ack2 Ack3 Tick Ack1 Ack2 Ack3

 American Journal of Intelligent Systems 2012, 2(5): 118-128 123

Figure 8. Two possible TDMA configurations using the TTC-SCC3 protocol for a seven-node system

Figure 9. Failure detection time in TTC-SCC3

More generally, given that N is the total number of Slaves,
m is the maximum number of Slaves replying per tick and T
is the tick interval, the TDMA round can be calculated as
follows:

m
TNTDMA =3 (5)

Please note that the TDMA in TTC-SCC3 can be much
shorter than TDMA in TTC-SCC1 and TTC-SCC2. For
example, TDMA1 = NT and TDMA3 = NT/m. Thus, the
relationship between the two TDMA rounds can be
expresses as:

m
TDMATDMA 13 = (6)

Remember that in the case where m = N (as in the example
shown in Figure 7), then TDMA3 = T.

Overall, the TTC-SCC3 scheduler allows that messages
sent from the Slave nodes can be broadcasted to both Master
and all other Slave nodes. In order to allow practical
implementation for the TTC-SCC3 scheduler, each Slave
Ack message must be assigned a unique CMO. Note that, as
with TTC-SCC1 and TTC-SCC2 schedulers, such Ack
messages should not generate CAN interrupts on arrival at
other nodes.

6.1. Strengths

Failure detection time is reduced. Using Figure 9, where
the TDMA round is extended across two tick intervals, the
longest possible time for the Master node to detect a failure
on the Slave 1 node is calculated as follows:

Worst-case failure detection time = TDMA3 + T – M
= (N/m + 1) T – M (7)

Remember that TDMA here equals to NT / m. When all
Slaves are allowed to reply in one tick (i.e. N = m), then the
worst-case failure detection time becomes equal to 2T – M.
This duration is slightly less than two Tick intervals (which
is significantly less than corresponding time in TTC-SCC1
and TTC-SCC2 for non-trivial networks)

Moreover, Slave-to-Slave message latency is also reduced.
This is due to permission for each Slave to broadcast its
messages to all other nodes at the same time instant.

6.2. Weaknesses

As in the TTC-SCC1 and TTC-SCC2 schedulers, tasks
running on the Slave nodes will suffer from high jitter due to
CAN bit-stuffing in the Master Tick messages.

Also, the scheduler requires higher time-bandwidth (i.e.

Tick Ack1

Time

Master
Tick

Slave
Tick

Ack2 Ack3 Tick Ack4 Ack5 Ack6

Configuration A

Configuration B

Tick Ack1

Time

Slave
Tick

Ack2 Tick Ack3 Ack4

Tick

Tick interval

TDMA round

Tick Ack5 Ack6 Tick

Master
Tick

TDMA round

Tick interval

Tick Ack1

Time

Slave
Tick

Ack2 Tick Ack3 Ack4 Tick Ack1 Ack2 Tick

Master
Tick

T

Failure on S1 just after it
sends its Ack1 message

Failure on S1 is
detected by Master

TDMA

M

124 Mouaaz Nahas: Developing a Novel Shared-Clock Scheduling Protocol for Highly-Predictable
Distributed Real-Time Embedded Systems

longer tick interval). The tick length depends on the number
of Ack messages allowed to transmit per tick interval. This
can be a major drawback in applications requiring very small
tick intervals.

7. TTC-SCC4 Scheduling Protocol
The TTC-SCC4 scheduler is another implementation of

the S-C algorithm which was adapted from the TTC-SCC3
scheduler. This section describes TTC-SCC4 scheduler
briefly. The particular implementation discussed in this
section has been described in detail elsewhere[21].

7.1. Implementation

The motivation behind the development of TTC-SCC4
scheduler is to separate between data messages and
time-control messages in order to achieve higher
predictability. More specifically, the Master node in a
TTC-SCC4 scheduler is set to transmit Tick messages which
contain no data. Such messages are used only to synchronize
the local time of all other nodes. In another word, the Master
node has the responsibility to generate the “heartbeat” of the
network and then control the message transmissions over the
network. For example, it still has the responsibility to check
the status of all Slave nodes and deal with any node-failure.
Moreover, it decides which Slaves must transmit in each tick
interval if the TDMA round is extended across multiple tick
intervals (as in Figure 8). In this case, the Master will use
only one data byte for “Group ID” to which particular
messages are sent. Figure 10 illustrates how the TDMA
round in the system shown in Figure 7 will look like if
TTC-SCC4 is used.

It can be clearly noticed from the figure that the number of
Slaves has increased by one. This implies that the TDMA
round in this scheduler is calculated as:

()
m

TNTDMA 14 +
= (8)

Where N is the number of original Slaves, m is the
maximum number of Slaves replying per tick and T is the
tick interval.

Overall, to implement the TTC-SCC4 scheduler, the same
configuration for CAN message objects – as described in
Section 6.1 is used.

7.2. Strengths

Jitter caused by CAN bit-stuffing is minimized. This
simple modification to the previous S-C schedulers allows
the Tick messages to have short and fixed lengths.
Remember that, in any S-C scheduler, Tick messages are
sent from the Master at each tick interval to drive the Slave
schedulers. If such messages have variable lengths, this is
likely to introduce jitter in the timing of tasks running in the
Slave nodes.

Also, failure detection time is reduced. The results here
are very similar to those obtained from the TTC-SCC3

scheduler. The only difference is that the Tick message here
is extremely short, therefore the worst-case failure detection
time for Slave 1 in the example shown in Figure 9 is
calculated as follows:

Worst-case failure detection time
 = TDMA4 + T – MT = ((N+1)/m + 1) T – MT (9)

Where N is the original number of Slaves and MT is the
Master Tick message length: this is in order to distinguish it
from the ordinary Tick message which contains data in its
data field.

Moreover, Slave-to-Slave message latency is reduced,
since this scheduler is built on the TTC-SCC3 scheduler and
utilizes all its features (e.g. the permission of direct
communication between any two Slaves).

7.3. Weaknesses

To implement such a scheduler in practice, an additional
microcontroller will be required as the number of nodes in
the system has increased by one. This results in higher
implementation costs.

As with the TTC-SCC3 scheduler, higher time-bandwidth
(i.e. longer tick interval) is required to allow transmission of
multiple Ack messages in the same tick.

8. TTC-SCC5 Scheduling Protocol
Despite the fact that the TTC-SCC4 scheduler helps to

substantially reduce the jitter in the Tick messages, the
system requires – at least – one additional processor to
generate the timing beat of the network. In order to maintain
the low levels of jitter without using additional hardware, the
TTC-SCC5 scheduler has been proposed. This scheduling
protocol is described in this section.

8.1. Implementation

In the TTC-SCC5 scheduler, the Master is configured to
send out two types of messages: Tick messages and Data
messages. As with the TTC-SCC4 scheduler, the Tick
messages are configured to have “empty” data. This, again,
means that these messages are only used to generate the
time-reference for the whole network while processing no
data. After a Tick message is sent out to all Slaves at each
tick, the Master can then send its data in its Data message
(see Figure 11). The TDMA round in TTC-SCC5 scheduler
is calculated in the same way as in TTC-SCC3 scheduler (i.e.
TDMA5 = TDMA3)

To implement this scheduler practically, the Master node
will have the following CAN message Objects (CMOs):

‘CMO 0’ which is configured to send Master “Tick”
messages.

‘CMO 1’ which is configured to send Master “Data”
messages.

‘CMO 2 – CMO N+1’ which are configured to receive
“Ack” messages from N Slaves.

 American Journal of Intelligent Systems 2012, 2(5): 118-128 125

Figure 10. A simple TDMA configuration for a four-node system using TTC-SCC4 scheduler

Figure 11. A TDMA configuration for a seven-node system using TTC-SCC5 scheduler

Figure 12. Failure detection time in TTC-SCC5

In the Slave nodes, the same configurations are to be
considered. However, in Slave, ‘CMO 0’ is configured to
receive “Tick” messages from Master, ‘CMO 1’ is
configured to receive “Data” messages from Master, ‘CMO
2’ is configured to send “Ack” messages to all nodes, and
‘CMO 3 – CMO N+1’ are configured to receive “Ack”
messages from the other Slaves. Note that – as with
TTC-SCC3 and TTC-SCC4 – each Slave node in the
network is assigned a unique CMO for its Ack message in
order to achieve a Slave-to-Slave communication. Also note
that, when this scheduler is used, the Master Data messages
and the Slaves Ack messages should not trigger CAN
interrupts.

8.2. Strengths

Since the TTC-SCC5 scheduler is adapted mainly from
the TTC-SCC4 scheduler, jitter – caused by CAN
bit-stuffing in the Slave ticks is significantly reduced.

Failure detection time is also reduced here. Figure 12
illustrates an example where Slave 1 suffers a failure as soon
as it has sent its Ack message. If the TDMA round is
extended across two tick intervals, the longest possible time

that the Master node takes to detect a failure on the Slave
node is calculated as follows:
Worst-case failure detection time = TDMA5 + T – MT – MD

= (N/m + 1) T – MT – MD (10)
Where MT is the Master Tick message length and MD is the

Master Data message length. When all Slaves are allowed to
reply in one tick (i.e. N = m), then the worst-case failure
detection time becomes equal to 2T – MT – MD.

Moreover, Slave-to-Slave message latency is reduced. In
detail, messages sent by a given Slave will be broadcasted to
all other Slaves, allowing a direct communication (and hence
reduced message transmission times) between any
communicating Slaves.

8.3. Weaknesses
The scheduler requires more time-bandwidth, as

compared to the TTC-SCC3 and TTC-SCC4 schedulers.
This is because the Master is requested to send two messages
per tick interval (Tick and Data messages). Nonetheless,
remember that the Tick message is configured to be as short
as possible since it contains no data (unlike the Data
message).

Tick Ack1

TDMA round
= Tick interval

Time

Master
Tick

Slave
Tick

Ack2 Ack3 Tick Ack1 Ack2 Ack3Ack4 Ack4

Master
Tick Ack1

Time

Master
Tick

Slave
Tick

Ack2 Ack3

Tick interval

TDMA round

Master
Data

Master
Tick Ack4 Ack5 Ack6Master

Data
Master

Tick
Master
Data

Master
Tick Ack1

Time

Slave
Tick

Ack2 Master
Tick Ack3 Ack4 Master

Tick Ack1 Ack2 Master
Tick

Master
Tick

T

Failure on S1 just after it
sends its Ack1 message

Failure on S1 is
detected by Master

TDMA

Master
Data

Master
Data

Master
Data

MT

MD

126 Mouaaz Nahas: Developing a Novel Shared-Clock Scheduling Protocol for Highly-Predictable
Distributed Real-Time Embedded Systems

Table 1. Task jitter from all TTC-SCC schedulers (all values in µs)

 TTC-SCC1 TTC-SCC2 TTC-SCC3 TTC-SCC4 TTC-SCC5

Min transmission time 162.9 163 162.9 99.9 100
Max transmission time 173 173.1 172.9 102 102.2

Average transmission time 166.3 166 166.2 101 101.1
Diff. Jitter 10.1 10.1 10 2.1 2.2
Avg. Jitter 1.5 1.4 1.5 0.6 0.6

9. Evaluation of all TTC-SCC

Schedulers
This section describes the methodology used to obtain the

experimental results from the study detailed in this paper.
Also, the empirical results from all schedulers are presented
in this section.

9.1. Experimental Methodology

a). Hardware and software setup
The empirical measurements in this study were conducted

using Phytec boards supporting Infineon C167
microcontrollers. The C167 is a 16-bit microcontroller with a
20 MHz crystal oscillator. The C167 board has additional
on-chip support for CAN protocol. The network consists of
four nodes: one Master and three Slaves. The four nodes
were connected using a twisted-pair CAN link. The CAN
baudrate used was 1 Mbit/sec, and 8-byte “Tick” messages
were used, with one byte reserved for the Slave ID, while the
remaining data bytes contained random values (except the
TTC-SCC4 and TTC-SCC5 schedulers, where Tick
messages used only one byte). The tick interval used was 4
ms and the Keil C166 compiler was used[24].

The system used is configured to have one task
(Master_Task_A) running on the Master node and a
corresponding task (Slave1_Task_A) running on Slave 1
node. These tasks are dummy control tasks.

b). Jitter tests
Here, we assess the jitter levels in the relative timing of

Master and Slave ticks in all TTC-SCC networks. Given that
“Master_Task_A” sends random data to “Slave1_Task_A”
every time it is called, jitter test assesses the variation in the
time delay between these two communicating tasks. Note
that all other Slaves will receive Master data at the same
instant over the CAN link. Moreover, the individual TTC
schedulers on each node are based on scheduler
implementation presented in[25], where scheduler overheads
do not introduce any jitter and, hence, the jitter observed is
only caused by the communication protocol.

To make transmission delay measurements, a pin on the
Master node was set high (for a short period) at the start of
the Master task (only task running on the Master). Another
pin on the Slave (initially high) was set low at the start of the
first task running on Slave 1 (all slaves will receive the Tick
message at the same time). The signals obtained from these
two pins were then AND-ed (using a 74LS08N chip:[26]), to

give a pulse stream with widths that represent the
transmission delays. These widths were measured using a
National Instruments data acquisition card ‘NI
PCI-6035E’[27], used in conjunction with appropriate
software LabVIEW 7.1[28].

To represent the results, maximum, minimum and average
message transmission times are reported here. To assess the
jitter levels, average jitter and difference jitter were reported.
The difference jitter is obtained by subtracting the best-case
(minimum) transmission time from the worst-case
(maximum) transmission time from the measurements in the
sample set (this jitter is referred to by other authors as
absolute jitter: see[29]). The average jitter is represented by
the standard deviation in the measure of average message
transmission time. Note that there are many other measures
that can be used to represent the levels of task jitter, but these
measures were felt to be appropriate for this study.

c). Memory test
To reflect the scheduler complexity, the CODE and

DATA memory values required to implement each of the
described scheduling protocol are recorded. These values are
obtained from the “.map” file which is created when the
source code of the scheduler is compiled.

9.2. Results

a). Jitter
Table 1 shows the empirical results obtained from the

jitter test in all TTC-SCC scheduling protocols.
It is clear from the results that TTC-SCC4 and TTC-SCC5

– where Tick messages transmitted from the Master had
fixed lengths – jitter was reduced by approximately 80%
when compared to the TTC-SCC1, TTC-SCC2 and
TTC-SCC3 schedulers. Again, jitter is an important factor
which indicates the predictability level of a system. Also,
since Master Tick messages sent in the TTC-SCC4 and
TTC-SCC5 schedulers had no data bytes, we notice that
transmission times in these schedulers were shorter.

b). Memory requirements
Table 2 summarizes the memory required to implement all

TTC-SCC schedulers discussed in the paper. Note that all
slaves would require similar amounts of memory to be
implemented on the microcontroller hardware considered in
this study.

From the results in the table, it is clear that the slaves
required the same memory overheads in TTC-SCC1 and
TTC-SCC2, and in TTC-SCC3 and TTC-SCC4 schedulers.

 American Journal of Intelligent Systems 2012, 2(5): 118-128 127

This is because the Slave codes are identical in each of these
cases. In the Master, it can be seen that the memory
overheads increased as the scheduler incorporated more
features. For example, TTC-SCC5 scheduler required the
largest amount of memory overheads to be implemented on
the used hardware. However, such increases in memory
requirements can still be seen very small (i.e. approx 12% in
the ROM and RAM as compared to the basic TTC-SCC1
scheduler).

Table 2. Memory requirements (ROM and RAM) for all schedulers

 Memory overhead

Scheduler name
Master Slave

ROM (Bytes) RAM (Bytes) ROM
(Byte)

RAM
(Byte)

TTC-SCC1 1666 30 1590 108
TTC-SCC2 1710 31 1590 108
TTC-SCC3 1838 33 1722 116
TTC-SCC4 1768 32 1722 116
TTC-SCC5 1884 34 1760 118

10. Conclusions
Over recent years, time-triggered software architectures

have received considerable attention. For multi-processor
embedded designs, it has been demonstrated that a
“Shared-Clock” (S-C) scheduling algorithm can be used
along with CAN protocol to implement time-triggered
network architectures.

The work presented in this paper began by reviewing a set
of previously developed S-C scheduling protocols. Despite
that such protocols provide reliable solutions for many
applications, they suffer some limitations. For example, the
TTC-SCC1, TTC-SCC2 and TTC-SCC3 schedulers suffer
high levels of transmission jitter which may degrade the
performance of many time-critical systems. Moreover, the
TTC-SCC1 and TTC-SCC2 schedulers do not allow direct
communication between network Slaves, resulting in
comparatively long Slave-to-Slave message latencies. To
reduce jitter and Slave-to-Slave message latencies, the
TTC-SCC4 scheduler was developed. However, such a
protocol required one additional microcontroller hardware
just to control the network timing, which in turn results in
reduced resource utilization. The present paper attempted to
address the limitations of the previous schedulers by
proposing the TTC-SCC5 scheduler.

The implementation of the TTC-SCC5 scheduler was
based on scheduling two message types in the Master node
during each tick interval: Tick message and Data message.
The Tick message had short and fixed length and was only
used to generate the time-reference for triggering all salves
in the network simultaneously. The Data message was then
used by the Master to communicate information to all or
particular Slaves.

The behavior of the TTC-SCC5 scheduler was compared
with the old S-C schedulers in terms of transmission jitter
levels and resource requirements. The results presented in

the paper show that jitter in the TTC-SCC5 scheduler was
reduced by around 80% (like the TTC-SCC4 scheduler).
However, the ROM and RAM memory required to
implement the TTC-SCC5 scheduler on the used hardware
platforms were slightly increased when compared to other
schedulers.

Overall, the TTC-SCC5 scheduler can be an attractive
solution for a wide range of applications. The key advantage
of this scheduler is that it provides a reduced jitter
characteristic in the message transmission, while
maintaining low Slave-to-Slave message latencies and high
resource efficiency; having the network timing controlled by
one of the existing system nodes without the need for
additional hardware (as with TTC-SCC4 alternative).
However, the time-bandwidth utilization in such a scheduler
is slightly reduced, due to the scheduling of two messages in
each tick interval rather than one.

It is worth concluding that there is no prefect scheduler
implementation which can fit all applications. However, the
TTC-SCC5 scheduler proposed in this paper suggests a
useful addition to the range of TTC-SCC schedulers.

Finally, some important limitations in the reviewed set of
TTC-SCC schedulers are discussed in detail elsewhere[21].
Future work in this area includes development of alternative
S-C scheduler implementations capable of addressing such
limitations. Moreover, future work may include
development of mathematical formula for estimating the
message latencies between any two communicating nodes in
all proposed S-C scheduling protocols. Such work is now
under development.

Notes
1. TTC-SCC is an abbreviation for Time-Triggered

Co-operative, Shared-Clock, CAN. In[21], the four protocols
were called “TTC-SC1”, “TTC-SC2”, “TTC-SC3” and
“TTC-SC4” schedulers.

2. Hybrid scheduler combines cooperative and
pre-emptive scheduling, where only one task in the whole
system is set to be pre-emptive while other tasks are running
co-operatively[1].

ACKNOWLEDGEMENTS
The work described in this paper was conducted in the

Embedded Systems Laboratory (ESL) at University of
Leicester, UK, under the supervision of Professor Michael
Pont, to whom the author is thankful. Author would also like
to thank Dr. Devaraj Ayavoo for providing the software
codes for the TTC-SCC1 – TTC-SCC4 scheduling protocols.

REFERENCES

128 Mouaaz Nahas: Developing a Novel Shared-Clock Scheduling Protocol for Highly-Predictable
Distributed Real-Time Embedded Systems

[1] Pont, M.J. (2001) “Patterns for time-triggered embedded
systems: Building reliable applications with the 8051 family
of microcontrollers”, ACM Press / Addison-Wesley.

[2] Pont, M.J. (2003) “An object-oriented approach to software
development for embedded systems implemented using C”,
Transactions of the Institute of Measurement and Control,
Vol. 25 (3), pp. 217-238.

[3] Pont, M.J. and Banner, M.P. (2004) “Designing embedded
systems using patterns: A case study”, Journal of Systems and
Software, Vol. 71 (3), pp. 201-213.

[4] Kurian, S. and Pont, M.J. (2007) “Maintenance and evolution
of resource-constrained embedded systems created using
design patterns”, Journal of Systems and Software, Vol. 80
(1), pp. 32-41.

[5] Wang, H., Pont, M.J. and Kurian, S. (2007) “Patterns which
help to avoid conflicts over shared resources in time-triggered
embedded systems which employ a pre-emptive scheduler”,
Paper presented at the 12th European Conference on Pattern
Languages of Programs (EuroPLoP 2007).

[6] Nahas, M. (2011a) "Employing two ‘sandwich delay’
mechanisms to enhance predictability of embedded systems
which use time-triggered co-operative architectures",
International Journal of Software Engineering and
Applications, Vol. 4, No. 7, pp. 417-425.

[7] Baker, T.P. and Shaw, A. (1989) “The cyclic executive model
and Ada. Real-Time Systems”, Vol. 1 (1), pp. 7-25.

[8] Locke, C.D. (1992), “Software architecture for hard real-time
applications: cyclic executives vs. fixed priority executives”,
Real-Time Systems, Vol. 4, pp. 37-52.

[9] Bosch (1991) “CAN Specification Version 2.0”, Robert
Bosch GmbH.

[10] Farsi, M. and Barbosa, M. (2000) “CANopen Implementation,
applications to industrial networks”, Research Studies Press
Ltd, England.

[11] Fredriksson, L.B. (1994) “Controller Area Networks and the
protocol CAN for machine control systems”, Mechatronics,
Vol.4 (2), pp. 159-192.

[12] Thomesse, J.P. (1998) “A review of the fieldbuses”, Annual
Reviews in Control, Vol. 22, pp. 35-45.

[13] Sevillano, J.L., Pascual, A., Jiménez, G. and Civit-Balcells, A.
(1998) “Analysis of channel utilization for controller area
networks”, Computer Communications, Vol. 21 (16), pp.
1446-1451.

[14] Philips (1996) “P8x592 8-bit microcontroller with on-chip
CAN, datasheet”, Philips Semiconductor.

[15] Siemens (1997) “C515C 8-bit CMOS microcontroller, user’s
manual”, Siemens.

[16] Infineon (2000) “C167CR Derivatives 16-Bit Single-Chip
Microcontroller”, Infineon Technologies.

[17] Philips (2004) “LPC2119/2129/2194/2292/2294microcontro
llers user manual”, Philips Semiconductor.

[18] Ayavoo, D. (2006) “The Development of Reliable X-by-Wire
Systems: Assessing The Effectiveness of a ‘Simulation First’
Approach”, PhD thesis, Department of Engineering,
University of Leicester, UK.

[19] Short, M. and Pont, M.J. (2007) “Fault-Tolerant
Time-Triggered Communication Using CAN”, IEEE
Transactions on Industrial Informatics, Vol. 3 (2), pp. 13-142.

[20] Leen, G. and Heffernan, D. (2002) “TTCAN: a new
time-triggered controller area network”, Microprocessors and
Microsystems, Vol. 26 (2), pp. 77-94.

[21] Ayavoo, D., Pont, M.J., Short, M. and Parker, S. (2007) "Two
novel shared-clock scheduling algorithms for use with
CAN-based distributed systems", Microprocessors and
Microsystems, Vol. 31(5), pp. 326-334.

[22] Nahas, M., Pont, M. J. and Short, M. (2009) "Reducing
message-length variations in resource-constrained embedded
systems implemented using the CAN protocol", Journal of
Systems Architecture, Vol. 55, No. 5-6, pp. 344-354.

[23] Nahas, M. (2011b) "Employing two ‘sandwich delay’
mechanisms to enhance predictability of embedded systems
which use time-triggered co-operative architectures",
International Journal of Software Engineering and
Applications, Vol. 4, No. 7, pp. 417-425.

[24] Keil Software (1998) “C166 Compiler, Optimizing 166/167
C Compiler and Library Reference, User Guide”, Keil
Elektronik GmbH., and Keil Software, Inc.

[25] Nahas, M., Pont, M.J. and Jain, A. (2004) "Reducing task
jitter in shared-clock embedded systems using CAN", In:
Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings
of the UK Embedded Forum 2004 (Birmingham, UK,
October 2004), pp.184-194. Published by University of
Newcastle upon Tyne[ISBN: 0-7017-0180-3].

[26] Texas Instruments (1988) “SN5408, SN54LS08,
SN54S08SN7408, SN74LS08, SN74S08Quadruple 2-Input
Positive-AND Gates”, available online (Last accessed: July
2012) 74LS08 Datasheet, available on:
http://www.cs.amherst.edu/~sfkaplan/courses/spring-2002/cs
14/74LS08-datasheet.pdf

[27] National Instruments (2006) “Low-Cost E Series
Multifunction DAQ – 12 or 16-Bit, 200 kS/s, 16 Analog
Inputs”, available online (Last accessed: July 2012)
http://www.ni.com/pdf/products/us/4daqsc202-204_ETC_21
2-213.pdf

[28] LabVIEW (2007) “LabVIEW 7.1 Documentation Resources”,
WWW website (Last accessed: July 2012)
http://digital.ni.com/public.nsf/allkb/06572E936282C0E486
256EB0006B70B4

[29] Buttazzo, G. (2005), “Hard real-time computing systems:
predictable scheduling algorithms and applications”, Second
Edition, Springer.

	1. Introduction
	2. Shared-Clock (S-C) Scheduler
	3. Time-Triggered Cooperative Shared-Clock CAN (TTC-SCC) Scheduler
	4. TTC-SCC1 Scheduling Protocol
	5. TTC-SCC2 Scheduling Protocol
	6. TTC-SCC3 Scheduling Protocol
	7. TTC-SCC4 Scheduling Protocol
	8. TTC-SCC5 Scheduling Protocol
	9. Evaluation of all TTC-SCC Schedulers
	10. Conclusions
	Notes
	ACKNOWLEDGEMENTS

