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Abstract The thermosolutal convection in Walters B’ heterogeneous viscoelastic fluid through Brinkman porous
medium is considered. Following the linearized stability theory, Boussinesq approximation and normal mode analysis, the
dispersion relation is obtained. Discussion of different modes revealed that the principle of exchange ofstabilities is not valid
for the problem. Further, it is found that oscillatory modes exist under certain conditions and non-oscillatory modes are

unstable.
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1. Introduction

The theoretical and experimental results on thermal
convection in a fluid layer, in the absence and presence of
rotation and magnetic field have been given by
Chandrasekhar[1]. Thermal convection is the most
convective instability when crystals are produced from
single element like silicon. However, gallium arsenide and
other semi-conductors which require crystals made from
compounds of elements are beginning to take on a prominent
position in modern technologies. Hence, at present there is
strong industrial demand for understanding the additional
effects that can occurin the solidification of a mixture, which
do not take place in one component system. The problem of
thermohaline convection in a layer of fluid heated from
below and subjected to a stable salinity gradient has been
considered by Veronis[2]. The buoyancy force can arise not
only from density differences due to variations in
temperature but also from those due to variations in solute
concentration. Double-diffusive convection problems arise
in oceanography (salt fingers occur in the ocean when hot
saline water overlies cooler fresher water which believed to
play an important role in the mixing of properties in several
regions of the ocean), limnology and engineering. The
migration of moisture in fibrous insulation, bio/chemical
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contaminants transport in environment, underground
disposal of nuclear wastes, magmas, groundwater, high
quality crystal production and production of pure medication
are some examples where double-diffusive convection is
involved. Examples of particular interest are provided by
ponds built to trap solar heat (Tabor and Matz,[3]) and some
Antarctic lakes (Shirtcliffe,[4]). The physics is quite similar
in the stellar case in that helium acts like salt in raising the
density and in diffusing more slowly than heat. The
conditions under which convective motions are important in
stellar atmospheres are usually far removed from
consideration of a single component fluid and rigid
boundaries, and therefore it is desirable to consider a fluid
acted on by a solute gradient and free boundaries.

The flow through porous media is of considerable interest
for petroleum engineers, for geophysical fluid dynamicists
and has importance in chemical technology and industry. An
example in the geophysical context is the recovery of crude
oil fromthe pores of reservoir rocks. Among the applications
in engineering discip lines one can find the food processing
industry, chemical processing industry, solidification and
centrifugal casting of metals. Such flows has shown their
great importance in petroleum engineering to study the
movement of natural gas, oil and water through the oil
reservoirs; in chemical engineering for filtration and
purification processes and in the field of agriculture
engineering to study the underground water resources,
seepage of water in river beds. The problem of thermosolutal
convection in fluids in a porous medium is of importance in
geophysics, soil sciences, ground water hydrology and



2 Pardeep Kumar ez al.:

On Thermosolutal-Convective Instability in Walters B’ Heterogeneous

Viscoelastic Fluid Layer through Porous M edium

astrophysics. The study of thermosolutal convection in fluid
saturated porous media has diverse practical applications,
including that related to the materials processing technology,
in particular, the melting and solidification ofbinary alloys.
The development of geothermal power resources has
increased general interest in the properties of convection in
porous media. The scientific importance of the field has also
increased because hydrothermal circulation is the dominant
heat-transfer mechanis m in young oceanic crust (Lister,[S]).
Generally it is accepted that comets consists of a dusty
‘snowball’ o fa mixture of frozen gases which in the process
of their journey changes from solid to gas and vice- versa.
The physical properties of comets, meteorites and
interplanetary dust strongly suggest the importance of
porosity in the astrophysical context (Mc Donnel,[6]).

In all the above studies, the fluid has been considered to be
Newtonian. Since viscoelastic fluids play an important role
in polymers and electrochemical industry, the studies of
waves and stability in different viscoelastic fluid dynamical
configuration has been carried out by several researchers in
the past. The stability of a horizontal layer of Maxwell’s
viscoelastic fluid heated from below has been investigated
by Vest and Arpaci[7]. The nature of instability and some
factors may have different effects, on viscoelastic fluids as
compared to the Newtonian fluids. For example, Bhatia and
Steiner[ 8] have considered the effect of a uniformrotation on
the thermal instability o fa Maxwell fluid and have found that
rotation has a destabilizing effect in contrast to the
stabilizing effect on Newtonian fluid. In another study,
Sharma and Sharma[9] have considered the thermal
instability of a rotating Maxwell fluid through porous
medium and found that, for stationary convection, the
rotation has stabilizing e ffect whereas the permeability of the
medium has both stabilizing as well as destabilizing effect,
depending on the magnitude of rotation. In another study,
Sharma[10] has studied the stability of a layer of an
electrically conducting Oldroyd fluid[11] in the presence of a
magnetic field and has found that the magnetic field has a
stabilizing influence.

There are many elastico-viscous fluids that cannot be
characterized by Maxwell’s or Oldroyd’s constitutive
relations. One such class of viscoelastic fluids is Walters B’
fluid[12] having relevance and importance in geophysical
fluid dynamics, chemical technology, and petroleum
industry. It is well known that the Walters B’ fluid [12] is
characterized by the constitutive equations

S=-pl+pd, —u'4, +/uiiA12 +ﬂiiiA22 +/uiv(A1A2
+ A, A) + 1 (A7 A, + A, AY)
+ " (AA + AL+ A+ 1" (AP A + A AT

where S is the Cauchy stress tensor, ‘p’
hydrostatic pressure, I is the unit tensor and p's are
polynomial functions of the traces of the various tensors
occurring in the representation, matrices ‘A1’ and ‘A2’ are

defined by

is an arbitrary

[Al ]g; = (q[,j + Qj,,-) and
ol4,],

[A2 ]lj = 8; - +qp [Al ]ij,p +[A1 ]ip qp,j
+ [Al ]pj qp,i

‘qp’ being velocity vector.
On neglecting the squares and products of ‘A,’, we have

.
S=—pl+pd —p'4, + u" 4, )
where 1, 11" and p" are three material constants. It is

customary to call u , the coefficient of ordinary viscosity,
!

4’ the coefficient of viscoelasticity and u" , the

coefficient of cross-viscosity. The u, 11" and u" are

general functions of temperature and material properties. For
many fluids such as aqueous solution of polycrylamid and

U, 1" and p" may be taken as

constants. Such and other polymers are used in the
manufacture of parts of spacecrafts, aeroplane parts, tyres,
belt conveyers, ropes, cushions, seats, foams, plastics,
engineering equipments, adhesives, contact lens etc.
Recently, polymers are also used in agriculture,
communication appliances and in biomedical applications.
Walters’[13] reported that the mixture of polymethyl
methacrylate and pyridine at 25°C containing 30.5g of
polymer per litre with density 0.98g per litre behaves very
nearly as the Walters B’ viscoelastic fluid. Polymers are used
in the manufacture of spacecrafts, aeroplanes, tyres, belt
conveyers, ropes, cushions, seats, foams, plastics
engineering equipments, contact lens, etc. Walters B’
viscoelastic fluid forms the basis for the manufacture of
many such important and useful products. The flow through
a porous medium has been of considerable interest in recent
years, particularly among geophysical fluid dynamicists. The
gross effect when the fluid slowly percolates through the
pores of the rock is given by Darcy’s law. As a result, the
usual viscous term in the equations of fluid motion is

BN yEpach s
ki at K
for the Walters B’ viscoelastic fluid, where p and p' are the
viscosity and viscoelasticity of the fluid, k; is the medium

poly-isobutylene,

replaced by the resistance term

permeability and q is the Darcian (filter) velocity of the

fluid. Chakraborty and Sengupta[14] have studied the flow
of unsteady viscoelastic (Walters B liquid) conducting fluid
through two porous concentric non-conducting infinite
circular cylinders rotating with different angular velocities in
the presence of uniform axial magnetic field. Sharma and
Kumar[15] studied the stability of the plane interface
separating two viscoelastic (Walters B") superposed fluids of
uniform densities. In another study, Sharma and Kumar[16]
studied Rayleigh-Taylor instability of superposed
conducting Walters B’ viscoelastic fluids in hydromagnetics.
Kumar[17] has considered the thermal instability of a layer
of Walters B’ viscoelastic fluid acted on by a uniform
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rotation and found that for stationary convection, rotation
has astabilizing effect. Kumar et al.[ 18] have considered the
stability of plane interface separating the Walters B’
viscoelastic superposed fluids of uniform densities in the
presence of suspended particles.

Keeping in mind the importance in various fields
particularly in the soil sciences, ground water hydrology,
geophysics, astrophysics and  bio-mechanics, the
thermosolutal convection of a Walters B’ viscoelastic
incompressible and heterogeneous fluid layer saturated with

porous medium, where density is pof(z), P, being a
positive constant having the dimension of density,
and f(z) is a monotonic function ofthe vertical coordinate
z , with f(()):l has been considered in the present
paper.

2. Formulation of the Problem and Basic
Equations

Let us consider an infinite horizontal layer of
incompressible and heterogeneous Walters B’ viscoelastic
fluid of thickness ‘d ’, in porous mediumofporosity & and

medium permeability k,, bounded by the planes z =0

and z=d . Let zaxis be vertically upwards. The
interstitial fluid (which is the fluid in pores) of variable
density is viscous, incompressible and heterogeneous. The
initial inhomogenenity in the fluid is assumed to be of the

form pof(z), where p, is the density at the lower

boundary and f(Z) be the function of vertical co-ordinate

z such that f(0)=1. The fluid layer is infinite in

horizontal direction and is heated and soluted from below
leading to an  adverse  temperature  gradient

p =(T° _Tl% and a uniform solute gradient

yis :(SO _S% where Tj and 7| are the constant

temperatures of the lower and upper boundaries with
T, >T, and also S, and §, are the constant solute
concentrations of the lower and upper surfaces with
S, > §,. The effective density is the superposition of the

inhomogeneity described by (a) p = p, f(z) , and (b)
p= p0[1+a(T0 —T)—Ol' (So —S)] which is caused

by temperature gradient and solute gradients. This leads to
the effective density

p=plf(2)+al(l,-T)-a'(s,-S).
where o and ' are the thermal and solute expansion
coefficients.

The relevant Brinkman-Oberbeck-Boussinesq equations
describing our problem are:

Po % =—grad p+p§+(#—u'aj{vz”—l"} @)

ot kl 1
divg =0, (3)
op (-
—+(q.V)p =0, 4
= +Gv)e “)
%—f +(GgV)r=Kv’T, (5)
aa—f+(¢7.v)s =K'V’S, (6)

where ¢, u, ', p and p arethevelocity, coefficient of
viscosity, viscoelastcity, density and pressure of the fluid,
T the

g(o, 0, —g) is the acceleration due to gravity, K and

temperature, S the solute concentration,

K' are the thermal and solute diffusivities and k, is the
of the

corresponds to non-porous medium).
Here in writing equations (2)-(6), porosity £ (0 <& <1

intrinsic  permeability medium ( k; — ©

and & —> lcorresponds to non-porous medium) corrections
have not been included for avoiding the involvement of too
many constants. In fact it does not affect the essence of
discussions of the results. Strictly speaking, a constant factor

E[= 6‘(1 - E)pSCS /,OOC] multiplies in the first term of

equation (4) and a term — multiplies in the velocity term

except in the Darcy’s resistance term (—kﬁéJ Here pg
1

and Cg are respectively the density and heat capacity ofthe

solid material which forms the porous matrixand C is the
heat capacity of the liquid. The thermal diffusivity K is

FE
defined as K = where A* =g+ (l - 8)2,5 is
PoC

the effective thermal conductivity and A and Ag are the

thermal conductivities of the fluid and solid respectively.
The solute diffusivity K' is defined analogously. Also a
factor E' analogous to FE is multiplied in the first term of
equation (5).

The initial state whose stability is to be examined is
characterized by

éZO,T:To—ﬂZ,S:SO—ﬁ%,
T .(7)
p=polf(z)+ap-aBzl p=po-[gpd
0
where p, is the pressureat p = p,.
Let the systembe slightly disturbed and as a result of this
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small perturbation, the various physical quantities undergo a
change

G—>0+8G, T >T+0,S>S+y, p—>p+&p
f(z)+ally -T- 6’)—}
! +op
a'(So-S-7)
Substituting (8) in equations (1)-(6) and linearizing them
by neglecting second and higher terms and retaining only

relevant terms appropriate to physical conditions, we obtain
the linearized perturbations equations in component formas

ou oY 1 )
=—— _ —V s 9
PO, 5p ( at)_klu u} (9)

(8
and p = py

o 0 oY 1 )
e p-u-u = —v-v*| a0
Po » (u ”atj_klv V}( )

ot oy
ow 0 ,
po—=——p-g(p—amb+apyy)
ot oz
11
_( _ 'g) iw—Vzw ()
H—H o | )
ou oOv ow
—+—+—=0, (12)
ox Oy Oz
0 df
—op+ —=0, 13
ox 0 pOWdZ (13)
06 )
—— =KV, 14
o B (14)
87 [2 ! 2
—_— =K'V7y, 15
Py Bw y (15)
where &G = (i, v, w). (16)

3. Analysis in Terms of Normal Modes

The analysis of an arbitrary disturbance is carried out in
terms of normal modes following Chandrasekhar[1]. The
stability of each of the modes is discussed separately. We
seek solutions of the equations (9)-(15) whose dependence
on space-time coordinates are of the form

[u, v, w, 08, y, p, 5p] =
I(z), L(z), Y(2)] a7

(). v(2). w(2) ©(2)

explikyx +ik,y+nt

where k_ and ky are the horizontal wave numbers and

n is the frequency of the harmonic disturbances. Also

k:1/‘kf+ky2i,

gives the wave number of the perturbation propagation.
Using expression (17), equations (9)-(15), on
simp lification, give

(18)

V—-—Vn
: (n+ ]_
—k“L = py ky DW, (19)
(v—v'n)(D2 —k2)

po(n LY _Vh]W =D L+ gpy
ky
HEyTaw R
n\d
,oo(v—v'n)(D2 —kz)/V,
n@—ﬂW:K(Dz—kz)@, (21)
nl“—,B’W:K’(D2 —k2)1“, (22)

!
where V(= ij and V' [= i} are respectively the
Po Po

kinematic viscosity and kinematic viscoelasticity.
Elimination of [ fromequations (19) and (20) gives

K+ V;qv’nj—(v—v’n)(Dz _;‘72)}(02 2

+ g (J)W+gmk2® ga’rsz‘ 0. (3

Equations (21)-(23) in non-dimensional form can be

written as
—0p1]® = —(ﬂzz jW, (24)
[(D* - a*)-ap,Jr = —{ﬂlgz jW, 23)
ov(Dz —5121(1—/10)(1)2 —az)—(a+B—B'Ao)}W

2 4
_M(i)w —gao a’d*®
v &

-

+ga'c a’d’T = 0, (26)

nd*

14
thereafter dropping the caps for convenience. Also we have
put

D=dD,4=kd,é =

and

here we have put

! ’ 2 4
p=tr=t 4=V gL g8
K K d k1 Kv
af
a‘|
o_gapadt 8 (dzj- @7

Kv 77 Kv
Equation (26) with the help of equations (24) and (25) is
written as
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T(D2 — az)
-0 D)

|:(1—AO')(D2 —az)—(0+B—B'A0)JW

—a2R2 '[Dz—az—a le[f(Dz—az)—a pl} wo (28)

Gpl(D2 —az)[Dz—az—a le

+a’c PR [T(D2 —az)—a pl} W-d’c DR

[Dz—az—aleWzo.

The equations (24)-(26) and (28) are to be solved using
boundary conditions. Here we consider the case where both
the boundaries are free, following Chandrasekhar[1], the

appropriate boundary conditions for this case are
W=DW=0,0=0,T=0at z=0
and z=1. (29)

4. Results and Discussion of Marginal
States

(D Stationary Convection
When the instability sets in as stationary convection, the

marginal state will be characterized by o = (. Hence the
substitution of ¢ =0 in equations (21)-(23) gives

(Dz—a2)®:— %‘12 w

ﬁfdz
K!

r(Dz—az)[IT:— (30)

[QW:o
dz .

Integrating equation (30) and using the boundary
conditions (29), we see that W =0, =0,"=0 etc.
are the only possible solutions which led to contradiction to
the hypothesis that initial state solutions are perturbed.

Therefore, the instability can not set in as stationary
convection or in the other words the principle of exchange of
stabilities is not valid for our problem.

(II) Oscillatory Convection

Now for the proper solution of equation (28) for W
belonging to the lowest mode, we follow Chandrasekhar| 1],

and find that W =W, sin 7 z, where W, is constant.

Then, from equation (28), we get

5 azR'[ﬂ2 +a? +0'le a’R, [7[2 +a? +0'p1}
a’R- +
|:T(7Z'2+a2)+0'p1}

o p

=|:7Z'2 +a2}[7r2 +a? +0p1}
[(1—140)(7[2 +a2)+(a+B—B'AO')}.

As discussed earlier, the principle of exchange of
stabilities being not valid for the present problem, the

(31)

marginal state is governed by o = iG; where U; is real.

Now letting
2
R R R’ a
R3 :_iaRl :_47R4 :_43x:_29
T T T T
o B (32)
o) =—§ andB, =
V3 v
Substituting (32) in equation (31), we get
R xR4[1+x+i0'2 p1]+xR3[l+x+i(72 pl]
VT x)+ioyp] ioy pi
(33)

L2
(l—lAﬂ' o Xl+x
=[1+x][1+x+i02 pl] 2 )2
+(i0'2 +Bl +B2i7T 0'2)
Separating equation (33) in real and imaginary parts, we
obtain

(1+)c)2 {1+x+Bl +022p1A7r2}—

Rlz— (1+X)O'22p1{1+8272'2}—XR3 , (34)
X
XRy {2'(1+x)2 +0'§p12}
_+_
{72 (1 +x)2 + Ggplz}
and
4,03 + Ajoi + 4, =0, (35)
where
2 2
—-All
Aozpf’(l-i-x d (+x)
+(1+x)(1+B272'2 +py )+ 1B
— 2240+ x) +(1+x)
A4 = 12p1(1+x)3 +B2722(1+x)+ P1 (l+x) -(36)

+Blp1(1+x)

+ xp]2 (1 + x){R4 (z’ - 1)+ R3}

Ay = xRy(1+x)* 22

From (35) and (36), the frequency of oscillations ¢, in
marginal state is given by
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, 4 + (42 —44,4)

o, = , 37
2 24, (37)
and from(27) and (34), Rayleigh number R is given by
R=7"R,
I+x+B
2 1
I+x
1 ( ) +G§p1A7Z'2
x 2 2 (38)
:7[4 —(1+X)62p1(1+8172' )
{r(l-i—x)z +0'22p12}
—R; + Ry 3
{72 (1+x) +0'22p12}

We now discuss the existence of overstable marginal
states for various cases:
df

>0
dz

Since R; >0 thus it implies A4, >0, therefore, if
4, >0 ie.

Case (A): When R, >0, ie.

Ay >0 and 1>7Z'2A(1+x) and

7—1>0 ie. 1> 7Z2A(1+x) and K' > K, then there
will be no real ¢, resulting non-occurrence of overstable

marginal state. But, if R, satisfies the inequality

12(1 + x)2 [1 - 7[2/1(1 + x)]

1
R4>aj;5 L |+ Byx? +py(1+B)) [©Y
+R3
besides K' <K , A> ; and
722(1 + x)

A12 —4A4,A4, >0, then the marginal state may exist even
when R; >0.

daf

-~ <0
Z

Case (B): When R, <0, ie.

When R, < 0, the marginal state always exist whatever
be the provided
Al2 —44,4, >0 and then o, is given by equation (37).

(II) Nature of Non-Oscillatory Modes

For R; >0 ie. R,>0 and K'>K , the only
modes that may exist are non-oscillatory modes for which
o, = 0 and o = 0, (o, is real). Hence substitution of

values of other parameters

o =0, and W =W, sin 7 z in equation (28) gives
Dyo + D,o; + D,o. + D,o, + D, =0, (40)

where

Dy = pf’(ﬂz +a21— A(ﬂz +a2)+1—B’A]
Dy = plz(irz +a2)2[— A(ﬂ2 +a2)+1+B'A]
(1+7)+ pf’(ﬁz +a21(7r2 +a2)+ B] )
( 2 2)3 T{*A(ﬁ2+a2)+1—B’A
D2 =p1\z- +a
+p(l+7)
+p12(72'2 +a2)zB(1+r)—a2p12(R2 +R-R')
Ds =p1T(7Z'2 +a2)3{(7r2 +a2)+ B}
—azpl 72 +a? R2T+RT—R'}—LI2RZT 1
Dy = —a2(7l'2 +a2)R2r2
Equation (40) is the fourth degree characteristic equation

in o, with real coefficients and has four roots, which may
be real. The constant term in the characteristic equation
being negative, at least two of the roots are real, one positive
and one negative. Thus, we have non-oscillatory modes, one
of which essentially grows in time making the system
unstable.

5. Conclusions

The thermosolutal convection in a layer of heterogeneous
Walters B’ viscoelastic fluid heated and soluted from below
through porous medium is considered in the present paper.
The investigation of thermosolutal convection is motivated
by its complexities as a double diffusion phenomena as well
as its direct relevance to geophysics and astrophysics.
Thermosolutal convection problems arise in oceanography,
limnology and engineering. Ponds built to trap solar heat and
some Antarctic lakes provide examples of particular interest.
The main conclusions from the analysis of this paper are as
follows:

@ The principle of exchange of stabilities is not valid for
this problem.

@® Frequency of oscillation and the Rayleigh number in
the marginal state are given by equations (35) and (34),
respectively.

@® For density distribution with positive gradient and

1> 7[2A(1 + x); K' > K, the overstable marginal state
do not exist and we have only non-oscillatory modes which
make the systemunstable.

® While for positive density gradient and K' < K ;

A> , the overstability may occur for the solute
w2 (1+x)
Rayleigh numbers satisfying (39).
@ For density distribution with negative gradient, the
marginal state and overstable solution exist, irrespective of
the values of other parameters.
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