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Abstract  The thermosolutal convection in Walters B’ heterogeneous viscoelastic fluid through Brinkman porous 
medium is considered. Following the linearized stability theory, Boussinesq approximation and normal mode analysis, the 
dispersion relation is obtained. Discussion of different modes revealed that the principle of exchange of stabilities is not valid 
for the problem. Further, it is found that oscillatory modes exist under certain conditions and non-oscillatory modes are 
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1. Introduction 
The theoret ical and  experimental resu lts  on  thermal 

convection in a fluid  layer, in the absence and presence of 
ro tat ion  and  magnet ic  f ie ld  hav e be en  g iven  by 
Chandrasekhar[1]. Ther ma l convect ion  is  the most 
convect ive instab ility  when crystals  are produced  from 
single element like silicon. However, gallium arsenide and 
other semi-conductors which require crystals made from 
compounds of elements are beginning to take on a prominent 
position in modern technologies. Hence, at present there is 
strong industrial demand for understanding the additional 
effects that can occur in  the solidification of a mixture, which 
do not take place in one component system. The problem of 
thermohaline convect ion in  a layer of flu id heated from 
below and subjected to a stable salinity gradient has been 
considered by Veron is[2]. The buoyancy force can arise not 
on ly  from dens ity  d ifferences  due to  variat ions  in 
temperature but also from those due to variations in solute 
concentration. Double-diffusive convection problems arise 
in oceanography (salt fingers occur in the ocean when hot 
saline water overlies cooler fresher water which believed to 
play an important role in the mixing  of properties in  several 
reg ions o f the ocean), limnology  and  eng ineering. The 
migration  of moisture in fib rous insulat ion, b io/chemical  
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contaminants transport in environment, underground 
disposal of nuclear wastes, magmas, groundwater, high 
quality crystal production and production of pure medication 
are some examples where double-diffusive convection is 
involved. Examples of particular interest are provided by 
ponds built to trap solar heat (Tabor and Matz,[3]) and some 
Antarctic lakes (Shirtcliffe,[4]). The physics is quite similar 
in the stellar case in that helium acts like salt in raising the 
density and in diffusing more slowly than heat. The 
conditions under which convective motions are important in 
stellar atmospheres are usually far removed from 
consideration of a single component flu id and rig id 
boundaries, and therefore it is desirable to consider a flu id 
acted on by a solute gradient and free boundaries. 

The flow through porous media is of considerable interest 
for petroleum engineers, for geophysical fluid dynamicists 
and has importance in chemical technology and industry. An 
example in the geophysical context is the recovery of crude 
oil from the pores of reservoir rocks. Among the applications 
in engineering discip lines one can find the food processing 
industry, chemical processing industry, solidification and 
centrifugal casting of metals. Such flows has shown their 
great importance in  petroleum engineering to study the 
movement of natural gas, oil and water through the oil 
reservoirs; in chemical engineering for filtration and 
purification processes and in the field of agricu lture 
engineering to study the underground water resources, 
seepage of water in river beds. The problem of thermosolutal 
convection in flu ids in a porous medium is of importance in 
geophysics, soil sciences, ground water hydrology and 
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astrophysics. The study of thermosolutal convection in flu id 
saturated porous media has diverse practical applications, 
including that related to the materials processing technology, 
in part icular, the melting and solidification o f b inary alloys. 
The development of geothermal power resources has 
increased general interest in the properties of convection in 
porous media. The scientific importance of the field has also 
increased because hydrothermal circu lation is the dominant 
heat-transfer mechanis m in young oceanic crust (Lister,[5]). 
Generally it  is accepted that comets consists of a  dusty 
‘snowball’ o f a mixture of frozen gases which in the process 
of their journey changes from solid  to gas and vice- versa. 
The physical properties of comets, meteorites and 
interplanetary dust strongly suggest the importance of 
porosity in the astrophysical context (McDonnel,[6]). 

In all the above studies, the flu id has been considered to be 
Newtonian. Since v iscoelastic fluids play an important ro le 
in polymers and electrochemical industry, the studies of 
waves and stability in different viscoelastic fluid dynamical 
configuration has been carried out by several researchers in 
the past. The stability of a horizontal layer of Maxwell’s 
viscoelastic fluid heated from below has been investigated 
by Vest and Arpaci[7]. The nature of instability and some 
factors may have different effects, on viscoelastic fluids as 
compared to the Newtonian fluids. For example, Bhatia and 
Steiner[8] have considered the effect  of a uniform rotation on 
the thermal instability o f a Maxwell flu id and have found that 
rotation has a destabilizing effect in contrast to the 
stabilizing effect on Newtonian fluid . In  another study, 
Sharma and Sharma[9] have considered the thermal 
instability of a rotating Maxwell flu id through porous 
medium and found that, for stationary convection, the 
rotation has stabilizing effect whereas the permeability of the 
medium has both stabilizing as well as destabilizing effect, 
depending on the magnitude of rotation. In another study, 
Sharma[10] has studied the stability of a layer of an 
electrically conducting Oldroyd flu id[11] in the presence of a 
magnetic field  and has found that the magnetic field has a 
stabilizing influence.  

There are many elastico-viscous fluids that cannot be 
characterized  by Maxwell’s or Oldroyd’s constitutive 
relations. One such class of viscoelastic fluids is Walters B′ 
flu id[12] having relevance and importance in  geophysical 
flu id dynamics, chemical technology, and petroleum 
industry. It is well known that the Walters B’ fluid  [12] is 
characterized by the constitutive equations 
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where S is the Cauchy stress tensor, ‘p’ is an  arbitrary 
hydrostatic pressure, I is the unit tensor and µ′s are 
polynomial functions of the traces of the various tensors 
occurring in the representation, matrices ‘A1’ and ‘A2’ are 
defined by  
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‘qp’ being velocity vector. 
On neglecting the squares and products of ‘A2’, we have 

 ,2
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where iii and µµµ, are three material constants. It is 
customary to call µ , the coefficient of ordinary viscosity, 

µ′  the coefficient of viscoelasticity iiand µ , the 

coefficient of cross-viscosity. The iii and µµµ, are 
general functions of temperature and material propert ies. For 
many fluids such as aqueous solution of polycrylamid and 
poly-isobutylene, iii and µµµ, may be taken as 
constants. Such and other polymers are used in the 
manufacture of parts of spacecrafts, aeroplane parts, tyres, 
belt conveyers, ropes, cushions, seats, foams, plastics, 
engineering equipments, adhesives, contact lens etc. 
Recently, po lymers are also used in agriculture, 
communicat ion appliances and in biomedical applicat ions. 
Walters’[13] reported that the mixture of polymethyl 
methacrylate and pyrid ine at 25 ℃  containing 30.5g of 
polymer per litre  with density 0.98g per lit re behaves very 
nearly as the Walters B′ viscoelastic fluid . Polymers are used 
in the manufacture of spacecrafts, aeroplanes, tyres, belt 
conveyers, ropes, cushions, seats, foams, p lastics 
engineering equipments, contact lens, etc. Walters B′ 
viscoelastic fluid forms the basis for the manufacture of 
many such important and useful products. The flow through 
a porous medium has been of considerable interest in recent 
years, particularly among  geophysical flu id dynamicists. The 
gross effect when the fluid  slowly percolates through the 
pores of the rock is g iven by Darcy’s law. As a result, the 
usual viscous term in  the equations of flu id mot ion is 

replaced by the resistance term 
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for the Walters B’ viscoelastic fluid , where µ and µ′ are the 
viscosity and viscoelasticity of the fluid, k1 is the medium 
permeability and q is the Darcian (filter) velocity of the 
flu id. Chakraborty and Sengupta[14] have studied the flow 
of unsteady viscoelastic (Walters B′ liquid) conducting fluid 
through two porous concentric non-conducting infinite 
circular cylinders rotating with different angular velocities in 
the presence of uniform axial magnetic field. Sharma and 
Kumar[15] studied the stability of the plane interface 
separating two viscoelastic (Walters B′) superposed fluids of 
uniform densities. In another study, Sharma and Kumar[16] 
studied Ray leigh-Taylor instability  of superposed 
conducting Walters B′ viscoelastic flu ids in hydromagnetics. 
Kumar[17] has considered the thermal instability of a layer 
of Walters B′ viscoelastic fluid acted on by a uniform 
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rotation and found that for stationary convection, rotation 
has a stabilizing effect. Kumar et al.[18] have considered the 
stability of plane interface separating the Walters B′ 
viscoelastic superposed fluids of uniform densities in the 
presence of suspended particles. 

Keeping in mind the importance in various fields 
particularly in the soil sciences, ground water hydrology, 
geophysics, astrophysics and bio-mechanics, the 
thermosolutal convection of a Walters B’ v iscoelastic 
incompressible and heterogeneous fluid  layer saturated with 
porous medium, where density is ( )zf0ρ , 0ρ  being a 
positive constant having the dimension of density,       
and ( )zf  is a monotonic function of the vert ical coordinate 

z , with ( ) 10 =f  has been considered in the present 
paper. 

2. Formulation of the Problem and Basic 
Equations 

Let us consider an infin ite horizontal layer of 
incompressible and heterogeneous Walters B’ v iscoelastic 
flu id of thickness ‘d ’, in porous medium of porosity ε  and 
medium permeability 1k , bounded by the planes 0=z  

and dz = . Let z-axis be vertically upwards. The 
interstitial fluid (which is the fluid in pores) of variab le 
density is viscous, incompressible and heterogeneous. The 
initial inhomogenenity in the fluid is assumed to be of the 
form ( )zf0ρ , where 0ρ  is the density at the lower 

boundary and ( )zf  be the function of vertical co-ordinate 

z such that ( ) 10 =f . The fluid layer is infinite in  
horizontal d irection and is heated and soluted from below 
leading to an adverse temperature gradient 

( )
d

TT 10 −=β  and a uniform solute gradient 

( )
d

SS 10 −=′β  where 0T  and 1T  are the constant 

temperatures of the lower and upper boundaries with 

10 TT >  and also 0S  and 1S  are the constant solute 
concentrations of the lower and upper surfaces with 

10 SS > . The effect ive density is the superposition of the 

inhomogeneity described by (a) ( )zf0ρρ =  , and (b) 

( ) ( )[ ]SSTT −′−−+= 000 1 ααρρ  which is caused 
by temperature grad ient and solute gradients. This leads to 
the effective density 

( ) ( ) ( )[ ]SSTTzf −′−−+= 000 ααρρ , (1) 

where α  and α ′  are the thermal and solute expansion 
coefficients. 

The relevant Brinkman-Oberbeck-Boussinesq equations 
describing our problem are: 
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where ρµµ ,,, ′q  and p are the velocity, coefficient of 
viscosity, viscoelastcity, density and pressure of the fluid, 
T  the temperature, S  the solute concentration, 
( )gg −,0,0  is the acceleration due to gravity, K  and 

K ′  are the thermal and solute diffusivit ies and 1k  is the 

intrinsic permeability  of the medium ( ∞→1k  
corresponds to non-porous medium). 

Here in  writ ing equations (2)-(6), porosity 10( << εε  

and 1→ε corresponds to non-porous medium) corrections 
have not been included for avoiding the involvement of too 
many constants. In fact it does not affect the essence of 
discussions of the results. Strictly speaking, a constant factor 

( )[ ]CCE SS 0/1 ρρεε −=  mult iplies in the first term of 

equation (4) and a term 
ε
1

 mult iplies in the velocity term 
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and SC  are respectively the density and heat capacity of the 

solid material which  forms  the porous matrix and C  is the 
heat capacity of the liquid. The thermal diffusivity K  is 

defined as 
C

K
0

*
ρ
λ

=  where ( ) Sλεελλ −+= 1*  is 

the effective thermal conductivity and λ  and Sλ  are the 
thermal conductivities of the fluid and solid respectively. 
The solute diffusivity K ′  is defined analogously. Also a 
factor E ′  analogous to E  is multip lied in the first term of 
equation (5). 

The initial state whose stability is to be examined is 
characterized by  
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where 0p  is the pressure at .0ρρ =  
Let the system be slightly disturbed and as a result of this 



4 Pardeep Kumar et al.:  On Thermosolutal-Convective Instability in Walters B’ Heterogeneous   
Viscoelastic Fluid Layer through Porous Medium 

 

small perturbation, the various physical quantities undergo a 
change 
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Substituting (8) in equations (1)-(6) and linearizing them 
by neglecting second and higher terms and retaining only 
relevant terms appropriate to physical conditions, we obtain 
the linearized perturbations equations in component form as 
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where ( ).,, wvuq =
δ           (16) 

3. Analysis in Terms of Normal Modes  
The analysis of an arbit rary disturbance is carried out in  

terms of normal modes following Chandrasekhar[1]. The 
stability of each of the modes is discussed separately. We 
seek solutions of the equations (9)-(15) whose dependence 
on space-time coordinates are of the form 
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where xk  and yk  are the horizontal wave numbers and 

n  is the frequency of the harmonic disturbances. Also 
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gives the wave number of the perturbation propagation. 
Using expression (17), equations (9)-(15), on 
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Equations (21)-(23) in non-dimensional form can be 
written as 
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ν
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Equation (26) with the help of equations (24) and (25) is 
written as 
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The equations (24)-(26) and (28) are to be solved using 
boundary conditions. Here we consider the case where both 
the boundaries are free, fo llowing Chandrasekhar[1], the 
appropriate boundary conditions for this case are 

0,0,02 =Γ=Θ== WDW  at 0=z   

and .1=z                 (29) 

4. Results and Discussion of Marginal 
States 

(I) Stationary Convection 
When the instability sets in as stationary convection, the 

marginal state will be characterized  by 0=σ . Hence the 
substitution of 0=σ  in equations (21)-(23) gives 
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Integrating equation (30) and using the boundary 
conditions (29), we see that 0,0,0 =Γ=Θ=W  etc. 
are the only  possible solutions which  led  to contradiction to 
the hypothesis that initial state solutions are perturbed. 

Therefore, the instability can not set in as stationary 
convection or in the other words the principle of exchange of 
stabilities is not valid for our problem. 

(II) Oscillatory Convection 
Now for the proper solution of equation (28) for W  

belonging to the lowest mode, we follow Chandrasekhar[1], 
and find that zWW πsin0= , where 0W  is constant. 
Then, from equation (28), we get  
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As discussed earlier, the princip le of exchange of 
stabilities being not valid for the present problem, the 
marginal state is governed by 2σσ ′= i  where 2σ ′  is real. 
Now letting 
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Substituting (32) in equation (31), we get 
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Separating equation (33) in real and imaginary parts, we 
obtain 
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2 2 2
4 2 1

22 2 2
2 1

1 1

1 1 1 ,

1

1

x x B p A

R x p B xR
x

xR x p

x p

σ π

σ π

τ σ

τ σ

 
 
 

+ + + + − 
 
 = + + −
 
 

+ + 
+ 

+ + 
 

 (34) 

and 
,02

2
21

4
20 =++ AAA σσ          (35) 

where 

( ) ( )
( )( )

( )
( ) ( )
( ) ( )
( )

( ) ( ){ }
( )

.

1

11

1
11

11

1

11

1
1

23
32

34
2
1

11

1
2

2

22

3
1

2
1

111
2

2

22
3
10




















+=

+−++



















++
++++

+++−

+=













+++++

+−
+=

τ

τ

π

π

τ

π

π

xxRA

RRxxp

xpB
xpxB

xxA

xpA

BppBx

xA
xpA

(36) 

From (35) and (36), the frequency of oscillat ions 2σ  in  
marginal state is given by 
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( )
,

2
4

0

20
2

112
2 A

AAAA −+−
=σ      (37) 

and from (27) and (34), Rayleigh number R  is given by 

( )

( ) ( )
( ){ }
( ){ }

4
1

12
2 2
2 1

2 2
4 2 1 1

2 2 2
2 1

3 4 22 2 2
2 1

1
11

1 1

1

1

R R

x B
x

p A
x

x p B

x p
R R

x p

π

σ π

σ ππ

τ σ

τ σ

=

  + + 
 +    +      − + + =   
 + + 
− + 

+ + 
 

  
 (38) 

We now discuss the existence of overstable marg inal 
states for various cases: 

Case (A): When 03 >R , i.e. 0>
dz
df

  

Since 03 >R  thus it implies 02 >A , therefore, if 

00 >A and 01 >A  i.e . ( )xA +> 11 2π  and 

01 >−τ  i.e . ( )xA +> 11 2π  and KK >′ , then there 

will be no real 2σ  resulting non-occurrence of overstable 

marginal state. But, if 4R  satisfies the inequality 

( )

( ) ( )[ ]
( )



















+













+++

+−+

−
>

3

11
2

2

2

1

22

4 1

111

1
1

R
BpB

xA
xp

x
R π

πτ

τ
,(39) 

besides KK <′ , 
( )x

A
+

>
1
1

2π
and 

04 20
2

1 >− AAA , then the marginal state may exist even 

when 03 >R . 

Case (B): When 03 <R , i.e. 0<
dz
df

  

When 03 <R , the marginal state always exist whatever 
be the values of other parameters provided 

04 20
2

1 >− AAA  and then 2σ  is given by equation (37). 
(III) Nature of Non-Oscillatory Modes 
For 03 >R  i.e. 02 >R  and KK >′ , the only 

modes that may exist are non-oscillatory modes for which 
02 =σ  and 1σσ =  ( 1σ  is real). Hence substitution of 

1σσ =  and zWW πsin0=  in equation (28) gives 

,0413
2
12

3
11

4
10 =++++ DDDDD σσσσ  (40) 

where 

( ) ( )[ ]
( ) ( )[ ]

( ) ( )( )[ ]
( ) ( ){ }

( )

( ) ( ) ( )

( ) ( ){ }
( ){ }
( ) 
























+−=

−′−++−

+++=

′−+−+++













++

′−++−+=

+++++

′+++−+=

′−++−+=

2
2

222
4

12
2

2
22

1
2

22322
13

2
2
1

22222
1

1

22322
12

22223
1

222222
11

22223
10

1

1
1

1

1

1

τπ

τττπ

ππτ

τπ

τ
πτπ

ππτ

ππ

ππ

RaaD

pRaRRRapa

BaapD

RRRpaBap

p
ABaAapD

Baap

ABaAapD

ABaAapD

(41) 

Equation (40) is the fourth degree characteristic equation 
in 1σ  with real coefficients and has four roots, which may 
be real. The constant term in the characteristic  equation 
being negative, at least two of the roots are real, one positive 
and one negative. Thus, we have non-oscillatory modes, one 
of which essentially g rows in time making the system 
unstable. 

5. Conclusions  
The thermosolutal convection in  a layer of heterogeneous 

Walters B’ viscoelastic fluid  heated and soluted from below 
through porous medium is considered in the present paper. 
The investigation of thermosolutal convection is motivated 
by its complexit ies as a double diffusion phenomena as well 
as its direct relevance to geophysics and astrophysics. 
Thermosolutal convection problems arise in oceanography, 
limnology and engineering. Ponds built to trap solar heat and 
some Antarctic lakes provide examples of particular interest. 
The main conclusions from the analysis of this paper are as 
follows: 
● The principle of exchange of stabilities is not valid for 

this problem. 
● Frequency of oscillat ion and the Rayleigh number in  

the marg inal state are given by equations (35) and (34), 
respectively. 
● For density distribution with positive gradient and 

( )xA +> 11 2π ; KK >′ , the overstable marg inal state 
do not exist and we have only non-oscillatory modes which 
make the system unstable. 
● While fo r positive density gradient and KK <′ ; 

( )x
A

+
>

1
1

2π
, the overstability may  occur fo r the solute 

Rayleigh numbers satisfying (39). 
● For density distribution with negative gradient, the 

marginal state and overstable solution exist, irrespective of 
the values of other parameters. 
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