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Abstract  The objective of the present study is to analyze the MHD flow on a stretching sheet embedded in a porous 
medium. The effects of magnetic field and permeability of the medium on the flow field are to be analyzed. We have 
considered flow of a conducting viscous fluid through porous media using Darcy model subject to a variable magnetic field. 
The non-linear equation of the flow field has been solved by Differential transformation empowered by Pade approximants 
and Runge-Kutta method with shooting technique. The results of both the methods have been compared to establish the 
consistency of the methods used and accuracy of the result so obtained. It is found that results obtained from both the methods 
do agree to a certain degree of accuracy. It is also remarked that magnetic field and permeability of the medium contribute to 
thinning of the boundary layer. Moreover, permeability parameter reduces the skin friction. The relative error of the two 
methods in computing skin friction ranges from 0.058 to 0.009(Table-2). The error decreases either for higher value of 
magnetic field or the power index (β). Further as regard to thinning of boundary layer, an increase in magnetic parameter from 

1M =  to 2M = , the boundary layer thickness reduces from 0.1 to 0.06 at η=1.5(Fig. 1). 
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1. Introduction 
Nonlinear phenomena have important effects on applied 

Mathematics, Physics, and issues related to Engineering. The 
variation of each parameter depends on different factors. The 
importance of obtaining the exact or approximate solutions 
of nonlinear partial differential equations (NLPDEs) in 
Physics and Mathematics is the most formidable problem 
that needs various methods for exact or approximate 
solutions. Most of nonlinear equations do not have a precise 
analytic solution; so numerical methods have largely been 
used to handle these equations. There are also some analytic 
techniques for nonlinear equations. Some of the classic 
analytic methods are Lyapunov’s artificial small parameter 
method [1], perturbation techniques [2-4], and δ-expansion 
method [5], Adomian decomposition method (ADM) [6, 7], 
Homotopy perturbation method (HPM), homotopy analysis 
method (HAM), the DTM, and variational iteration method 
(VIM) [8, 9]. 

Magnetohydrodynamics (MHD) is the study of the 
interaction of conducting fluids with electromagnetic 
phenomena. The flow of an electrically conducting fluid in 
the presence of a magnetic field is of importance in various  
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areas of technology and engineering such as MHD power 
generation, MHD flow meters, and MHD pumps [10-12].  

Flow through porous media plays an important role in 
many areas of engineering and industrial interests. In 
particular flow on a stretching sheet finds wide application in 
polymer industries. Recently Peker et al [13] and 
Mohammadreja et al [14] have studied the flow of a 
conducting viscous fluid over a stretching sheet with a 
constant rate of stretching and the flow is subjected to 
variable magnetic field. They have not considered the 
presence of porous media in their study. In the present study 
we have considered a stretching sheet embedded in a porous 
medium with uniform matrix and subjected to a magnetic 

field strength proportional to (n 1)/2x −  and non linear 

stretching nx . Many researchers have considered the 
strength of magnetic field as constant. 

The objective of the present study is two-fold. Firstly, to 
generalize the work of Mohammadreja et al [14]. They have 
considered the variable magnetic field and they have also 
applied two methods such as DTM Pade and Runge-Kutta 
method. In the present study we have added one more 
forcing force by allowing the flow through porous media and 
in the presence of a variable magnetic field. Secondly, 
applying DTM-Pade and Runge-Kutta methods to solve the 
non-linear equations in an unbounded flow domain and to 
compare the results of both the methods. 
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2. Mathematical Formulation 
Consider a steady two dimensional MHD boundary layer 

flow of a viscous incompressible electrically conducting 
fluid over a thin flat stretching plate embedded in a porous 
medium which is placed in the direction of flow. Let the 
origin of the co-ordinate be at leading edge of the plate, the 
x − axis be the direction of the uniform stream and the 
y − axis normal to the plate. A transverse magnetic field of 

strength 0B  has been applied perpendicular to the plate. 
The Prandtl boundary layer- Darcian flow equations subject 
to above consideration are  
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∂ ∂

+ =
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where u  and v  are the velocity components in x and y 
directions respectively. The symbols , andυ ρ σ  are the 
kinematic viscosity, density and electrical conductivity of 
the fluid. In equation (2), the external electric field and the 
polarization effects are neglected and the variable magnetic 
field is given by 

( 1)/2
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( )pk x  is the variable porosity given by  
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where c  is the stretching rate. 
The equation of continuity is satisfied if we choose a 

stream function ( , )x yψ  such that  
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equation (2) and the boundary conditions are reduced to 
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M  is the magnetic parameter, pK  is the permeability 

parameter and β  is the power index.  

3. Differential Transformation Method 
Differential transformation method is a numerical method 

based on Taylor expansion. This method tries to find the 
coefficients of series expansion of unknown function by 
using the initial data on the problem. The concept of 
differential transformation method was first proposed by 
Zhou [15]. It was applied to electric circuit analysis problems. 
After words, it was applied to several systems and 
differential equations such as initial value problems [16], 
difference equations [17], integro-differential equations [18], 
partial differential equations [19], system of ordinary 
differential equations [20]. 

4. DTM-Pade Simulation 
DTM-Padé simulation combines the differential transform 

method (DTM) and the mathematical theory of Padé 
approximants to produce a very stable, convergent and 
adaptable methodology for nonlinear two-point boundary 
value problems. DTM was originally pioneered in electrical 
engineering theory by Zhou [15]. It offers analytical solution 
in the form of a polynomial and can be applied to nonlinear 
differential equations without requiring linearization and 
discretization. DTM deviates from the traditional higher 
order Taylor series method, the latter requiring symbolic 
computation as the higher order Taylor series needs the 
computation of higher derivatives and thereby causing 
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greater computational expense for large orders. However, the 
DTM obtains a polynomial series solution by means of an 
iterative procedure. DTM is an alternative procedure for 
obtaining analytic Taylor series solution of the differential 
equations. With this method, it is possible to obtain highly 
accurate results or exact solutions for differential equations. 
Here we provide a summary of the fundamentals of DTM 
analysis. Consider a function ( )u x  which is analytic in a 

domain T and let 0x x=  represent any point in the domain 

T. The function ( )u x  is then represented by a power series 

whose centre is located at 0x . The differential transform of 

the kth derivative of a function ( )u x  is given by:  

 

0
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!
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k
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where u(x) is the original function and U(k) the transformed 
function. The inverse transformation is defined as follows:  

0
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Combining Equations (8) and (9), we obtain: 
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Analysis of equation (10), shows that the concept of the 
DTM is derived from Taylor series expansion. However, 
DTM does not evaluate the derivatives symbolically. In 
practical applications, the function is expressed by a finite 
series and equation (9) can be rewritten as follows:  
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which means that 0
1
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k m
x x U k

∞

= +
−∑  is negligibly 

small. Usually, the value of m is decided by convergence of 
the series coefficients. We have documented operations for 
differential transformed functions about the point 0x =  in 
Table-1 and we assume that 0 0x =  in the following 
sections. 
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5. Pade Approximant 
The polynomials are used to approximate truncated power series. Further, the singularities of polynomials cannot be seen 

obviously in a finite plane. Since the radius of convergence of the power series may not be large enough to contain the two 
boundaries, it is not always useful to use the power series. Pade approximants are applied to manipulate the obtained series for 
numerical approximations to overcome this difficulty. Pade approximant is the best approximation for a polynomial 
approximation of a function into rational functions of polynomials of given order. 

Some techniques exist to accelerate the convergence of a given series. Among them the so-called Pade approximant is 
widely applied (Baker and Morris, [21]). Suppose that a function ( )f η  is represented by a power series, 

0
( ) i

i
i

f cη η
∞

=
=∑                                 (12) 
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This expression is the fundamental starting point of any analysis using Pade approximants. The notation 
, 0,1,2ic i = − − − − is reserved for the given set of coefficients and ( )f η  is the associated function. [ / ]L M  Pade 

approximant is a rational fraction, 
2
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0 1 2

L
L

M
M

a a a a
b b b b

η η η
η η η
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,                          (13) 

which has a Maclaurin expansion, agrees with equation (9) as far as possible. It is noticed that in (10) there are L+1 numerator 
and M+1 denominator coefficients. So there are L+1 independent numerator and M independent denominator coefficients, 
making L+M+1 unknown coefficients in all. This number suggests that normally [ / ]L M  ought to fit the power series 

equation (9) through the orders 21, , L Mη η η +− − − − − . In the notation of formal power series  

2
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Equating the coefficients of 1 2, ,L L L mη η η+ + +− −−  we get, 
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If 0,j <  we define 0ic =  for consistency. Since 0 1,b = equation (13) become a set of M linear equations for M 
unknown denominator coefficients. 

1 2 1 1

2 3 2 1 2

1 1

L M L M L M L

L M L M L M L

L L L M L M

c c c b c
c c c b c

c c c b c

− + − + + +

− + − + + − +

+ + +

− −    
    − −    = −
    − − − − − − − − − − − −
    

− −    

      (17) 

From these equations, ib  may be found. The numerator coefficients 0 1, , , ,La a a− − −−  follow immediately from 

equation (12) by equating the coefficients of 21, , , , L Mη η η +− − −  such as, 
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Thus, equations (17) and (18) normally determine the Pade numerator and denominator and are called Pade equations. The 

[L/M] Pade approximant is constructed which agrees with the equation (12) through order L Mη + .  

6. Application 
In order to solve equation (6), we consider the following boundary conditions: 

(0) 0, (0) 1, (0) 2f f f α′ ′′= = =        (19) 

where α is to be determined. 
Taking differential transform of equation (6) by using the related definitions given in Table-1, we obtain: 
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and the corresponding transformed boundary conditions are 

 (0) 0, (1) 1, (2)F F F α= = =        (21) 

We calculate the following recursively: 
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We have restricted our calculation up to the term (7)F . The closed form of the solution is 
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After solving equations it is necessary to select α to satisfy the boundary conditions at infinity. In the present “boundary 
layer” problem, owing to the free stream conditions, DTM diverges and cannot satisfy these boundary conditions. To achieve 
convergence it is essential to incorporate Padé approximants.  

Case-1: ( M  =3.0, pK  =100, β  =0.5) 

2 4
37( ) 1 2

4 6
f η ηη αη αη′ = + + + +         (24) 

Now our aim is to determine α using the boundary condition  

lim ( ) 0f
η

η
→∞

′ =          (25) 

Applying the boundary condition (25) to[2/2] Pade approximant we get, 
3 2

2 2

2

2 2
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α α α
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α α
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− − +
+ +

− − =
−

− +
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α = -0.9748 
Similarly the other values of α have been determined and are enlisted in the table below. 

Table 2.  Pade Approximants and numerical values of 2α 

β  M  pK  
(0)f ′′  

(Runge-Kutta) 

(0)f ′′  

(DTM-Pade) 

Relative 
Error 

0.5 1 100 -1.2982 -1.3778 0.0577 
0.5 2 100 -1.6348 -1.7174 0.0459 
0.5 3 100 -1.9184 -1.9496 0.0160 
1.0 2 100 -1.7349 -1.7982 0.0352 
5.0 2 100 -2.3774 -2.3994 0.00916 
0.5 3 0.5 -2.38099 -2.3951 0.00589 

 

Table 3.  Velocity at η=1.5 

pK  DTM Pade Runge-Kutta 

0.5 0.24 0.03 
100 0.25 0.07 

7. Results and Discussion 
The effects of various parameters such as magnetic 

parameter ( )M  permeability parameter (K )p  and the 

power index (β) as well as the consistency of the methods are 
discussed in the following lines. 

Fig.1(a) presents the graphical representation of 
DTM-Pade method and fig.1 (b) presents the graphical 
representation of numerical result due to Runge-Kutta 
method. Both the figures show that the velocity decreases 
asymptotically with the progress of the flow to reach at the 
ambient state and the velocity further decreases with the 
increase of the value of magnetic parameters. The resistive 
force due to magnetic field is significant in the layers, a little 

far away from the plate in the absence of porous medium for 
a fixed value of β. When magnetic parameter increases from 
M  =1 to M  =3, the ambient state reaches at about 

4.0η = (Fig.1a) in DTM Pade method but in case of 
Runge-Kutta method the ambient state reaches at about 

2.5η = (Fig.1b). Further, it is seen that presence of porous 
medium leads to a decrease from the velocity. The effect of 
magnetic field remains same but the attainment of ambient 
state becomes faster. 

Fig.2 (a) and (b) shows the velocity distribution for 
various values of β =0.5, 1.0, 5.0 representing the integer and 
fractional values of n . The value of β=1 correspond to 
u cx= i.e. linear variation of velocity and 0B B=  , 

constant magnetic field where as 0.5β =  and 5.0β =  
correspond to n=1/3 and -5/3 respectively. This contributes 
to non linear variation of plate velocity as well as magnetic 

field strength. The negative power of 5
3n = −   

( )5/3 4/3
0u cx and B B x− −= =

 
reduces the velocity at 
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all points in comparison with n=1/3

( )1/3 1/3
0u cx and B B x−= = . On careful analysis 

from the above observation it is remarked that variation of 
plate velocity contributes more than the magnetic field 
strength to increase the fluid velocity in the flow domain. 

Fig. 3 (a) and (b) represents the velocity distribution due to 
the presence of porous medium. It is found that velocity 
decreases at all points of the flow domain. The quantitative 
values of velocity distribution for porous medium measured 
at η = 1.5 for both the figures 3(a) and 3(b) reveals that for 

pK  = 0.5, the convergence is faster by 12.5% due to 

shooting technique and for non-porous medium it is 28% 
(Table-3). The result of numerical method indicates the 
sharp decrease in the profile (fig.3(b)). This shows that the 

self corrective procedure of shooting technique accelerates 
the convergence faster than the convergence affected by 
Pade approximant in DTM. In table-2 and table-3 the error 
analysis and comparison has been presented. 

Table-2 shows the values of skin friction obtained by 
Runge-Kutta and DTM Pade method. It is seen that 
magnitude of skin friction increases due to presence of 
porous medium and magnetic field but the power index of 
magnetic field affects the skin frictions adversely. Results of 
DTM-Pade and Runge-Kutta method agree to a certain 
degree of accuracy. The numerical values in both the 
methods are found to be negative but the accuracy is up to the 
first place of decimal. The relative error computed ranges 
from 0.005 to 0.057(Table-2). 

 
Figure 1(a).   Velocity in y-direction for β=0.5 and Kp=100 

 
Figure 1(b).   Velocity in y-direction for β=0.5, Kp=100 
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Figure 2(a).  Velocity in y-direction for M=2.0 and Kp=100 

 
Figure 2(b).  Velocity in y-direction for M=2.0, Kp=100 

 
Figure 3(a).  Velocity in y-direction for M=3, β=0.5 
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Figure 3(b).  Velocity in y-direction for M=3, β=0.5 

8. Conclusions  
From the Pade approximant mentioned above it is evident 

that ( )f η  has been approximated by a rational fraction (13) 
and its approximation given in equation(14).The inclusion of 
more number of terms will increase the accuracy vis-à-vis 
increase the order of the diagonal matrix whose inversion is 
warranted to solve the system of equation. In the present 
study to avoid the complexity of calculation we have 

restricted ( )f η  to include the term 5η  that corresponds 
to [2/2] diagonal Pade. Therefore, it is suggested that if terms 
of higher powers of η  are considered that will lead to 
higher order diagonal Pade and consequently better 
approximation and hence higher accuracy. 

Due to resistive force of electromagnetic origin i.e. 
Lorentz force, the velocity decreases. Moreover, the power 
index as well as permeability of the medium reduces the 
velocity at all points. The shearing stress over the plate is 
increased due to permeability of the medium and the 
magnetic field but reverse effect is observed due to power 
index of magnetic field.  
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