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Abstract  In this work, the use of Recurrence Plots and Recurrence Quantification Analysis explores the changes in the 
non-linear behavior of harmful airborne particle concentration in four sites around London simultaneously. This research 
has been carried out for 6 years, using large datasets of raw data (hourly) for harmful particles such as CO, SO2, NO2, NO 
and Particulate Matter (PMx). Recurrence analysis has been shown to be a useful tool in many disciplines to find trends, 
rates and predictions. Nevertheless, it has not been shown before the feasibility of using these algorithms to extract infor-
mation for pollution monitoring and control. Also, observations are made with the results and conclusions drawn from 
these observations, showing the feasibility of this approach in finding trends of airborne pollution. 
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1. Introduction 
The states in nature typically change in time. The impor-

tance in the investigation of these changes in complex sys-
tems helps to understand and describe such changes. A rela-
tively new method based on non-linear data analysis has 
become popular to describe the changes of these systems. 
This method is called recurrence plot (Eckmann, 1987; 
Tanio, 2009).  

Recurrence-based methods have a potential for represen-
tation of measurements from complex systems. However, it 
is necessary to determine the time intervals and state space 
subsets in which the stationary assumptions are hold (Yang 
et al., 2011).  

This contribution makes the first approach in quantify 
and analyze the non-linear behavior of harmful airborne 
particles at various sites at London, England using recur-
rence features embedded in the raw datasets. 

2. Background 
2.1. Urban Airborne Pollution 

In recent times, urban air pollution has been a growing 
problem especially for urban communities. Size, shape and 
chemical properties govern the lifetime of particles in the 
atmosphere and the site of deposition within the respiratory 
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tract. Health effects differ upon the size of airborne particu-
lates (Yin et al., 2010).  

Air pollution has become a real concern, particularly in 
large urban locations (Kilabuko et al., 2007; Mirasgedis, 
2008). Also, air pollution has been held responsible for 
various health disorders, especially respiratory complica-
tions resulting in an increase in the number of asthmatic 
cases and hospital admissions in some parts of the world 
and has been widely documented (Liu, 2011; Weinmayr et 
al., 2010; Arbex et al., 2010; Guo et al., 2010). 

In this contribution, five airborne particles have been 
chosen mainly due to their impact on human health and data 
availability at the proposed sites. The datasets are separated 
according to month of the year and type of particle. There is 
one data for each hour, for each particle for all four Lon-
don’s sites, making it difficult to extract information from 
datasets. The airborne particles analyzed in this paper are 
Sulphur dioxide (SO2), Nitrogen Oxide (NO), Nitrogen Di-
oxide (NO2), Carbon Monoxide and particulate matter 
(PM). 

2.2. London’s Sites 

London is the largest urban area and capital city of the 
United Kingdom. Greater London covered an area of 1,579 
square kilometers. A larger area, referred to as the London 
Metropolitan Region covered an area of 8,382. (Sumbler et 
al., 1996) 

There are a number of monitoring sites that are available 
in London, England. For this work, only four sites were 
chosen due to the availability of the data for the five parti-
cles used in this research. These sites are: London Bexley, 
Bloomsbury, London Marylebone Road and London North 
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Kensington.  
London Bexley’s site is located about 13 meters above 

the ground in a suburban area around 200 meters from 
A206 Northend Rd. and 300mts from Thames Rd. London 
Bloomsbury site is located within a self-contained unit at 
the north-east corner of a central London gardens. All four 
sides of the gardens are surrounded by a busy 2 lane 
one-way road system, which is subject to frequent conges-
tion. The nearest road lies at a distance of approximately 25 
meters from the station. The manifold inlet is approximately 
3 meters high. (Defra, 2009) 

Furthermore, London Marylebone Road site is located in 
a self contained cabin on Marylebone Road opposite Ma-
dame Tussauds. The manifold inlet is located at a height of 
3 meters from the ground. The nearest road, the A50 is ap-
proximately 1 meter from the station. Traffic flows of over 
80,000 vehicles per day pass the site on six lanes. The road 
is frequently congested. Lastly, the site at London North 
Kensington is located within a self contained cabin in the 
grounds of Sion Manning School. The manifold inlet is 
approximately 3 meters from the ground. The nearest road 
is a quiet residential road approximately 10 meters from the 
station. The surrounding area is mainly residential (Defra, 
2009). 

2.3. Recurrence Plots 

Recurrence Plot (RP) is a graphical tool introduced by 
Eckmann (1987) in order to extract qualitative characteris-
tics of a time series. The recurrence of a state I at a different 
time j is pictured within a two-dimensional squared matrix 
with black and white dots, where the black dots represent a 
recurrence and both axes represent time (Zbilut et al., 1998; 
Aboofazeli, 2008).  

Such RP can be mathematically expressed as: 

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑚𝑚 ,𝜀𝜀𝑖𝑖 = Θ�εi − �Χi����⃗ − Χj����⃗ ��, Χi����⃗   ℝm ,     i, j = 1. . N,  (1) 

where, N is the number of considered states xi; εi is a 
threshold distance, ‖   .   ‖ a norm and  (.) the Heaviside 
function (Furman, 2006). 

Since  by definition, the RP has a 
black main diagonal line called line of identity (LOI). In 
this context, the Heaviside function  (.) is a recurrence of 
a state  that is sufficiently close to  (states  that 
fall into an m-dimensional neighborhood) (Bradley et al., 
2002). 

Using the time series of a single observable variable (par-
ticles, in this case), it is possible to reconstruct a phase 
space trajectory. Starting from the scalar time series 

 a sequence of embedded vectors 
 

is generated (Palmieri et al., 2009). The set of all embed-
ded vectors , constitutes a tra-
jectory in  where m is the embedding dimension and τ 
is the time delay. Each unknown point of the phase space at 
time I is reconstructed by the delayed vector  in an 
m-dimensional space called the reconstructed phase space. 

According to several authors, determining the embedding 
parameters should be the first step for nonlinear analysis 
(Marwan, 2002; Palmieri et al., 2009; Gao et al., 2000; 
Aparicio, 2008). As recurrence plots are highly sensitive to 
several of the features mentioned previously; a small 
change in one of these parameters can change the appear-
ance of recurrence plots significantly (Rohde et al., 2008). 
Therefore, a search for the best dimension and time delay 
must be made first. In this appraisal, the best dimension 
value is calculated using the algorithm of false nearest 
neighbors (FNN) as shown on (Zou, 2010; Palmieri et al., 
2009).  

Also, when calculating an RP a norm must be chosen 
[Karakasidis et al 2009]. The most widely used norms are 
the L1, L2 (Euclidean norm) and L∞ (Zbilut, 2002).  

For this contribution, the Euclidean norm was used. Fig-
ure 1 shows the recurrence plots of a random signal, a sine 
wave and two RPs chosen randomly for airborne particle 
concentration. 

   
(a)                         (b) 

   
(c)                      (d) 

Figure 1.  Recurrence Plots using (a) a random signal, (b) a sine  wave, (c) 
particle concentration of carbon monoxide at London Bexley for 2010 and 
(d) particle concentration of sulphur dioxide over 2010 at Marylebone Road 
(daily mean) showing the Line of Identity (diagonal line). 

Although it is possible to identify each plot from figure 1 
(c and d), some experience is needed to interpret the RPs 
(Zbilut, 2007). For this reason, recurrence quantification 
analysis (RQA) offers a window to characterize RP struc-
tures.  

The main idea of this project is to reconstruct the (un-
known) system dynamics in the phase space by using time- 
delay embedding, and then computing the distances be-
tween all pairs of embedded vectors, generating a symmet-
ric two-dimensional square matrix for each dataset as 
shown on figures 1c and 1d, applying RQA to each dataset.  

2.4. Recurrence Quantification Analysis (RQA) for RPs 

Zbilut (1998) and Webber (1994) have developed some 
of the methods used today for Quantitative Analysis of the 
recurrence plots. It has been shown that these measures are 
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able to capture dynamical transitions in complex systems 
(Zuo et al., 2010). They define measures of complexity us-
ing certain characteristics of the recurrence plots (March et 
al., 2005; Marwan, 2007).  

In general, the characteristics measured in a RP are: re-
currence rate, determinism, ratio, entropy and trend. 

2.4.1. Recurrence Rate 

The recurrence rate is a measure of recurrences, or den-
sity of recurrence points in the RP. This rate gives the mean 
probability of recurrences in the system (Marwan, 2007; 
Strozzi et al., 2007). The recurrence rate is given by:  

𝑅𝑅𝑅𝑅(𝜀𝜀) = 1
𝑁𝑁2 ∑ 𝑅𝑅𝑖𝑖,𝑗𝑗 (𝜀𝜀)𝑁𝑁

𝑖𝑖,𝑗𝑗=1                (2) 

in the case of time series, and; 

𝑅𝑅𝑅𝑅(𝜀𝜀) = 1
𝑁𝑁4 ∑ 𝑅𝑅𝑖𝑖1,𝑖𝑖2,𝑗𝑗1,𝑗𝑗2 (𝜀𝜀)𝑁𝑁

𝑖𝑖1,𝑖𝑖2 ,𝑗𝑗1,𝑗𝑗2         (3) 

in the case of spatial data [Mocenni et al, 2011].  
The recurrence rate represents the fraction of recurrent 

points with respect to the total number of possible recur-
rences. It is a density measure of the RP. 

2.4.2. Determinism 

Determinism is a measure for predictability of the system 
(Aparicio, 2008). The determinism could also be explained 
as the percentage of recurrent points forming line segments 
which parallel the Line of Identity (LOI). The determinism 
characteristic is given by (Gao et al., 2000): 

min
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             (4) 

Where P(l) denotes the probability of finding a diagonal 
line of length l in the RP. This measure quantifies the pre-
dictability of a system (Zou et al., 2010). The measure of 
determinism (DET) ranges from 0 to 1. Numbers near zero 
indicate randomness while those approaching one indicate 
the presence of a strong signal component (Furman et al., 
2006; Ahlstrom, 2006). 

The average diagonal line length Lmean is defined as: 
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(5) 

This characterizes the average time that two segments of 
a trajectory stay in the vicinity of each other, and is related 
to the mean predictability time (Zou et al., 2010). 

The choice of lmin can also be used in order to exclude 
short temporal scales that are not important. (Karakasidis, 
2009) 

2.4.3. Ratio 

The Ratio variable is defined as the quotient of determin-

ism (DET) divided by the recurrence (REC). It is useful to 
detect transitions between states: this ratio increases during 
transitions but settles down when a new quasi-steady state 
is achieved (Palmieri et al., 2009). 

2.4.4. Entropy 

The measure characteristic entropy refers to the Shannon 
entropy of the frequency distribution of the diagonal line 
lengths (Yulmetyev et al., 1999). According to several au-
thors, the basic idea is that information (Shannon) entropy 
of the random processes is abundantly supplied with the 
qualitative and quantitative data on the object under re-
search (Marwan, 2002; Yulmetyev et al., 1999; Strozzi et 
al., 2007; Karakasidis et al., 2009). The entropy of a system 
is given by: 

   
min

min
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2.4.5. Trend 

The trend is a linear regression coefficient over the re-
currence point density of the diagonals parallel to the LOI. 
The trend measurement is given by: 
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         (7) 

3. Experimental Results 
Recurrence Quantification Analysis have been carried out 

for years 2005-2010 for all four sites mentioned in section 
2.2 using the raw data (hourly) obtained from DEFRA (De-
fra, 2009) for each particle. The recurrence rate (REC), de-
terminism (DET), Ratio, Entropy (ENT) and Trend have 
been modeled using Matlab® software. The results were 
analyzed separately and then put them together to present 
results altogether in form of boxplots. This analysis is com-
plex due to the large quantity of the datasets. 

There is much useful information that can be extracted 
from the recurrence plots using RQA. Figure 2 shows the 
recurrence rate for all particles. 

 
Figure 2.  Recurrence Rate for Particle Concentration, years 2005-2010. 
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In figure 2 is shown the recurrence Rate for all five parti-
cles (CO, NO, NO2, SO2 and PMx. In this figure, it is worth 
notice that the median recurrence rate for CO, NO NO2 and 
PMx lies from 3 to 6, with the lowest recurrence rate being 
for nitrogen dioxide. However, Sulphur dioxide shows a 
much higher recurrence rate with an average of 29 increas-
ing in some regions of London Bloomsbury to 44. This 
higher recurrence rate may be due to the low variances in 
values of the datasets for all years, making it easier for 
RQA to determine recurrence. 

 
Figure 3.  Determinism for Particle Concentration, years 2005-2010. 

Furthermore, the determinism for SO2 is also higher than 
for other particles, having a median of 18 as shown on fig-
ure 3. Although it seems lower due to the scaling of the 
boxplots, the median shows otherwise, the spread in the 
25th to 75th percentiles and the length of the whiskers may 
be due to exceptionally high determinism for that site in 
particular or an outlier and not necessarily represent a 
higher determinism altogether.  

 
Figure 4.  Ratio for Particle Concentration, years 2005-2010. 

 
Figure 5.  Entropy for Particle Concentration, years 2005-2010. 

Furthermore, it is worth notice for entropy that the fre-
quency distribution of the data is slightly higher for particle 
concentration CO than for the other particles. The other 
particles seem to have steady entropy whose median oscil-
lates between 3 to 5 with a few exceptions (i.e. PMx2006, 
2009). This is shown on figure 5. 

The last measure was the trend. Since the trend represents 
the measure of the positioning of recurrent points away 
from the central diagonal, that is the paling of the RP to-
wards its edges (Palmieri et al., 2009). A ‘‘flat” diagram 
indicates stationarity, whereas drift in the signal will result 
in the overall increase or reduction of distances as the signal 
is moved away from the main diagonal. In this respect, it 
could be noticed that most of the particles have a median 
between -0.5 to 0.5. There are a few exceptions such as SO2 
for 2010 and PMx for 2010. The reason could not be ascer-
tain for sure, hence further investigation is recommended. 
This is shown on figure 6. 

 
Figure 6.  Trend for Particle Concentration, years 2005-2010. 

4. Conclusions and Future Work 
Numerous experiments have been carried out with dif-

ferent particles and through different years. Using Recur-
rence Quantification Analysis it could be shown that infor-
mation could be extracted from large datasets of dissimilar 
airborne particles during a considering time lap (six years, 
in this case). Trends could be identified using these tools 
and preliminary conclusions suggest that important infor-
mation such as density distribution, drifts, among others 
could be drawn. 

For future work, it could be useful to use a combination o 
RQA with prediction algorithms such as Support Vector 
Machines to carry out prognosis of the airborne particle 
data. Another useful approach that could be carried out is 
the use of cross recurrence plot (CRP), making a compari-
son between two recurrence plots to determine trends.  
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