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Abstract  The present discussion focuses on the dispersion of pollution plumes in the atmospheric boundary layer. From 
a comparison between first order perturbation theory with equivalent findings from a spectral theory approach we identify 
significant contributions under certain conditions filtered out by perturbation technique. To this end we make use of the 
Intermediate Variable Technique and simplify the three-dimensional advection-diffusion equation according to the findings 
of the former. Results, where certain characteristics (diffusion, advection, turbulence) are either amplified or suppressed are 
compared with the complete GILTT solution. 
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1. Introduction 
Dispersion of pollution plumes in the atmospheric 

boundary layer (ABL) has undergone a considerable 
evolution from its early  classification scheme according to 
stability to more advanced models that are based on the 
Monin-Obukhov similarity theory. However, the 
complexity more or less turbulent of the phenomenon is still 
manifest in parameterizat ions that hide physical details in 
phenomenological coefficients and it would be desirable to 
shade further light on at least some of their p roperties. In 
this sense the current discussion is an attempt to identify 
significant contributions from first order perturbation theory 
with equivalent findings from a spectral theory approach. 

Studies of pollutant dispersion, and in particular of its 
governing advection-diffusion equation (ADE), have a long 
tradition of being treated analytically. In fact analytical 
solutions are of fundamental importance in understanding 
and describing physical phenomena. Analytical solutions 
explicit ly take into account all the parameters of a problem, 
so that their influence can reliab ly be investigated. It is also 
easy to obtain the asymptotic behaviour of the solution, 
which is usually more tedious to generate numerically.  

Moreover, in the same spirit as the Gaussian solution (the 
first solution of the ADE with the wind and eddy diffusivity 
coefficients set constant in space), the former suggest the  
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construction of operative analytic models. Gaussian models, 
so named because they are based on the Gaussian solution, 
are forced  to represent real situations by means of empirical 
parameters, known as "sigmas". They are fast, simple, do not 
require complex meteorological input, and describe the 
diffusive transport in an Eulerian framework, making the use 
of measurements easy. For these reasons they are still widely 
employed for regulatory applications by environmental 
agencies all over the world in spite of their well-known 
intrinsic limits. 

A significant number of works regarding the ADE 
analytical solution (mostly with a two-dimensional treatment) 
is available in the literature. Among them we mention the 
works[1-17]. However, above solutions are valid  for very 
specialized situations: only for ground level sources, an ABL 
of in fin ite height, or specific vertical p rofiles for wind and 
eddy diffusivities.  

Reference[18] presented an analytical solution, called 
ADMM (Advection Diffusion Multilayer Method) for a 
limited ABL height and general wind and eddy diffusivity 
vertical p rofiles, but expressed by a stepwise function 
(see[19] for a complete rev iew). The ADMM method was 
further associated with the Generalized Integral Transform 
Technique (GITT) to obtain a three-dimensional solution 
[20-23]. Some of the above solutions were used[17] in 
operational air pollut ion models. 

Finally, a general two-dimensional solution without any 
restrictions in the spatial function describing the wind and 
eddy diffusion coefficients was presented in[24-26]. The 
method used was the Generalized Integral Lap lace 
Transform Technique (GILTT). That is an analytical series 
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solution, including the solution of an  associated 
Sturm-Liouville problem, the expansion of the pollutant 
concentration in a series in terms o f the attained 
eigenfunction, replacement of this expansion in the ADE and, 
finally, taking of moments. This procedure leads to a set of 
differential ord inary equations that are analytically solved by 
Laplace t ransform technique. A complete review of the 
GILTT method is given in[27]. For the three-d imensional 
solution see[28-32].  

All these analytical methods have in common the fact 
that three-dimensional, transient equations are not easy to 
treat. One way  around this difficu lty is to apply  a first order 
perturbative analysis to the original problem before 
applying the transform technique. Recent meteorological 
literature contains a number of studies employing 
perturbation techniques, but none of them uses them to 
simplify the analysis via transform methods. In the 
literature some problems are obviously better suited for 
perturbation analysis due to the presence of a native small 
parameter, as is the case with the flow over s mooth terrain 
(for example[33]). Regarding air pollution studies, however, 
very few results are found. An example is[34] that use 
singular perturbation techniques to obtain a new analytical 
solution to the 1-D transient convection-diffusion equation.  

The present study uses a first order perturbation 
technique known as IVT (Intermediate Variable Technique, 
briefly rev iewed in what fo llows) to simplify the 
three-dimensional advection-diffusion equation. Results are 
compared with preceding complete GILTT results to show 
that the neglected terms are indeed small. 

2. Perturbation Techniques 
The solution of regular problems by perturbation 

methods, although not always easy, is generally 
straightforward because the solution remains valid for the 
whole domain of interest. This is not the case with singular 
problems, thus a number of techniques were developed to 
deal with the mathemat ical d ifficu lties arising. The most 
well-known are the Matched Asymptotic Expansions 
Technique, the Method of Multiple Scales and the Method 
of Strained Co-ordinates. In the analysis that follows we 
employ the Intermediate Variable Technique (IVT), which 
is less known, and thus is briefly rev iewed. 

The IVT has its roots on Matched Asymptotic 
Expansions. It is based on the ideas of[35] and can also be 
found in[36]. When matched asymptotic expansions are 
used to solve boundary layer problems, a special variab le 
(called the intermediate variable) is used to match the inner 
and outer solutions (in case they are only two). Th is is 
achieved through a co-ordinate stretching (or rescaling) of 
the kind / ax x ε= , where x  is the independent variable, ε  
is the small parameter, a is (often but not necessarily) an 
integer and x  is the stretched co-ordinate. After 
substituting x by x into the equations under study, a is 
allowed to vary and the resulting possibilit ies of matching 

are investigated. The values of a that gives such matching, 
shows where the boundary layers are, allowing for the 
construction of the inner and outer solutions that describe 
the whole domain of interest.  

The IVT is a modification of this method and is indeed 
implicit in the search for afore mentioned boundary layers. 
In IVT, no inner or outer asymptotic solutions are sought. 
The intermediate variable is used to define the layers where 
different terms dominate in the original equation and in first 
order approximation. The exponent a is abandoned and ε  
is allowed to vary continuously in the interval ]0,1] in the 
expression /x x ε= . The method thus shows the relat ive 
importance of terms in the original equation as one move 
from the boundaries of the problem to the far field. 

3. Mathematical Analysis  
The time-dependent three dimensional Cartesian 

coordinates, advection-diffusion equations that describe the 
dispersion of a passive pollutant released by an elevated 
source on a statically neutral atmosphere are[37]: 

0=∇U                          (1) 
0'=∇U                          (2) 

' 't cc c c cν∂ + ∇ = ∆ + ∇U U         (3) 
in 0 < x < Lh, -B < y < B, -B < z < B, where all symbols have 
their usual meaning. Thus, bars over the variables represent 
time-averages and primes indicate turbulent fluctuations, c is 
the volumetric concentration of the passive contaminant (in 

units of g/m3 for example), ( , , )x y z∇ = ∂ ∂ ∂ , U = (u,v,w) 
is the wind velocity vector with Cartesian components in the 
directions x, y  and z, respectively, ρ is the air density and νc is 
the molecular diffusivity. The terms ''cU  represent the 
turbulent fluxes of contaminants, in the longitudinal, 
crosswind and vertical d irections. 

The source term is absent in eqn. (3) because it is included 
in the boundary conditions, which are 

(0, , ) ( ) ( )u c y z Q y zδ δ=                (4) 
( , ,0) ( , , ) ( ,0, )

 ( , , ) ( , , ) 0
z z y

y x h

c x y c x y B c x z

c x B z c L y z

∂ = ∂ ± = ∂

  = ∂ ± = ∂ =
   (5) 

Here, Q is the emission rate at height of the source located 
at the origin, δ is the Dirac-delta function, B is the lateral 
dimension of the p lume in  both y and z d irections, and Lh  is 
its length.  

To render eqns. (1) to (3) dimensionless, typical values for 
all variables must be chosen. We propose to use the 
geostrophic wind velocity, Ug, for the x and y mean wind 
velocity components u and v, and a characteristic velocity (to 
be determined later) Wc for the z component. We may use the 
friction velocity, *u , fo r all turbulent velocity components 

and the concentration at the source (0,0,0)sc c=  for the 
mean concentration. For the turbulent fluctuations of the 

concentration we assume * *' ' /c w c u= − to supply with 
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an approximate estimate. Time may  be rendered 
dimensionless using the characteristic response time of the 
ABL to surface forcings, tc. 

To cast the space variables in dimensionless form we 
recognize that the atmosphere and the plume have different 
length scales. Thus, for the atmosphere we shall use the 
characteristic horizontal PBL length, Lh, for x and y, and the 
characteristic vertical PBL length, Lv for z but for the p lume 
we shall use Lh for x but we apply the characteristic p lume 
width, B, for y and z. The resulting expressions for the 
dimensional space variables are, thus, X1 = x/Lh, Y1 = y/Lh, 
Z1 = z/Lv, to be used in eqns. (1) and (2) and X2 = x/Lh, Y2 = 
y/B, Z2 = z/B, to be used in eqn. (3). From these relations it 
follows that X2 = X1, Y2 = Y1Lh /B, Z2 = Z1Lv /B. Applying 
all the transformations to non-dimensional coordinates and 
the preceding three relations to eqns. (1) to (3) y ields  

1 1 1
( / ) 0X Y h c v g ZU V L W L U W∂ + ∂ + ∂ =             (6) 

1 1 1
' ' ( / ) ' 0X Y h v ZU V L L W∂ + ∂ + ∂ =              (7) 

1 1 1

1 1 1 1 1 1

1 1 1

2

* *

  ( / ) ( / )

( / ) ( / )

   ( / ) ' ' ' ' ( / ) ' '

h c g t X Y h c v g Z

c h g X X Y Y h v Z Z

g s X Y h v Z

L t U C U C V C L W L U W C

L U C C L L C

u c U c U C V C L L W C

ν

∂ + ∂ + ∂ + ∂

 = ∂ + ∂ + ∂ − 
 ∂ + ∂ + ∂ 

,(8) 

in 0 < X1 < 1, -1 < Y1 < 1, -1 < Z1 < 1, where uppercase 
letters represent non-dimensional variables and τ is the 
non-dimensional time.  

Without loss of generality, the coordinate system of the 
problem can be rotated such that 0V =  next to the surface. 
In this case, eqn. (6) implies that Wc must be such that 
LhWc/LvUg.= O(1), otherwise, ∂X1U = 0 or ∂Z1W = 0 if 
LhWc/LvUg.= o(1) or if o(LhWc/LvUg) = 1, respectively. The 
first possibility implies that there is no streamwise u velocity 
variation in the plume in first order approximation; the 
second that there is no vertical w velocity variat ion, 
respectively. Both conditions are known to be unreasonable, 
in the general case, for the PBL.  

Due to the random nature of turbulent fluctuations, the 
coordinate system cannot be oriented such that ' 0V =  and, 
therefore, the above conclusion does not apply to eqn. (7). In 
fact, for neutral atmosphere, (Lh/Lv) = O(1)[38] holds. 
Substituting this relation and LhWc/LvUg.= O(1) in  eqns. (6) 
to (8) and for convenience introducing the small parameters 
εt, ε*, εc*, εd  results in 

1 1 1
0X Y ZU V W∂ + ∂ + ∂ =                  (9) 

1 1 1
' ' ' 0X Y ZU V W∂ + ∂ + ∂ =               (10) 

1 1 1

1 1 1 1 1 1

1 1 1* *

   

   ' ' ' ' ' '

t t X Y Z

d X X Y Y Z Z

X Y Zc

C U C V C W C

C C C

U C V C W C

ε

ε

ε ε

 ∂ + ∂ + ∂ + ∂ 
 = ∂ + ∂ + ∂ − 

 ∂ + ∂ + ∂ 

,     (11) 

where εt = Lh/tcUg, ε* = u*/Ug, εc* = c*/cs, εd = νc/LhUg.  
Typical values for the variables involved in the definitions 

above are tc = 3,600 s ([37]), u* = 0.3 m/s and Ug = 10 
m/s[38], νc =10-5 m2/s ([39]), Lh  = Lv = 1 km[38], cs = O(10-7) 
kg/m3[40] and c* = O(10-8) kg/m3. The value adopted for Lv 
may vary in the case of a stratified atmosphere. The typical 
value for c* was obtained through comparison with specific 
humid ity values, i.e ., supposing that c*/ cs = q*/qmax, where q 
is the specific humid ity, q* = 5⋅10-3 and qmax = 4⋅10-2[37]. 
With the values listed above, the small parameters take the 
following typical values: εt = 2.8⋅10-2, ε* = 3.0⋅10-2, εc* = 10-1, 
εd = 1.4⋅10-9. With those values, it is true that εd = o(ε*εc*)2, a 
relation that is going to be used later.  

To stretch the lateral coord inates of the problem it is 
necessary to know where the boundary layers of the problem 
are. Th is is not possible, in general, without knowing the 
exact solution of the problem in advance or details of its 
physics. For the PBL, physics indicate that it is located next 
to the surface, thus we use 

1 1 1 1/ , / ,Y Y Z Zε ε= =                 (12) 
where ε ⊂ ]0,1]. For the plume, the general form of the 
equation suggests[41] that eqn. (3) contain two boundary 
layers at the ext remes of its domain, i.e., at  y = ±B  and z = ±B. 
To stretch this kind of problem we use 

1 1 1 1(1 ) / , (1 ) / ,Y Y Z Zε ε= − = −            (13) 
again for ε ⊂ ]0,1]. Substituting eqns. (12) and (13) into eqns. 
(9) to (11) y ields  

1 1 1
1 0X Y ZU V Wε −  ∂ + ∂ + ∂ =  

             (14) 

1 1 1
1' ' ' 0X Y ZU V Wε −  ∂ + ∂ + ∂ =  

            (15) 

( )
( )

( )

1 1 1

1 1 1 1 1 1

1 1 1

1

1

1
* *

  

   ' ' ' ' ' '

t t X Y Z

d X X Y Y Z Z

Xc Y Z

C U C V C W C

C C C

U C V C W C

ε ε

ε ε

ε ε ε

−

−

−

 ∂ + ∂ − ∂ + ∂  
 = ∂ − ∂ + ∂ −  

 ∂ − ∂ + ∂  

 

   

 

,   (16) 

Rotating again the coordinate system such that 0V =  
implies that the derivatives for U and W  derivatives in eqn. 
(14) are of the same order, irrespective of the value of ε. 
Upon rotation it  such that 0U = implies the V and W  
derivatives are of the same order and, thus, all terms in eqn. 
(14) are of the same order of magnitude. This implies that all 
the advective terms of eqn. (16) are of the same order of 
magnitude too. Again, the coordinate system cannot be 
rotated such that ' 0V =  or ' 0U =  so that such a 
conclusion does not apply to eqn. (15). These conclusions 
allow us to write eqn. (16) in an order of magnitude fashion,  






y,z y,z

AdvAc
2 1

* * * *
Dif Dif T T

( ) (1)

( ) ( ) ( ) ( )
x x

t

d d c c

O O

O O O O

ε

ε ε ε ε ε ε ε ε− −

   +

= + + +
  

, (17) 

where 'Ac' stands for the accumulation effect, 'Adv' for the 
advection effect, 'Dif' for molecular diffusion and 'T' for 
turbulent diffusion. The subscripts stand for the d irection of 
the derivative.  
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Table 1.  Distinguishing limits 

Terms of the same 

order 
Distinguishing limits 

Magnitude order of terms 

Dominating terms 
Adv Dify,z Ty,z 

1 2/dε ε  * * /cε ε ε  

Adv, 
Dify,z 

1/2
dε ε=  1 1 1/2

* * / dcε ε ε  Ty,z 

Adv, 
Ty,z 

* *cε ε ε=  1 2 2
* */d cε ε ε  1 

Adv, 
Ty,z 

Ty,z, 
Dify,z * */d cε ε ε ε=  1 2 2

* * / dcε ε ε  
2 2
* * / dcε ε ε  

Ty,z, 
Dify,z 

 

Now we proceed to calculate the d istinguishing limits for 
eqn. (17), i.e., the values of ε for which its terms get the same 
order of magnitude. In general, this can be achieved 
comparing in p rinciple all possible pairs of terms, but here 
we need not consider all pairs because some terms are always 
of smaller order than others as ε →  0, as for instance Difx and 
Dify. The following table shows the result of the comparison. 

In spite of the appearances, only two distinguishing limits 
result from the analysis: ε = ε* εc*, where Adv = O(Ty,z), and 
ε = εd/ε*εc*, and  Difz = O(Ty,z). The value of ε for Adv = 
O(Difz) does not constitute a limit because it is dominated by 
the Ty,z term in this case.  

If we allow ε to vary between  the two obtained 
distinguishing limits, domination of only one term in eqn. 
(17) results. For example, in  the region where εd/ε*εc* << ε 
<< ε*εc*, only Ty,z dominates. Returning the Ty,z type 
symbols to their dimensional form the resulting first order 
equations and the respective regions of valid ity are  

( )
* *

* *

0 ,  for 

0 /   i.e. for
1 / ,

c yy zz

d c

d c

c c

B y z B

ν

ε ε ε ε

ε ε ε

 = ∂ + ∂ 
<

− ≤





               (18) 

( )( )
* *

* *

0 ' ' ' ' ,  for 

/   i.e. for  

, 1 /

c yy zz y z

d c

d c

c c v c w c

y z O B

ν

ε ε ε ε

ε ε ε

  = ∂ + ∂ − ∂ + ∂   
=

= −

 (19) 

( ) ( )
* * * *

* * * *

0 ' ' ' ' ,  for 

/   i.e.  for  
1 , 1 /

y z

d c c

c d c

v c w c

B y z B
ε ε ε ε ε ε

ε ε ε ε ε

 = ∂ + ∂ 

− −

 

 

       (20) 

( )( )
* *

* *

' ' ' ' ,  for 

  i.e.  for  

, 1

x y z y z

c

c

u c v c w c v c w c

y z O B

ε ε ε

ε ε

 ∂ + ∂ + ∂ = − ∂ + ∂ 
=

= −

 (21) 

( )
* *

* *

0,  for 

1  i.e.  for  
0 , 1

x y z

c

c

u c v c w c

y z B
ε ε ε

ε ε

∂ + ∂ + ∂ =

≤

≤ −





           (22) 

The expressions defining the regions of validity in terms 
of y  where obtained noting that in  the stretching process we 
make use of  

1 1(1 ) / (1 ) / (1)Y Y yB Oε ε= − = − =           (23) 
and thus  

( )(1 )y O Bε= −                    (24) 
and similarly for z. Figure 1 depicts the dominant terms 
yielded by the analysis. The regions are not drawn as to 
represent realistic scale rat ios.  

 
Figure 1.  Schematic drawing of the pollutant plume, showing regions of 
dominance of the terms in equation (3) 

4. The GILTT Method  
The ADE of air pollution in the atmosphere, eqn. (3), is 

essentially a statement of conservation of the suspended 
material and it can be written as[43]: 

' 't c c c S∂ + ∇ = −∇ +U U           (25) 

where ),,( wvu=U  is the mean wind and S is the source 
term.  

Adv

Ty,z, Adv

Ty,z

Ty,z, Dify,z

Dify,z

Ty,z, Adv
Ty,z

Ty,z, Dify,z

Dify,z
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Equation (25) has four unknown variables (the 
concentration and turbulent fluxes) which lead us to the well 
known turbulence closure problem. One of the most widely 
used closures for eqn. (25), is based on the gradient transport 
hypothesis (also called K-theory) which, in analogy with 
Fick’s law of molecular diffusion, assumes that turbulence 
causes a net movement of material fo llowing the negative 
gradient of material concentration at a rate which is 
proportional to the magnitude of the gradient[42]: 

cc ∇−= KU ''                   (26) 
Here, the eddy diffusivity matrix K = d iag(Kx, Ky, Kz) is a 

diagonal matrix with the Cartesian components in the x, y 
and z directions, respectively. In the first order closure all 
informat ion of turbulence complexity is contained in the 
eddy diffusivity. 

Equation (26), combined with the continuity equation of 
mass, leads to the ADE[43]: 

( )
T T

t c c c S∂ + ∇ = ∇ ∇ +U K        (27) 

The simplicity of the K-theory of turbulent diffusion has 
led to the widespread use of this theory as a mathematical 
basis for simulating pollutant dispersion (open country, 
urban, photochemical pollution, etc.), but K-closure has its 
known limits. In contrast to molecular diffusion, turbulent 
diffusion is scale-dependent. This means that the rate of 
diffusion of a  cloud of material generally depends on the 
cloud dimension and the intensity of turbulence. As the cloud 
grows, larger eddies are incorporated in the expansion 
process, so that a progressively larger fraction  of turbulent 
kinetic energy is availab le fo r the cloud expansion. 

Equation (27) is considered valid in the domain  (x, y, z) ϵ  
Γ

 
bounded by 0 < x < Lx, 0 < y <Ly and 0 < z < h and 

subject to the following boundary and initial conditions, 

(0,0,0) ( , , )| |
x yL L hc c∇ = ∇ =K K 0 , 0)0,,,( =zyxc   (28) 

Instead of specifying the source term as an inhomogeneity 
of the partial d ifferential equation, we consider a point 
source located at an edge of the domain, so that the source 
position rS = (0, y0, HS) is located at the boundary of the 
domain rS ϵ δ Γ . Note, that in cases where the source is 
located in the domain, one still may divide the whole domain 
in sub-domains, where the source lies on the boundary of the 
sub-domains which can be solved for each sub-domain 
separately. Moreover, a set of different sources may be 
implemented as a superposition of independent problems. 
Since the source term location is on the boundary, in the 
domain this term is zero everywhere (S(r) ≡ 0 for r 

  δ∈ Γ Γ ), so that the source influence may be cast in form 
of a condition, where we assume that our coord inate system 
is oriented such that the x-axis is aligned with the mean wind 
direction. Since the flow crosses the plane perpendicular to 
the propagation (here the y-z-plane) the source condition 
reads: 

0(0, , , ) ( ) ( )Suc y z t Q y y z Hδ δ= − − ,      (29) 

where Q is the emission rate (in units of g/s), h the height of 
the ABL (in units of m), HS the height of the source (in units 

of m), Lx and Ly are the horizontal domain limits (in units of 
m) and )(xδ

 
represents the Cartesian Dirac delta functional. 

In order to solve the problem (27) we reduce the 
dimensionality by one and thus cast the problem into a form 
already solved in[27]. To this end we apply the integral 
transform technique in the y variable, and expand the 
pollutant concentration as: 

( , , , ) ( , , ) ( )Tc x y z t x z t y= R Y           (30) 
where R = (R1, R2, . . .)T and Y = (Y1,Y2, . . .)T is a  vector in the 
space of orthogonal eigenfunctions, given by 

( ) cos( )m mY y yλ=
 
with eigenvalues ym Lm /πλ =  for 

m = 0, 1, 2, … . After substitution of eqn. (30) in eqn. (27) 
and taking moments, we obtain a set of M + 1 
two-dimensional diffusion equations: 

2 2( )t x z z z z z m yu K K Kλ∂ + ∂ = ∂ ∂ + ∂ −R R R R R    (31) 
Observe that to obtain eqn. (31) we specialized the 

application for a pollutant dispersion problem in PBL, 
assuming that the speeds v  and w takes the null value. We 
neglect the diffusion component Kx because we assume that 
the advection is dominant in the x-direction, i.e., 

( )x x x xu c K c∂ >> ∂ ∂ . We also consider that Ky has only 

dependence on the z-direction.  
Problem (31) is solved using Laplace transform technique 

and diagonalization, following the works[27][29][30].   
The specific form of the eddy diffusivity determines now 

whether the problem (31) is a linear or non-linear one. In the 
linear case the K is assumed to be independent of c , 
whereas in more realistic cases, even if stationary, K may 
depend on the contaminant concentration and thus renders 
the problem non-linear. However, until now no specific law 
is known that links the eddy d iffusivity  to the concentration 
so that we hide this dependence using a phenomenological 
motivated expression for K which leaves us with a partial 
differential equation system in  linear form, although the 
original phenomenon is non-linear. In[32], an example 
demonstrates the closed form procedure for a problem with 
explicit t ime dependence, which is novel in the literature.  

4. Discussion  
The reliability of each model strongly depends on the way 

turbulent parameters are calculated and related to the current 
understanding of the PBL. Following[44], during convective 
conditions at 10/ −≤Lh  the following relation is used:  

* (1 / )zK kw z z h= −                  (32) 
On the other hand, in our simulat ions, we use the wind 

speed profiles described by a power law, according to[45],  

( )1 1/ / n
zu u z z=                   (33) 

where uz and u1 are the mean wind velocity respectively at 
the heights z and z1, while n is an exponent that is related to 
the intensity of turbulence[46]. The value used for 
convective conditions is 0.1). 

As an example, we used a boundary layer height of 1000m,  



 American Journal of Environmental Engineering 2013, 3(1): 48-55 53 
 

 

source height of 500m, friction velocity of 0.3m/s, distance 
from the source of 200 m.  

In the further we compare the solution of the ADE to the 
dominant contributions from perturbation analysis. To this 
end we amplify or suppress certain characteristics, i.e. 
diffusion, advection, turbulence, and show the results in 
figures 2-4. 

 
Figure 2.  Full solution of the ADE and advective dominance 

 
Figure 3.  Full solution of the ADE and turbulence dominance 

In the limit νc → 0 molecular d iffusion is faded out, which 
is usually disregarded in dispersion models. A comparison of 
the inclusion or omission of molecular diffusion shows no 
visible difference. Upon reducing diffusive and dissipative 
contributions maintains the advective dominance, which is 
shown in figure 2. The solid line corresponds to the full 
solution, whereas the dotted and dashed lines represent the 
reduced solutions. The oscillatory character is clearly a 
consequence of the approach and shows that in this limit the 
auxiliary problem is not the best choice to model the solution, 
because there is need for a higher dimensional functional 
space. Upon amplificat ion of the turbulent effect one 
observes for small mean wind velocit ies the power of 
turbulence to effectively mix the pollutant with the carrier 

(the air). Further the presence of the remain ing contributions 
restricts the spread of pollutant into a narrow range in the 
stationary limit. The last analysis (see figure 4) shows that, if 
there were a dominant molecular d iffusion, a larger spread 
and more pronounced fluctuations were the result. From a 
comparison of possible values for the concentrations shows 
that the presence of advection, turbulent and dissipative 
mechanis ms suppress effects due to molecular d iffusion. The 
three analysed limits show the potential, that using findings 
from perturbation analysis may help  identify the physical 
profile of the plume. 

 
Figure 4.  Full solution of the ADE and molecular diffusion dominance 

5. Conclusions 
With the present discussion we presented a first attempt to 

disentangle relevant physical mechanisms that constitute the 
dynamics of pollutant dispersion in fo rm of plumes. 
Although there are fundamental differences in the two 
approaches, one based on an order of magnitude analysis, i.e. 
small parameter expansion, the other constructed from 
spectral theory resulting in a solution that makes use of a 
parameterized turbulence model in form of 
phenomenological eddy diffusivity. 

More specifically the turbulent pollutant flow in IVT 
results from a perturbation order evaluation that substitutes 
the otherwise necessary closure, such as Fick's law among 
other possibilit ies. Therefore turbulence closure is local due 
to the consideration of first order terms only. 

The advection diffusion equation approach with its space 
time dependent eddy diffusivity function represents 
turbulent properties and is not restricted to a special regime, 
i.e. it is globally valid. 

Thus, although based on different footings, the IVT 
approach supplies with  a qualitative h ierarchy of 
mechanis ms, that together with the spectral theory based 
approach allows to turn these findings semi-quantitative by 
fading out higher o rder to  leading  order terms in the ADE 
solution. 
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The combination of IVT and GILTT provide a first step 
that allows to tag the mechanism profile or equivalently the 
dynamical profile  of po llution d ispersion in p lumes. In  future 
investigations we will focus on the dynamical equation for 
pollutant dispersion fluctuations (higher statistical moments) 
in order to allow for comparisons between the "local closure" 
from the perturbation analysis and specific limits of 
advection-diffusion variance. Such a procedure will open 
pathways to analyse compatibility of perturbative local 
closure with global eddy diffusivity parameterization. 
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