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Abstract  Intrusion Detection Systems of computer network perform their detection capabilit ies by monitoring a set of 
attributes from network traffic. Since some attributes may be irrelevant, redundant or even noisy, their usage can decrease 
the intrusion detection efficiency as well as increase the set of attributes. In this context, selecting optimal attributes is a 
difficult task considering that the set of all attributes can assume a huge variety of data formats (for example: symbol set, 
e.g. binary, alphanumeric, real number, etc., types, length, among others). In this work, it is presented an empirical 
investigation of attribute selection techniques based on Shannon, Rényi and Tsallis entropies in order to obtain optimal 
attribute subsets that increase the detection capability of classifying network traffic as either normal or suspicious. 
Simulation experiments have been carried out and the obtained results show that when Rényi or Tsallis entropy is applied 
the number of attributes and the processing time are reduced and, in addition, the classificat ion efficiency is increased. 
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1. Introduction 
According to[1], a computer network intrusion is defined 

as any set of actions that attempt to compromise the 
integrity, confidentiality or availability of a network 
resource. In general, intrusion attempts are external 
malicious actions that have the purpose of intentionally 
violating the system security properties. Complete or part ial 
intrusion is a result of successful attacks, which exp loit the 
system vulnerabilities. Since invulnerable computer 
networks are practically impossible of achieving, it is more 
reasonable to assume that intrusions can happen. In this way, 
the main challenge in network security is to determine if 
any network action is either normal or intrusion suspicion. 

In complex domains, such as network Intrusion Detection 
System (IDS), a  huge amount of activity data is collected 
from the network generating large log files and raw network 
traffic data, in  which human inspection is impossible. Thus, 
these activity data must be compressed into high-level 
events, called attributes. After it, a set of attributes is 
obtained and monitored by the IDS in order to detect 
intrusion attempts. 
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However, there are some attributes with false correlat ions, 
hiding the underlying process, and other that may be either 
irrelevant or redundant (its informat ion is somehow 
included in other attributes). In this way, removing these 
attributes, or rather, selecting an optimal attributes set that 
adequately describes the network environment are essential 
in order to ach ieve fast and effective response against attack 
attempts, reduce the complexity and the computation time, 
and increase the precision of the IDS[2]. In this way, 
development of methods for selecting optimal attributes is 
welcome. 

In this work, it is investigated some attribute selection 
approaches through a comprehensive comparison of C4.5 
decision-tree model based on Shannon entropy[3] with 
other three attribute selection methods (proposed by the 
authors in prev iously papers), namely, C4.5 based on Rényi 
entropy[4], C4.5 based on Tsallis entropy[5] and an 
approach that combines Shannon[6], Rényi and Tsallis 
entropies.  

In order to evaluate the classification performance of 
these methods, it was considered four attack categories 
(DoS, Probing, R2L and U2R) based on KDD Cup 1999 
data[7], and the following classification models: CLONal 
selection ALGorithm (CLONALG)[8], Clonal Selection 
Classification Algorithm (CSCA)[9] and Artificial Immune 
Recognition System (AIRS)[10]. 

Experimental results show that the classification 
efficiency of optimal attributes subset based methods is 
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comparable to that based on complete attributes set for 
CLONALG and CSCA classification models. 

The paper is organized as follows. Section II provides 
more detail info rmation about the attribute selection 
methods. The data set, classifiers, and performance metrics 
used in the experiments are described in Section III. Results 
are reported in Section IV and conclusions are shown in 
Section V. 

2. Attribute Selection 
Attribute selection is a strategy of removing irrelevant and 

redundant attributes in order to avoid performance 
degradation (for instance, speed, detection precision, etc.) of 
algorithms of data characterization, ru le ext raction, 
designing of predictive models, and others.  

Considering a given dataset that can be characterized by N 
attributes, the objective of any attribute selection process is 
to find a minimum number M o f optimal attributes that are 
capable of describing the dataset as well as with N attributes 
in such a way that the characteristic space is reduced 
according to some criterion[11].  

Attribute selection can be categorized as filter or wrapper 
model. The filter model consists in selecting attributes 
independently of the chosen learning algorithm by 
examining intrinsic characteristics of the data and by 
estimating the quality of each attribute considering only the 
available data. In contrast, the wrapper model consists in 
evaluating the attributes subset performance by applying a 
predetermined learning algorithm on the selected attributes 
subset. In this way, for each new attributes subset, the 
wrapper model needs to learn  the classificat ion algorithm 
and, based on its performance, to evaluate and determine 
which attributes should be selected. In general, this model 
finds the best attributes considering the predetermined 
classification algorithm resulting in  better learning 
performance, but it shows to be more computationally 
expensive than the filter model[12]. 

Since there are 2N possible subsets considering N 
attributes, an exhaustive search for an optimal attributes 
subset may be impracticab le, especially when N and the 
number o f data classes is increased. Therefore, heuristic 
methods that explore reduced search space are commonly 
used for attribute selection. These methods are typically 
greedy in the sense that they make a locally optimal choice in 
the hope that this choice will lead to a globally optimal 
solution. In practice, such greedy methods are effective in 
estimating optimal solution[11].  

For its turn, Decision Trees are supposed to be effective 
classifiers in a large variety of domains. Most of decision 
tree algorithms use standard top-down greedy approach. The 
learning p rocess of decision trees is based on an induction 
process where is used training dataset described in terms of 
attributes. The decision tree result is a  directed graph where 
each internal node denotes a test on the selected attribute, 
each branch represents an outcome of the respective test and 

each leaf node corresponds to a class label, as shown in 
Figure 1. 

Initially, considering the complete set of attributes, the 
decision tree algorithm selects an optimal attribute based on 
some criterion that partitioning the data into subsets 
according to the attribute values. Next, this process is 
recursively applied to each partitioned subsets and it is 
fin ished when a leaf node is obtained, i.e., the data in the 
current subset belongs to the same class.  

In our attribute selection approach, a decision tree 
induction is used for attributes selecting. In this way, the 
attributes that do not appear in the designed decision tree are 
considered irrelevant. Consequently, the attributes that 
corresponds to the internal nodes are selected to form the 
optimal attributes subset. 

 
Figure 1.  Decision tree induction for attribute selection 

The most popular decision tree algorithms are the ID3 
(Induction of Decision Tree)[13] and its successor, the C4.5 
algorithm[3]. Using a top-down process, both algorithms are 
capable of designing decision trees by selecting appropriate 
attribute for each decision node based on Shannon entropy 
measure[6]. 

Specifically, in ID3 algorithm, the best attribute in each 
iteration step is that with highest mutual info rmation among 
all others. Although achieving good results, it presents high 
bias in favor of attributes with large span of values. To try to 
solve this problem, Quinlan proposed the C4.5 algorithm 
comprising of a normalization stage, called gain ratio, in 
which the apparent gain assigned to large span attributes is 
adjusted by it[3]. For more details about C4.5 decision trees, 
see[14]. 

As known, there are others entropy measures, such as 
Rényi and Tsallis entropies. In theory, they can be applied in 
attributes selection schemes. Hence, it is described in this 
paper an empirical investigation in order to assess whether 
these entropy measures are adequate in designing attributes 
selection schemes. In the next sections, Shannon, Rényi and 
Tsallis entropies are duly described. 

2.1. Shannon Entropy 

Entropy is a statistical measure related with the amount 
of information into a random variab le. Based on the original 
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paper of Shannon[6], given a class random variable C with 
discrete probability distribution,

1{ [ ]}k
i r i ip P C c == =  where  

1 1, 1, 2,...k
i ip i k=∑ = = and ci is the ith outcome class. Then, 

the entropy H(C) is the expected amount of information 
needed for class prediction, defined as: 

         (1) 

Now considering a set of N attributes Ai, where i = 1, ... N  
and each attribute Ai can assume vi finite values, Shannon 
has defined other basic concept in information theory, the 
mutual information, I(C;Ai) that measures the dependence 
between two random variables, in our case C and Ai. I(C;Ai) 
is expressed in terms of Shannon entropy as: 

I(C;Ai) = H(C) - H(C | Ai),        (2) 
where H(C | Ai) stands for the conditional entropy of C given 
Ai. The mutual informat ion can be interpreted as the amount 
of uncertainty from C  which  is decreased by the knowledge 
of Ai. 

Other entropies measures have been proposed as, for 
instance, Rényi[4] and Tsallis[5]. Rényi and Tsallis 
entropies are based on an additional parameter α used to 
make them more or less sensitive to the considered 
probability distribution shapes. 

2.2. RÉNyi Entropy 

The Rényi entropy constitutes a measure of informat ion 
of order α, having Shannon entropy as the limit case, and is 
defined by: 

    (3) 

where ∑ = =k
i ip1 1  and )()(lim 1 CHCR =→ αα . 

Using Rényi entropy of order α ϵ (0, 1), the mutual 
informat ion can be given as: 

        (4) 

2.3. Tsallis Entropy 

Another generalized entropy, defined by Constantino 
Tsallis[5], is given by: 
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and )()(lim 1 CHCS =→ αα . 
For α > 1, Tsallis mutual info rmation is defined as[15]: 

          (6) 
Using Shannon entropy, events with h igh or low 

probability have no different weights in the entropy 
computation. However, using Tsallis entropy, for α > 1, 
events with high probability contributes more than low 
probabilit ies ones. Hence, the higher is the value of α, the 
higher is the contribution of high-probability events. In the 
same way, increasing the values of α (α → ∞), Rényi 
entropy is increasingly determined by events with higher 
probabilit ies, and lowering the values of α (α → 0), the 
events are more equally, regardless their probabilities[16]. 

2.4. Proposed Attribute Selection Schemes 

In this work, aiming to select an optimal attributes subset, 
four different approaches in order to identify  four attacks 
categories have been considered. In addition, it was 
considered the filter model based attribute selection. In this 
way, it was designed C4.5-based decision trees, i.e., gain 
ratio was considered, taking account Rényi entropy versus 
Shannon entropy and Tsallis entropy versus  Shannon 
entropy. Moreover, it was designed C4.5-based decision 
trees considering a combination (ensemble) of Shannon, 
Rényi and Tsallis entropies. The proposed attribute selection 
schemes are shown in Figure 2. 

 
Figure 2.  Attribute selection schemes 

The ensemble approach combines the results from the 
individual attribute selection schemes in order to improve the 
selection of optimal attributes subset by avoiding relying 
only on a single approach. 

3. Simulation Environment 
In order to evaluate the proposed attributes selection 

schemes and to design the classificat ion models, it was used 
the WEKA toolkit (Waikato Environment for Knowledge 
Analysis)[17]. 

In WEKA, the source code of the class J48 for generating 
standard-C4.5 based decision tree was modified by the 
authors using JAVA programming language, replacing 
Shannon entropy by α-dependent Rényi and/or Tsallis 
entropies. 

3.1. Data Set Description 

In general, to evaluate IDS schemes, dataset benchmarks 
are used as, for instance, the intrusion dataset available in 
Knowledge Discovery and Data Mining Competition - KDD 
Cup 99[7] for both training and testing. This dataset is still 
used by researchers because it has the capability to compare 
different intrusion detection techniques on a common 
dataset base. 

In the KDD99 database, any network connection (or 
instance) is comprised of 41 attributes and each instance is 
labeled either as normal or as an attack-specified type. 
These attributes are shown in Tab le 1 and its meaning can 
be found in[7]. 

In KDD99 database, there are 494,021 instances in which 
97,278 are considered normal and 396,744 are labeled as 
attacked by 22 different types that can be classified in 4 
main categories as follows: 
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●  Denial of Service (DoS) – attacks from this category 
lead to deny of leg itimate requests usually by network 
flooding, which is defined as a very large amount of 
connections to the same host in a very short time. 

Table 1.  Network attributes and their respective number used in this work 

Nr. Attribute Nr. Attribute 

1 Duration 22 is_guest_login 
2 protocol_type 23 count 
3 service 24 srv_count 
4 flag 25 serror_rate 
5 src_bytes 26 srv_serror_rate 
6 dst_bytes 27 rerror_rate 
7 land 28 srv_rerror_rate 
8 wrong_fragment 29 same_srv_rate 
9 urgent 30 diff_srv_rate 

10 hot 31 srv_diff_host_rate 
11 num_failed_logins 32 dst_host_count 
12 logged_in 33 dst_host_srv_count 
13 num_compromised 34 dst_host_same_srv_rate 
14 root_shell 35 dst_host_diff_srv_rate 
15 su_attempted 36 dst_host_same_src_port_rate 
16 num_root 37 dst_host_srv_diff_host_rate 
17 num_file_creations 38 dst_host_serror_rate 
18 num_shells 39 dst_host_srv_serror_rate 
19 num_access_files 40 dst_host_rerror_rate 
20 num_outbound_cmds 41 dst_host_srv_rerror_rate 

21 is_host_login   
Table 2.  Attacks per Category 

DOS PROBING R2L U2R 

back (1026) ipsweep (586) ftp-write (8) loadmodule (10) 

land (11) nmap (151) guess-passwd (53) rootkit  (7) 
neptune 
(10401) portsweep (155) imap (11) perl (3) 

pod (69) satan (16) multihop (11) normal (1676) 

smurf (7669) normal (1704) phf (5) buffer-overflow 

teardrop (15)  spy (4) (21) 

normal (2573)  wareszclient (60)  

  warezmaster(20)  

  normal (1934)  

●  Probing - It is an attack category based on scanning 
of the network in order to get information or vulnerabilities. 
Probing actions is based on sending a huge amount of 
packets to different hosts in a short time with very  short 
duration. 
●  Remote to Local (R2L) - attacks from th is category 

can be characterized by attempts of remote-machine user to 
get access to a local server.  
●  User to Root (U2R) - It is an attack category 

characterized when an authorized user tries to get access as 
super user (root).  

Usually, network traffic data samples are necessary to be 
collected in  advance to design an intrusion detection system. 
However, complete attack information is very d ifficu lt to 

obtain because, in real world, intruders constantly develop 
new attack methods in order to exp loit system security 
vulnerabilities. Since, in general, the collected samples 
always present some uncertainty, as only  limited 
informat ion about intrusive activities is available, a subset 
of attack from each category was randomly selected from 
KDD99 database in order to simulate the uncertainty 
problem and to decrease computational cost without 
compromises the research results. As shown in Table 2, 
each category contains instances corresponding to attack 
types and normal behavior and its individual amount is 
shown in brackets. 

3.2. Performance Metrics 

In a binary classification problem aiming to distinguish 
normal behavior patterns (positive) or suspicious attack 
patterns (negative), any classifier is supposed to label 
instances as either positive or negative. The classifier 
decisions can be represented in a structure, known as a 
confusion matrix. The confusion matrix has four categories: 
true positive (TP) (i.e., positive instances classified 
correctly as normal), false positive (FP) (i.e ., negative 
instances classified as normal), t rue negative (TN) (i.e., 
negative instances classified correctly as attacked), and 
false negative (FN) (i.e., positive instances classified as 
attacked).  

The amount of instances from the database (outcomes) 
forms the basis for several other performance measures that 
are well known and commonly used for classifier evaluation. 
Therefore, the analysis of the proposed attributes selection 
approaches described previously was carried  out by means 
of the performance measures exp lained below. 

The Area Under Receiver Operating Characteristic (ROC) 
Curve, called AUC, is a single-value measurement 
originated from signal detection field and has been widely 
used to measure classification model performance[18]. The 
value of the AUC ranges from 0 to 1. The ROC curve is 
used to characterize the trade-off between true positive rate,

|)FN|+|TP(||TP| , and false positive rate, |)TN|+|FP(||FP| . 
It provides an effective way for performance comparison 
among classifiers of imbalanced datasets. A classifier that 
gives a large area under the ROC curve is preferable over a 
classifier with a smaller area under the curve. A perfect 
classifier p rovides an AUC equals to 1. 

For its turn, the Kappa statistic is a method that 
compensates random hits[19]. Th is is originally a measure 
of agreement between two classifiers. However, it  is 
employed as a classifier performance measurement because 
it considers random successes as a standard[20]. 

The value of the Kappa statistic ranges from 0 (total 
disagreement) to 1 (perfect agreement) and it is less 
expressive than ROC curves when applied to b inary 
classification. However, for multip le class problems, the 
Kappa statistic is very useful for measuring the accuracy of 
the classifier while compensating random successes. 

The Kappa statistic is an alternative to classificat ion rate, 
CR = |TP|/(|TP|+|FN|+|FP|+|TN|) or, simply, CR = 
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#of_instances_classified_correctly/#of_instances). The 
main d ifference between CR and the Kappa statistic is the 
scoring of the correct classifications. CR scores all the 
successes over all classes, whereas the Kappa statistic 
scores the successes independently of the class. The latter is 
less sensitive to randomness caused by the different number 
of instances in each class. 

3.3. Classifiers - AIS algorithms 

The Artificial Immune System (AIS) is the class of 
adaptive computational algorithm that emulates processes 
and mechanism inspired from biological immune systems. 
These algorithms use learning, memory, and optimization 
capabilit ies of the immune system to develop computational 
tools for classification, optimizat ion, pattern recognition, 
novelty detection, process control, among others. AIS is 
supposed to develop adaptive systems capable of solving 
problems at different domains[21]. 

In this work, the classification performance is obtained 
considering the following classificat ion models: clonal 
selection algorithm – CLONALG[8], clonal selection 
classification system – CSCA[9] and artificial immune 
recognition system – AIRS[10]. These algorithms simulate 
the antigen-antibody recognition process by evolving a 
population of B-cells in order to recognize antigens 
(suspicious attack patterns from the training  set). They are 
applied in the attribute subsets selected by the four 
proposed attribute selection approaches. 

The CLONALG is based on clonal selection theory as 
proposed in[8]. Its goal is to develop a memory set of 
antibodies that represents a solution for a specific problem. 
It describes the basic feature of an immune response against 
an antigenic stimulus that consists on the fact that only 
those cells that recognize any antigens are selected to 
proliferate. The selected cells are subject to an affinity 
maturation  process, which improves their affin ity capability 
with the antigens. The CLONALG was implemented by 
Brownlee[9] in W EKA toolkit. 

The CSCA was developed by Brownlee[9] and is 
formulated as a fitness function that maximizes the number 
of patterns classified correctly and minimizes 
misclassification. In CSCA, many generations are carried 
out and, in each generation, the entire set of antibodies is 
exposed to all antigens. 

Finally, the AIRS, a supervised learn ing algorithm that is 
used for classification problems, was proposed in 2001[22]. 
The AIRS[10] is a clonal-selection-inspired procedure that 
perform cloning and somat ic hypermutation for maturating 
a set of recognition cells (or memory  cells) which are 
representative of the training data that the model was 
exposed to. It is suitable for classifying unobserved cases 
and it uses a single iteration on a set of train ing dataset. 

In the AIRS algorithm, any B-cell is defined as an 
Artificial Recognition Ball (ARB) that consists of an 
antibody that indicates: the class it belongs, the number of 
resources held by the cell, and the current stimulation value 

of the cell (defined as the similarity between the ARB and 
an antigen). The ARB population is trained during several 
cycles of competition for limited resources. The best ARBs 
receive the highest number of resources, and no-resource 
ARBs are eliminated from the population. In  each training 
cycle, the best ARB classifiers generate mutated clones that 
enhance the antigen recognition process, whereas the ARBs 
with insufficient resources are removed from the population. 
After training, the best classified ARB are selected as 
memory cells, and they are used to classify novel antigens. 

The so-called AIRS1, the first version of the AIRS, 
performs its tasks using data reduction. This means that it 
does not use the complete train ing data for generalization 
and the resulted classifier represents the training data with 
reduced or min imum number of instances. It was adopted in 
this work. Other versions have been presented (e.g. AIRS2, 
parallel AIRS2), but they did not be tested in this work due 
the high volume of the datasets, which generate a high 
increase overall runtime. 

4. Experimental Results 
Considering the previously experimental simulat ions 

results obtained by the authors, shown in[14], where it was 
designed decision trees based on Shannon, Rényi and 
Tsallis entropies, here was chosen the best designed 
decision trees in terms of classification efficiency and tree 
size. For example, the decision tree designed by Rényi 
entropy with α = 0.5, and the decision tree designed by 
Tsallis entropy with α = 1.2 were selected considering the 
DoS category. 

After choosing the decision trees, a subset of attributes 
was indiv idually  selected for each dataset according to 
individual category of attacks. Moreover, a new attributes 
subset was selected based on the ensemble approach 
extracted by using of Shannon, Rényi and Tsallis entropies. 

Table 3.  Selected attributes by Shannon, Rényi and Tsallis information 
measures 

Category Measures Selected Attributes 

DoS 

Shannon 2, 5, 7, 8, 23, 34, 36, 39 

Rényi 2, 5, 7, 8, 23, 32, 35, 36, 39 

Tsallis 2, 5, 7, 8, 23, 26, 34, 39 

Probing 

Shannon 1, 2, 4, 5, 6, 23, 30, 33, 37, 38, 40 

Rényi 1, 2, 5, 6, 25, 30, 32, 33, 37, 38, 40 

Tsallis 1, 2, 4, 6, 23, 30, 31, 33, 37, 38, 40 

R2L 

Shannon 1, 3, 5, 6, 9, 10, 11, 17, 19, 22, 32, 33, 35 

Rényi 2, 5, 6, 10, 11, 12, 19, 33, 35, 37, 38, 39 

Tsallis 1, 3, 5, 6, 10, 11, 17, 19, 22, 37, 38 

U2R 

Shannon 13, 16, 17, 18, 32, 33 

Rényi 13, 18, 32, 33, 36 

Tsallis 13, 16, 18, 32, 33 
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Since different attack categories may have different 
optimal attribute subsets, four experiments have been 
performed in order to evaluate the attribute subsets that are 
more suitable for detecting individual category of attacks 
according to a g iven entropy formulation. The experimental 
results are shown in Table 3. The attributes subsets selected 
by the ensemble approach are shown in Table 4. 

Table 4.  Selected Attributes for Individual Attack Category by the 
Ensemble Attribute Selection Technique 

Category Selected Attributes 

DoS 2, 5, 7, 8, 23, 26, 32, 34, 35, 36, 39 

Probing 1, 2, 4, 5, 6, 23, 25, 30, 31, 32, 33 

R2L 1, 3, 5, 6, 9, 10, 11, 12, 17, 19, 22, 32, 33, 35, 37, 38, 39 

U2R 13, 16, 17, 18, 32, 33, 36 

As can be seen in Table 3, as expected, some selected 
attributes are different for different attack categories, 
because different types of attack have evidently their own 
patterns. In addition, it is important to notice that attributes 
20 and 21 do not show any variations in the data set. Thus, 
they have no relevance to intrusion detection. 

4.1. Experimental Result Analysis 

In the experimental procedures, the first three 
classification models are applied to the original data sets 
(with 41 attributes) in o rder to obtain classification 
performance on the testing instances. Next, the 
classification results of these algorithms are used to 
compare the effectiveness of the four proposed attribute 
selection techniques. The criteria used to evaluate the 
effectiveness of the selected attributes are kappa statistic[19] 
and AUC. The result is shown in Table 5.  

The experiments were carried out using ten-folds cross 
validation approach to control their validation. User-defined 
parameters for each algorithm have been optimized to 
achieve the best possible classification accuracy. The 

experimental results were obtained considering the 
network-traffic training data sets described in Table 2. 

Analyzing the experimental results on the attribute 
selection schemes performance, it is observed that they are 
significantly different at the 1%-level (whether the 
difference is statistically  significant). Furthermore, the 
performance values have varied  depending on both the 
classifiers and the performance metric used to evaluate the 
models. 

The attribute selection has decreased significantly the 
number of attributes and data dimensionality, lead ing to a 
better performance of the AIS algorithm, resulting in lesser 
running time compared to the situation when the complete  
attributes set of the original database was used.   

From the Tab le 5, the detection results on KDD 99 
dataset indicate that the performance remains almost the 
same or even becomes better for CLONALG and CSCA 
classification models designed considering DoS, R2L and 
U2R datasets by any attribute selection technique compared 
when the complete data set (with 41 attributes) is used.  

In particu lar, Tsallis entropy achieves no improvement in  
performance (see kappa and AUC values on Table 5) for 
Clonalg/CSCA and AIRS1 algorithms on Probing/R2L 
datasets. Although, it achieves best result when models are 
designed using U2R dataset and CLONALG algorithm. 

For DoS, R2L and U2R attacks categories on the AIRS1 
algorithm, the classification efficiency, in  terms of kappa 
statistic and considering the selected attributes by the four 
attribute selection approaches, was significantly  worse 
compared with the complete data set. 

Based on Table 5, the preliminary results have pointed 
out that when an attribute selection scheme performed best 
in terms of a performance metric, this may  not be true when 
other performance metric is used to evaluate the model. For 
example, using DoS dataset, Tsallis entropy performed best 
on AUC for any IAS algorithm and the ensemble approach 
performed best (excluding the complete attribute set) in 
terms of kappa performance metric when models are 
designed using AIRS1 algorithm. 

Table 5.  Experimental result  for AIS algorithms 

Category Method 
41 att Shannon Rényi Tsallis Ensemble 

kappa UAC kappa UAC kappa UAC kappa UAC kappa UAC 

DoS 
AIRS1 0.9745 0.959 0.9195 0.944 0.9209 0.868 0.9234 0.972 0.949 0.916 
Clonalg 0.9929 0.9875 0.9943 0.995 0.9919 0.9904 0.9943 0.995 0.9916 0.9914 
CSCA 0.9948 0.9935 0.9956 0.994 0.9946 0.993 0.9954 0.995 0.9948 0.9915 

Probing 
AIRS1 0.9384 0.9775 0.9056 0.959 0.922 0.9655 0.9361 0.9735 0.9144 0.9795 
Clonalg 0.9461 0.9855 0.9409 0.985 0.9344 0.9845 0.874 0.940 0.9388 0.9845 
CSCA 0.9195 0.961 0.9138 0.952 0.9009 0.9485 0.883 0.9275 0.898 0.9455 

R2L 
AIRS1 0.8885 0.9825 0.8612 0.949 0.8602 0.9495 0.3085 0.846 0.8735 0.9655 
Clonalg 0.9116 0.9425 0.9119 0.942 0.9051 0.9425 0.9116 0.939 0.9121 0.945 
CSCA 0.8755 0.9155 0.8829 0.928 0.8867 0.948 0.8744 0.9235 0.8833 0.9275 

U2R 
AIRS1 0.7667 0.865 0.7331 0.9 0.7002 0.876 0.6741 0.9015 0.7338 0.961 
Clonalg 0.7857 0.841 0.8699 0.9735 0.8789 0.962 0.8803 0.974 0.8699 0.9735 
CSCA 0.7682 0.829 0.8547 0.962 0.8512 0.95 0.8285 0.9495 0.8699 0.9865 
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Another relevant result, when compared with Shannon 
entropy, is that using Tsallis entropy, it was achieved the 
same amount or even smaller set of attributes to detect 
attacks for all attacks categories and using Rényi entropy, it 
was achieved the same amount or smaller set of attributes 
for Probing, R2L and U2R attacks categories. 

5. Conclusions 
In this paper, it was presented an evaluation of Shannon, 

Rényi and Tsallis entropies and their applications in the 
area of intrusion detection system. Additionally, it  was 
proposed an ensemble approach that combines the attributes 
selected by Rényi, Tsallis and Shannon information 
measures. In general, the experimental results have shown 
that selecting attributes based on Rényi, Tsallis entropies 
and ensemble approach achieve better results considering 
individual categories. Moreover, attribution selection 
approach based on Rényi or Tsallis entropies has reduced 
the amount of attributes and computational time. For future 
research, it will be used more detailed attributes from real 
network traffic that supposedly are able to better 
characterize packet contents as well as header data. 
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