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Abstract This paper covered the study of the boundary value problem for isotropic homogeneous perforated infinite
elastic media in presence of uniform flow of heat. For this, we considered the problem of a thin infinite plate of specific
thickness with a curvilinear hole where the origin lie inside the hole is conformally mapped outside a unit circle by means of
a specific rational mapping . The complex variable method has been applied and it transforms the problem to the inte-
gro-differential equation with Cauchy kernel that can be solved to find two complex potential functions which called

Gaursat functions. Moreover, the three stress components o,,,0,,,0,, for the boundary value problem in the thermoelas-

ticity plane are obtained. Many special cases of the conformal mapping and three applications for different cases are dis-
cussed and many main results derived fromthe work.

Keywords Boundary Value Problem of Infinite Plate Weakened by a Hole, Conformal Mapping, Integro-Differential
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1. Introduction

Several authors wrote about the boundary value problems
and their applications in many different sciences, see Gak-

hov [1], Ciarlet etal.[2], Zebib[3] and Saito and Yamamto[4].

From these problems, we established contact problems and
mixed problems in the theory of elasticity , see Colton and
Kress[5], and Abdou[6]. In Abdou[6,7], Abdou and
Khamis[8] and Abdou and Khar-Eldin [9],Complex variable
method is used to express the solutions of these problems in
the form of power series by applied Laurant's theorem. On
the other hand, some of authors applied the complex variable
method to obtain the solutions in the form two complex
potential functions which called Gaursat functions by using
the properties of Cauchy integrals on the circle, or on any
region mapped to outside a unit circle y by means of a

general rational mapping z=cw({) where, w'({) does-

n't vanish or become infinite outside the unit circle.

In thermoelastic problems for elastic media, the first and
second boundary value problems are equivalent to finding
two analytic functions ¢(z) and w(z) of one complex
argument z=x+iy . These functions must satisfy the
boundary conditions,

Koy (1)~ 1 (1) — w1 (1) = [ (©) (L.1)
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where ¢ denotes the affix of a point on the boundary. In
terms of z=cw({), ¢>0, ®'({) does not vanish or

become infinite for |§| >1, the infinite region mapped to
outside a unit circle y .

For the first fundamental boundary value problem or it
called the stress boundary value problem we have K=-1
and f(t) is a given function of stress. While for K=k>1
and f(t) is a given function of displacement which called
the thermal conductivity then eq.(1.1) called the second
fundamental boundary value problems or the displacement
boundary value problems. The books written by Noda et
al[10], Hetnarski and Ignaczak[11], Parkus[12] and
Popov[13] contain many different methods to solve the
problems in the theory of elasticity in one, two and three
dimensions.

The complex potential functions ¢ (¢) and w(¢) take
the following form, see Parkus [12]

B S,C+iSy1 - L
¢1(§)——mn§+c ¢ +4(S) (1.2)
and,
(S, —iS,) .
vi()=k Ing+cl" ¢ +w(Q) (1.3)

27 (1+k)
where, 5, .S, are the components of the resultant vector

of all external forces acting on the boundary and I',I" are
complex constants. Generally the two complex functions
p(¢) and w(¢) are single value analytic functions within
the region outside the unit circle y and ¢(0)=0,p(0)=0.
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In [14], Muskhelishvili used the rational mapping,

z:c(§+m§_l) , ¢>0,m isrealnumber, (1.9

to solving the problem of infinite plate weakened by an
elliptic hole.
El-Sirafy and Abdou in [15], used the rational mapping,
-1
= c% (1.5)
1- ng“*l
to solve the first and second fundamental problems for the
infinite plate with general curvilinear hole C confrmally

mapped on the domain outside a unit circle.
The rational mapping,

z=c({+mS vml?) , 0<m; <1, j=12 (1.6)

isused by Abdou and Khamis [8]to obtain the solution ofthe
problem of an infinite plate with a curvilinear hole having
three poles and they take the circle shape, ellipse shape and
square shape as a special cases of'the holes.

Also, the conformal mapping function,

Cm¢!

(1=m¢ ™ A=n¢ ™
is studied completely by England [16].

In this paper, we consider the boundary value problem for
isotropic homogeneous perforated infinite elastic media in
presence of uniform flow of heat. Then, we use the more
general shape of conformal mapping to obtain the complex
potential functions for the problem in the form integro- dif-
ferential equation with singular kennel. Many special cases
are obtained and several applications are discussed fromthe
work.

This study is useful for researchers who work on the
studies of petroleum tubes industry or water or gas. It also
benefits the physics scientists who work on the study of the
ozone hole.

2. Formulation of the Problem

z ) c>0,|n|<1

zZ=cC

>0, (L7)

Consider a thin infinite plate of thickness /4 with a cur-
vilinear hole C , where the origin lie inside the hole is
conformally mapped on the domain outside a unit circle
by means of a rational mapping,

-1 2
. g+me  +myd

(=Y a=nae ™

where z'({) does not vanish or become infinite outside

C>0,I’11¢}’l2 (21)

the unit circle y . If a temperature distribution ®@ =gy is
following uniformly in the direction ofthe negative y — axis,

where the increasing a temperature distribution ® is as-
sumed to be constant a cross the thickness of the plate, i.c.
®=0(x,y), and ¢ is the constant temperature gradient.
The uniform flow of heat is distributed by the presence of an
insulated curvilinear hole C .

The heat equation satisfies the relation,
Vz — i_i_i

ve=0 ,

2.2)

a—®:0 , I'=1 (2.3)
on
uniform flow of heat ©
curvilinear region
infinite plate

Figure (1).
where n is the unit vector perpendicular to the surface.
Neglecting the variation of the strain and the stress with
respect to the thickness of the plate, the thermoelastic po-
tential @ satisfies the formula, see Parkus [12]

VO =(1+v)a®

(2.4)

where « is a scalar which present the coefficient of the
thermal expansion and v is Poisson’s ratio. Assume the
force of the plate is free of applied loads.

In this case, the formula (1.1) for the first and second
boundary value problems respectively take the following
form,

—— — 0D D 1}
gol(t)+tgol(t)+(//1(t):g+la+%}[ [iX (s) = Y(s)]ds +¢ (2.5)

ke (- B0 -y O =u+iv— 21 22

Ox oy
where the applied stresses X(s) and Y(s) are pre-
scribed on the boundary of the plane s is the length meas-
ured from an arbitrary point, # and v are the displace-
ment components, G is the shear modulus. Also, here the
applied stresses X (s) and Y(s) must satisfy the following,

see Parkus [12]

(2.6)

dy dx
X(S)Zaxxg—(fxyg (2.7

dy dx
Y(S)=O'yxg—0'yyg (28)

where oy, ,0,, and o, are the components of

stresses which are given by the following relations,
O\ —0,, +2i0,, =

2 2 2
5 G[a ® 0 Cf 2 oD
Ox Ox0Oy

6y2
O +0y, =4G[Reg'(z)- 10 ]

_ 2.9)
1+4G[z¢" (D) +y"(2) ]
(2.10)

where A= %(1 +v) is the coefficient of heat transfer.

The rational mapping z =cw®(¢) maps the boundary C

of'the given region occupied by the middle plane of the plate
in the z—plane onto the unit circle y in the ¢ — plane.

Curvilinear coordinates (p,#) are thus introduce into the
Z — plane which are the maps of'the polar conditions in the
¢ —plane as givenby ¢=pe? , 0<O<2x. By using the
transformation z=cw (<) , Eq.(1.1) reduce to,
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Ko, (cw(é”))—% p(co(Q) =y (co () = f(co(S)) (2.11)
The last formula represent the first and second boundary
value problems in ¢ — plane.

3. The Rational Mapping

The rational mapping (2.1) maps the curvilinear hole C
in Z — plane onto the domain of outside unit circle in & —
plane under the condition ®'({) does not vanish or become
infinite outside the unit circle y . The following graphs give
the different shapes of the rational mapping (2.1).
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Figure (10)

£ 4 2 A3

n =-0.01n,=04-i
m; =0.7+1i,m, =0.05-1

Figure (11)

4. Method of Solution

In this section, we use the complex variable method to

obtain the two complex functions, Goursat functions, ¢(¢)
and (&) .Moreover, the three stress components o, o

pey

and o, willbe complete determined.

4.1. The Stress Compone nts

The solution of Eq. (2.2) is given by,
2

®:q[R+%], R:\[xz +y2

By substitute Eq.(4.1) in Eq.(2.4) and using the definition
of V2@ in polar coordinates the thermoelastic potential
function take the form,

1+ ;

4.1

) 4.2)

Also, the stresses components can be adapted in the form,

O :2G[_5(ay_2_ - +2/1®)’ 43)
+Re[20'(2) —z9"(2) —yw"(2)]1]
. —2G[;(2yz?Eiz?2/16))+Re[2¢7’(z)+Z(0”(z)+|//”(z)]],(4.4)
and,
Oy = 2G[62—®+Im(;¢”(z)+y/"(z))]. @4.5)
Ox0y

Egs.(4.3), (4.4) and (4.5) after some derivatives and al-
gebraic relations adapted as,

0. =2G[-n(z* +4zz+2 )Imz + Re[2 ¢'(z) - M (2,2)]] (4.6)

o, =2G[n(Z" +4zz+2 ) Imz+Re[2¢/(2)+ M(z,2)] , (4.7)
and,
0, =2G[n(zz-2(Imz)* Rez+ImM(z,2)], (4.8)
where,
1 2
:%, (4.9)
2(zz)

and,

M(z,2)=z¢4"(z) +y'(2). (4.10)
After determine the Goursat functions the components of
stress are completely determined.
4.2. Goursat Functions

To obtain the two complex potential functions, Goursat
functions by using the conformal mapping (2.1) in the

boundary condition(1.1), we write the expression ww((g,),)
the form,
@ _
2O _ayepey @
(¢ )
where,
a@)=—N_ P (4.12)
C-m &—n
and,

b= (ni +mn; + mz)(l—njz-)z(l—n]nz)2 )
= 5 ,/=0,1(4.13)
(n; =np )1 =2(ny + ny)n; — (my =3mny)n;

—2m2n§ + (mnymy + nymy, + nymy )n?]
B¢ is aregular function for |¢[>1.
(&)
@'(&™)
Using Eq.(1.2) and Eq.(1.3) in Eq.(2.11), we get
o(&) Sk —iSy)

@' (") 2x(1+k)
~L = (O]+cI" ¢~y () = F(&)
Using Eq.(4.12) in Eq.(4.14), we have

K(ﬂ(?)-d(?)ﬁl)'(é“)—w(()—ﬂ(?)co'(é“)_ (4.15)

N+ BE)] = F()—eKT¢ =l
Taking ¢ =0, we get o
K§(o) - a(o)¢'(0) —y.(0) = F.(o), (4.16)

has a singularity at { =ny and ¢ =n,.

KceI'S+Kp($) +

[
(4.14)

where,

V(O =w()+ B (Q), (4.17)

FA()= F(O)=eKT¢ el ¢ 4 N(O[ad€) + BE) 5 4.18)

S, —iS,

. i & 4.19
271+ k) ° (419

N({)=cl

and,
F(O)=fca(@)= /(). (4.20)
Assume the function F(o) with its derivatives must
satisfy Holder condition. Our aim is to determine the
functions ¢(¢) and w(¢) for the various boundary value
problems. For this multiply both side of Eq.(4.16) by
do . . . .
i0D) where ¢ is any point the interior of y and
integral over the circle, we obtain
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J w(a) oL a(@)p'(0) , 1 f w0
27” 27riy (c-¢) 2ri? (o0-4)
4.21)
:LJ- F(O‘) do
27riy (c-¢)

Using Eqs.(4.17),(4.18) and (4.19) in Eq.(4.21) then ap-
plying the properties of Cauchy integral to have

Ko@) 5| “ 2 do
1 ¢ N@)a(o) = @
__ [ Mo)alg) , — o)
27”_{ -0 do = A)— "¢
where,
(g)_— j r (‘2) do . (4.23)

The formula (4.22) represents the integro-differential

equation ofsecond kind with Cauchy kernel. The references,

Fedotov[17], Hanyga and Seredynska[18], Bavula[19] and
AlL-Jawary and Wrobel[20], contain many different methods
to solve this kind of the equations analytically and numeri-
cally in one, two and three dimensions.

To obtain the integral terms of Eq. (4.22) we use Eq. (4.12)

and then apply the residue theoremto have,

' 2 hib;
L a@d@) o _ 5 2 (424
2ri,  (0-¢) j=l i =g
where b;,j=1,2 are complex constants.
Also,
2 N(n)h;
1 No)a@) Nk (4.25)
2ri,  (0-0) j=1 nj—
So, Eq.(4.22) reduce to,
. (4.26)

j=t T
To determine the constants bj , differentiating Eq.(4.26)
with respectto £ and substituting in Eq.(4.24), to get

1 poalo) o e 2

zmj - g)[ A(o)-co

Z N( )+ b;11d Kzzl b, 27
- n. C O =C.

Jj=1 ( n,o—1 j=1 n17§

Substituting Eq.(4.12) in Eq.(4.27), then using the prop-
erties of Cauchy integral and applying the residue theorem at
the singular points, we obtain

Kb +cl*n% +hid; (N(n;)+chj)==A(n;), (4.28)
where,
n2
d_,.:—fz 5 j=12. (4.29)
(1-n?)
The last equation can be written in the form,
cKbj+ch;d; b] = (4.30)
where,
=—A'(n;) (n;)- cn h d;N(n;). (431)

Taking the co mplex conjugate of Eq.(4.30) we get,

ch tchid;b; =E;. (4.32)
From Eq.(4.30) and Eq.(4.32) we have,
KE:—h;d;E
=L e (4.33)

c(K*-h7d})

To obtain the complex functions y({) we have form
Eq.(4.17) after substituting the expression of ,(o) and
F, (o), and taking the complex conjugate of the resulting

equation after using the expression of f(o) to yields,

v(o)=—F(o)+ cKTo™'—cIo
K (@)~ a(@ p.(0) 2D g (o) (4.34)
o' (o)
2
3 e
where,
¢ (0)=¢'(c) + N(0o), (4.35)
and,
N(o)=cl Sx t 8y - 436
(G) =cl — mo' . ( . )
Multiplying both sides of Eq.(4.34) by 2—;) where

¢ is any point in the interior of y and integrating over the

unit circle, then using the properties of Cauchy integral and
calculate sum residue, we obtain

o™

w()=cKT¢ ™ - 00
, @(&) , 4.37)
Z — «p*( 7D +BC)-B
= .1
where,
1 F(O')
B(()=—o , 4.38
) 5 £ 5 do (4.38)
and,
gL F@, (4.39)
27 o

4

5. Some Applications

In this section, we assume different values of the given
functions in the first or second fundamental boundary value
problems. Then, we obtain the expression of Goursat func-
tions. After that, the components of stresses can be calcu-
lated directly.

5.1. Application 1: Curvilinear Hole for an Infinite Plate
Subjected to Unifor m Tensile Stress and Flowing
Heat.

For
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K:—l,F:E,F*:ie_w,OS@SZﬂ,S =S, =f1=0,
4 2 ¥ 4
we have,
cP
AE)=0 , N(§)=T,
2 -2i6
cPnie P
_ J c
E; = 5 ——hjdj,
cPn? %0 cP 6D
. _ J
J B _Thjd/a
=£{ hjdj—an cos 20 'Zn?sinZB }
j .
4 1-h;d; 1+h;d;
Then Eq.(4.26) becomes
cP .29 2 L
pQ)==-¢M+y —— . (52
2 =1 nj—=¢
where,
2 2
P 1-2n%5cos260  2n%sin26
L;="n / = ].(5.3)
4 1-h;d; 1+h;d;
Also,
B({)=0 , B=0, (5.9
then,
P o) S
y(@)=—¢ —— o)+ o.(n;) (5.5
4 @'(C) gl—njg RS
where,

5O =4 (O) +%.

This application discusses the first fundamental boundary
value problemof an infinite plate stretched at infinity by the
application of a uniformtensile stress of intensity heat in the
negative direction of y — axis. This plate is weakened by a
curvilinear hole C which is free fromstress.

(5.6)

For n =03, n,=025, m=1+0.02 , m,=-001-i,

p =0.25 | the stress components O ,, Oy, and Oy, are
obtained in large forms calculated by computer and illus-
trated in the following two cases :

(i) When the study is in the normal plate, we have the
following shapes for the stress components, see Fig.(12) and
Fig.(13).

(i1) In the thermoelasticity plate, we have the following
shapes for the stress components by using the substitutions
G=1, ¢=01, 1=075, @=0.7,v =1, see Fig.(14)
and Fig.(15).

B0+
401
207

a
-201
-407
507
-80

-100+
1207

(o} xy -

Figure (12)
o at 0.1277<60<0.7r,
1277<60<14r and 1.6 <0<1.757 .

o has positive values

o,y has positive

0<60<0.1277 and 1377<0<27x . o,

1.6567 <0 <1.94z

values at has

positive values at % <@ <1.57and

O O‘yg;
o, Ox
200
1000 1504
1004
5001 . L
— — } :
i | 0 1 P { [
0 1 b 3 g T o] theta~
theta~
— 100
101

Oxx.
maxs, at 9~1.178z

%y
max=- at 9~0.7327

Figure (13)
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+H+

XX yy Xy
Figure (14)

Oy has positive values at 0387<0<l.lr,147<0<1537r and 1.6567<0<27 . 0,, has positive values at

0<60<038zand 1.537<0<1.72x . O, has positive values at 0<60<0.167,0.8287 <0 <1.274x,1.47 <0 <1.6567 and

175z <0< 2r .

O_XX
oy
3000
2000
1000
|
0 1 2 3 1 g 5
theta~
-1000

O-‘(X
max-—*= at 9 ~1.17x

Y

1000
500
600
400

200
o 177772 3 4 T ET g
theta

Oy
max* at g ~1.401277-

Figure (15)

5.2. Application 2 : Curvilinear Hole Having two Poles

and the Edge is Subject to a Uniform Pressure P .
If K=-1 ,5,=8,=T=T"=0 ,f()=Pt,

Then,

O=qy.

N() =0,
o O Amo+m,
N = )=y

1+mo? +myo® o (5.7)

S (J):Pca(l—nla)(l—nza)’
2 n2+mn. +m
A(n;)=cP 2
e ; (nj_njirl)(njé,_l)z
J _A'(nj)a
=E;, (5.8)
__ Ej
T e(l-hd))

By using these values Eq.(4.26) becomes
) P2 n?+mlni+m2 2 hjE/- (5.9
=cC - . - . .
T S 0,0 ==k
Also,
cP
B()=——, (5.10)
¢
and,
B=(n +ny)cP. (5.11)
Hence Eq.(4.37) becomes
-1
(€)== i) —ePe ™ — (ny + my)eP
'(£)
2 pe (5.12)
J 1o —1
+JZ:; l—njcho(nj )

The previous discussing give the solutions of first fun-
damental boundary value problem when the edge of hole is
subject to a uniformpressure P .

For m =03, n,=025, m=1+0.02, m=-001—i,
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p =0.25, the stress components Oy, 0, and O,, are

obtained in large forms calculated by computer and illus-
trated in the following two cases :

Y
+

304
204

A

+

A

-

10 .
A
A
¥

(i) When the study is in the normal plate, we have the
following shapes for the stress components, see Fig.(16) and
Fig.(17).

(i) In the thermoelasticity plate, we have the following
shapes for the stress components by using the substitutions

G:%, qg=0.1, ry=0.75, =07, v=1,seeFig.(18)
and Fig.(19).

o

o  has values at

147<0<1.537 and 1.6567<0<2rx .

positive 0387 <6 <l.1x,

0,y has positive

207
. values at 0<0<0387and 1537 <0<1.72r . o, has
o] positive values at 0<6<0.16x, 0.8287<6<1.274r,
1.47<0<1.656r and
Oy O'yy - O'xy -+
Figure (16) 1757 <0<2rx
O Ty
°, o,
3000
503 2500
4007 20004
300 1500
200 1000
100 4 £00
| J . | ‘ ,
o 1 2 ! 4 5 [ & o 1 2 3 AL &
100 theta~ 5004 theta~
maxZ= at 6 ~1.528667 max—2 at 6 ~1.0987x

Yy
o-,\‘x

Figure (17)

20000

-20000 1

-40000-

O -+

Figure (18)

Oy, has positive values at 0<0<1.7197z .o, has positive values at 0.8287<6<0.9554z and 1.71977<0<191x .

Oy, has positive values at 0<6<0.1274z7 and 6 <191z .
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O_LY
Oy
theta~
1 2 l 3 4 5 g
u} K
-1000+
2000
3000
[on
max =% at 6 ~0.987267
O'yy
Jyv
O_XX
204
theta~
1 2 3 4 5 | .6
]
20
-40]
B0
-an-
Uyy
max—— at @ ~1.9745x
Oxx

Figure (19)

5.3.Application 3: The External Force Acts on the Cen-
ter of the Curvilinear Hole .

When, K=k ,[=I'"=f=0,

then,
S, —iS,
Nn;)=-
;) 27 (1+k) .13
v S, +iS,, '
= i

39

Sy +1S,,
l;i = hj dj nj —_—,
: T a0+ k)
. (5.14)
— Sy +iS,
Ej=h;d;n,

ST 21+ k)
and,
S +iS
d.n.— ! Yy _
T 1+ k)

ho—— ' Jkn e AT
Te(k - hjd}) T k)| T

Hence Eq.(4.26) reduce to,

1 2 hn.
*k — J ]
(&) 2n(1+k)/.§(nj—g) 516
, (5.
khyd (S, +1S,) 2d; ¢ i
{ (k* —h3d7) (+(k2—hf.dj.)( =)
And the second function given by,
o¢™h 2 Mg
=- A (n:), (5.1
VO = # O E T D, (1D
where,
)= Sy +iS, 513
$(&)=9¢'(%) 2”(““5 . (5.18)

The last application gives the solution of the second fun-
damental boundary value problem when the heat is flowing
inthe negative direction of y — axis and the force acts on the
centre of the curvilinear hole.

For n =03, n,=025, m=1+0.02i , my =-0.01-i,

p =0.25 | the stress components O, Oy, and Oy, are

obtained in large forms calculated by computer and illus-
trated in the following two cases :

(i) When the study is in the normal plate, we have the
following shapes for the stress components, see Fig.(20) and
Fig.(21).

(i1) In the thermoelasticity plate, we have the following
shapes for the stress components by using the substitutions

G:%, qg=0.1, ry=0.75, =07, v=1,seeFig.(22)

and Fig.(23)..
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6. Conclusions

From the previous discussion s we have the following
result

(i) The solution of the boundary value problems for iso-
tropic homogeneous infinite elastic media in z— plane re-
duce to obtain the two complex potential functions, Gaursat
functions, in { — plane by using conformal mapping.

(i) The conformal mapping z=cw({),c>0 , where

@'($)#0,0 , for |§| >1 mapped infinite region to outside
aunit circle y .

(il When we applied the conformal mapping
z=cw({),c>0 the boundary value problems reduce to

the integro-differentail equation with discontinuous kernel.

(iv) Cauchy method is the best method to solving the in-
tegro-differentail equation with Cauchy kernel and obtaining
the two complex functions ¢(z) and w(z) directly.

(v) The components of stress o, , and o, is

o
Yy
completely determine and plotting after obtaining the two
complex functions.
(vi) As a main result of inserting the effect of uniform flow
ofheat in the negative of y — direction we have, see figures
(12-23)

maXO'N > maxaH

Xy Xy (6.1)
and,
min Gg, < min Gg, 6.2)

where, G)]C}], represent the shear components of stress at

normal state, while GxHy represent the shear components of

stress after inserting the effect of heating.
(vii) If we denote to the angle that appears the maximum

O-XX'

value of in normal state by &, and the angle that

»
appears the maximum value of % after inserting the effect
yv
ofheating by 4, , we note
91 < 62 (63)
(viii) If we denote to the angle that appears the maximum

%2 in normal state by él , and the angle that

value of
. o,
appears the maximum value of -

xx

after inserting the effect

of heating by éz , We note
6, <6, (6.4)

(ix) All of the previous works in this paper is considered as
special cases fromthis study.
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