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Abstract  This paper covered the study of the boundary value problem for isotropic homogeneous perforated infinite 
elastic media in presence of unifo rm flow of heat. For this, we considered the problem of a thin infinite p late of specific 
thickness with a curvilinear hole where the origin lie inside the hole is conformally mapped outside a unit circle by means of 
a specific rational mapping . The complex variable method has been applied and it transforms the problem to the inte-
gro-differential equation with Cauchy kernel that can be solved to find  two complex potential functions which called 
Gaursat functions. Moreover, the three stress components  for the boundary value problem in the thermoelas-
ticity plane are obtained. Many special cases of the conformal mapping and three applicat ions for different cases are dis-
cussed and many main results derived from the work. 
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1. Introduction 
Several authors wrote about the boundary value problems 

and their applications in many d ifferent sciences, see Gak-
hov [1], Ciarlet  et al.[2], Zebib[3] and Saito and Yamamto[4]. 
From these problems, we established contact problems and 
mixed problems in the theory of elasticity , see Colton and 
Kress[5], and Abdou[6]. In Abdou[6,7], Abdou and 
Khamis[8] and Abdou and Khar-Eldin [9],Complex variab le 
method is used to express the solutions of these problems in 
the form of power series by applied Laurant's theorem. On 
the other hand, some of authors applied the complex variab le 
method to obtain the solutions in the form two complex 
potential functions which called Gaursat functions by using 
the properties of Cauchy integrals on the circle, or on any 
region mapped to outside a unit circle  by means of a 
general rat ional mapping  where,  does-
n't vanish or become infinite outside the unit circle.  

In thermoelastic problems for elastic media, the first and 
second boundary value problems are equivalent to finding 
two analytic functions  and  of one complex 
argument . These functions must satisfy the 
boundary conditions, 

       (1.1) 
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where  denotes the affix of a point on the boundary. In 
terms of , ,  does not vanish or 

become infin ite fo r , the infin ite region mapped to 
outside a unit circle . 

For the first fundamental boundary value problem or it  
called the stress boundary value problem we have  
and  is a given function of stress. While for  
and  is a given function of displacement which called 
the thermal conductivity then eq.(1.1) called the second 
fundamental boundary value problems or the displacement 
boundary value problems. The books written by Noda et 
al.[10], Hetnarski and Ignaczak[11], Parkus[12] and 
Popov[13] contain many different methods to solve the 
problems in the theory of elasticity in one, two and three 
dimensions. 

The complex potential functions  and  take 
the following form, see Parkus [12] 

        (1.2) 

and, 

     (1.3) 

where,  are the components of the resultant vector 

of all external forces acting on the boundary and  are 
complex constants. Generally the two complex functions 

 and  are single value analytic functions within 
the region outside the unit circle  and . 
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In [14], Muskhelishvili used the rational mapping, 
 is real number,     (1.4) 

to solving the problem of infin ite plate weakened by an 
elliptic hole. 

El-Sirafy and Abdou in [15], used the rational mapping, 

     (1.5) 

to solve the first and second fundamental problems fo r the 
infinite plate with general curvilinear hole  confrmally 
mapped on the domain outside a unit circle. 

The rational mapping, 
 (1.6) 

is used by Abdou and Khamis [8] to  obtain the solution of the 
problem of an  infinite plate with a curvilinear hole having 
three poles and they take the circle shape, ellipse shape and 
square shape as a special cases of the holes. 

Also, the conformal mapping function, 

,    (1.7) 

is studied completely by England [16]. 
In this paper, we consider the boundary value problem for 

isotropic homogeneous perforated infinite elastic media in 
presence of uniform flow of heat. Then, we use the more 
general shape of conformal mapping to obtain the complex 
potential functions for the p roblem in  the form integro- dif-
ferential equation with singular kennel. Many special cases 
are obtained and several applicat ions are discussed from the 
work. 

This study is useful for researchers who work on the 
studies of petroleum tubes industry or water or gas. It also 
benefits the physics scientists who work on the study of the 
ozone hole. 
2. Formulation of the Problem 

Consider a thin infinite plate of thickness  with a cur-
vilinear hole , where the origin lie  inside the hole is 
conformally mapped on the domain outside a unit circle  
by means of a rat ional mapping, 

  (2.1) 

where  does not vanish or become infinite outside 
the unit circle  . If a temperature d istribution  is 
following uniformly  in the d irection o f the negative axis, 
where the increasing a temperature distribution  is as-
sumed to be constant a cross the thickness of the plate, i.e. 

, and  is the constant temperature gradient. 
The uniform flow of heat is distributed by the presence of an 
insulated curvilinear hole . 

The heat equation satisfies the relation,  

     (2.2) 

               (2.3) 

 
Figure (1). 

where  is the unit vector perpendicular to the surface. 
Neglecting the variation of the strain and the stress with 

respect to the thickness of the plate, the thermoelastic po-
tential  satisfies the formula, see Parkus [12] 

               (2.4) 
where  is a scalar which present the coefficient of the 

thermal expansion and  is Poisson’s  ratio. Assume the 
force of the plate is free of applied loads. 

In this case, the formula (1.1) fo r the first and second 
boundary value problems respectively take the following 
form, 

(2.5) 

    (2.6) 

where the applied stresses  and  are pre-
scribed on the boundary of the plane  is the length meas-
ured from an arbitrary  point,  and  are the displace-
ment components,  is the shear modulus. Also, here the 
applied stresses  and  must satisfy the following, 
see Parkus [12] 

           (2.7) 

           (2.8) 

where  and  are the components of 
stresses which are given by the following relat ions, 

 (2.9) 

     (2.10) 

where  is the coefficient of heat transfer. 

The rational mapping  maps the boundary  
of the given region occupied by the middle plane of the plate 
in the plane onto the unit circle  in the plane. 
Curvilinear coordinates  are thus introduce into the 

plane which are the maps of the polar conditions in the 
plane as given by  , . By using the 

transformation , Eq.(1.1) reduce to, 
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(2.11) 

The last formula represent the first and second boundary 
value problems in plane. 

3. The Rational Mapping 
The rational mapping (2.1) maps the curvilinear hole  

in plane onto the domain of outside unit circle in 
plane under the condition does not vanish or become 
infinite outside the unit circle . The following graphs give 
the different shapes of the rational mapping (2.1).  
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Figure (10) 

 

 

Figure (11) 

4. Method of Solution 
In this section, we use the complex variable method to 

obtain the two complex functions, Goursat functions,  
and . Moreover, the three stress components ,  
and  will be complete determined. 

4.1. The Stress Components 

The solution of Eq. (2.2) is given by,  

     (4.1) 

By substitute Eq.(4.1) in Eq.(2.4) and using the definit ion 
of  in polar coordinates the thermoelastic potential 
function take the form, 

          (4.2) 

Also, the stresses components can be adapted in the form, 

,  (4.3) 

,(4.4) 

and, 

.   (4.5) 

Eqs.(4.3), (4.4) and (4.5) after some derivatives and al-
gebraic relations adapted as, 

,(4.6) 

, (4.7) 
and, 

, (4.8) 

where, 

,              (4.9) 

and, 

.         (4.10) 
After determine the Goursat functions the components of 

stress are completely determined. 

4.2. Goursat Functions 
To obtain the two complex potential functions, Goursat 

functions by using the conformal mapping (2.1) in the 

boundary condition(1.1), we write the expression  in 

the form, 

     (4.11) 

where, 

,       (4.12) 

and, 

(4.13) 

 is a regular function for . 

 has a singularity at  and . 

Using Eq.(1.2) and Eq.(1.3) in Eq.(2.11), we get 

   (4.14) 

Using Eq.(4.12) in Eq.(4.14), we have 

 (4.15) 

Taking , we get 
,  (4.16) 

where, 
,        (4.17) 

, (4.18) 

,         (4.19) 

and, 
.            (4.20) 

Assume the function  with its derivatives must 
satisfy  condition. Our aim is to determine the 
functions  and  for the various boundary value 
problems. For this mult iply both side of Eq.(4.16) by 

 where  is any point the interior of  and 

integral over the circle, we obtain 
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(4.21) 

Using Eqs.(4.17),(4.18) and (4.19) in Eq.(4.21) then ap-
plying the properties of Cauchy integral to have 

,   (4.22) 

where, 

.      (4.23) 

The formula (4.22) represents the integro-differential 
equation of second kind with Cauchy kernel. The references, 
Fedotov[17], Hanyga and Seredyńska[18], Bavula[19] and 
AL-Jawary and Wrobel[20], contain many different methods 
to solve this kind of the equations analytically and numeri-
cally in one, two and three dimensions. 

To obtain the integral terms of Eq. (4.22) we use Eq. (4.12) 
and then apply the residue theorem to have, 

,     (4.24) 

where  are complex constants. 
Also, 

.  (4.25) 

So, Eq.(4.22) reduce to, 

.  (4.26) 

To determine the constants , differentiating Eq.(4.26) 
with respect to  and substituting in Eq.(4.24), to get 

 (4.27) 

Substituting Eq.(4.12) in Eq .(4.27), then using the prop-
erties of Cauchy integral and applying the residue theorem at 
the singular points, we obtain 

,  (4.28) 

where, 

.            (4.29) 

The last equation can be written in the form, 
,               (4.30) 

where, 
.    (4.31) 

Taking the complex conjugate of Eq.(4.30) we get, 
 .                  (4.32) 

From Eq.(4.30) and Eq.(4.32) we have, 

.       (4.33) 

To obtain the complex functions  we have form 
Eq.(4.17) after substituting the expression of  and 

, and taking the complex conjugate of the resulting 

equation after using the expression of  to yields, 

 (4.34) 

where, 
,        (4.35) 

and, 

.        (4.36) 

Multiplying both sides of Eq.(4.34) by  where 

 is any point in the interior of  and integrating over the 
unit circle, then using the properties of Cauchy integral and 
calculate sum residue, we obtain  

,        (4.37) 

where, 

,            (4.38) 

and, 

.              (4.39) 

5. Some Applications 
In this section, we assume different values of the given 

functions in the first or second fundamental boundary value 
problems. Then, we obtain the expression of Goursat func-
tions. After that, the components of stresses can be calcu-
lated directly. 

5.1. Application 1: Curvilinear Hole for an Infinite Plate 
Subjected to Uniform Tensile Stress and Flowing 
Heat.  
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, 

we have, 

.(5.1) 

Then Eq.(4.26) becomes 

,     (5.2) 

where, 

. (5.3) 

Also, 
,         (5.4) 

then, 

 (5.5) 

where, 

.              (5.6) 

This application d iscusses the first fundamental boundary 
value problem of an in fin ite plate stretched at infin ity by the 
application of a uniform tensile stress of intensity heat in the 
negative direction of axis. This plate is weakened by a 
curvilinear hole  which is free from stress. 

For , , , , 
, the stress components ,  and  are 

obtained in large forms calculated by computer and illus-
trated in the following two cases : 

(i) When the study is in the normal plate, we have the 
following shapes for the stress components, see Fig.(12) and 
Fig.(13). 

(ii) In the thermoelasticity plate, we have the following 
shapes for the stress components by using the substitutions 

, , , , , see Fig.(14) 
and Fig.(15). 
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Figure (14) 
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5.2. Application 2: Curvilinear Hole Having two Poles 
and the Edge is Subject to a Uniform Pressure . 
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, the stress components ,  and  are 
obtained in large forms calculated by computer and illus-
trated in the following two cases : 

 
_____  ______  ++++ 

Figure (16) 

(i) When the study is in the normal plate, we have the 
following shapes for the stress components, see Fig.(16) and 
Fig.(17). 

(ii) In the thermoelasticity plate, we have the following 
shapes for the stress components by using the substitutions 

, , , , , see Fig.(18) 

and Fig.(19). 
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Figure (19) 

5.3. Application 3: The External Force Acts on the Cen-
ter of the Curvilinear Hole . 

When,  
then, 

         (5.13) 

  (5.14) 

and, 

.(5.15) 

Hence Eq.(4.26) reduce to, 

, (5.16) 

And the second function given by, 

,  (5.17) 

where, 

.   (5.18) 

The last application gives the solution of the second fun-
damental boundary value problem when the heat is flowing 
in the negative d irection o f axis and the force acts on the 
centre of the curvilinear hole.  

For , , , , 
, the stress components ,  and  are 

obtained in large forms calculated by computer and illus-
trated in the following two cases : 

(i) When the study is in the normal plate, we have the 
following shapes for the stress components, see Fig.(20) and 
Fig.(21). 

(ii) In the thermoelasticity plate, we have the following 
shapes for the stress components by using the substitutions

, , , , , see Fig.(22) 

and Fig.(23)..
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6. Conclusions 
From the previous discussion s we have the following 

result 
(i) The solution of the boundary value problems fo r iso-

tropic homogeneous infinite elastic media in plane re-
duce to obtain the two complex potential functions, Gaursat  
functions, in plane by using conformal mapping. 

(ii) The conformal mapping , where 

, for  mapped infinite reg ion to out side 
a unit circle . 

(iii) When we applied the conformal mapping 
 the boundary value problems reduce to 

the integro-differentail equation with discontinuous kernel. 
(iv) Cauchy method is the best method to solving the in-

tegro-differentail equation with Cauchy kernel and obtaining 
the two complex functions and  directly. 

(v) The components of stress  and  is 
completely determine and p lotting after obtaining the two 
complex functions. 

(vi) As a main  result of inserting the effect of unifo rm flow 
of heat in the negative of direction we have, see figures 
(12-23)  

             (6.1) 

and, 
             (6.2) 

where,  represent the shear components of stress at 

normal state, while  represent the shear components of 
stress after inserting the effect of heating. 

(vii) If we denote to the angle that appears the maximum 

value of  in normal state by , and the angle that 

appears the maximum value of  after inserting the effect 

of heating by , we note 
                 (6.3) 

(viii) If we denote to the angle that appears the maximum 

value of  in normal state by , and the angle that 

appears the maximum value of  after inserting the effect 

of heating by , we note 

                (6.4) 
(ix) All of the previous works in  this paper is considered as 

special cases from this study. 
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