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Abstract We should be very careful, when we applied a combination between two models, especially if the first one is
stochastic (probabilistic) and analytic (deterministic) for the second , which is the case of the papers of Rouabah et allAppl.
Surf. Sci. 255 (2009) 6217 and Appl. Surf. Sci. 256 (2010) 3448]. In fact, this work has an aim to show the valuable
approaches to study the transport of electron/positron in solid target. Our work is presented as a comment on the papers of
Rouabah et al. Indeed, after mentioned some weak points of Rouabah et al works we have discussed different points: the
screened Born transport cross-section (TCS) and the true model of Jablonski[Phys. Rev. B 58 (1998) 16470], the large
deviation between Rouabah et al TCSs and the accurate values, the combination between Monte Carlo simulation and
Vicanek and Urbassek theory[Phys. Rev. B 44 (1991) 234] and the normalization condition as well. Besides, we have given

some recommendations on the range calculation using Monte Carlo method.
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1. Introduction

The electron and positron material interaction has a great
importance in severaldomains ofthe analytical techniques of
the material such as electron probe microanalysis, electron
energy-loss spectroscopy, Auger electron spectroscopy,
positron annihilation spectroscopy, etc. Electron-transport
calculations are usually performed by means of either
analytical theory or Monte Carlo simulation. It is important
to know that the latter (Monte Carlo method) has become a
powerful tool in the calculation and prediction of radiation
effects in the solids. Both methods require an accurate
knowledge of the cross-section for elastic scattering of
electrons as functions of the projectile kinetic energy E. For
that reason, Rouabah et al[1-3] have been interested to
propose a simplified expression of the transport
cross-section ofelectron and positron by basing on analytical
expression reported by Jablonski[4]. The direct calculation
of the deviation between their interpolated results and the
accurate values shows that there are drastic deviations. In
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addition, Rouabah et al have combined between the Vicanek
and Urbassek theory[5] (deterministic model) and the Monte
Carlo simulation (probabilistic model) to investigate the
transport of 0.5-4keV electrons in solid targets[l, 6].
However, when we applied a combination between two
different methods we should be very careful especially if the
first model is stochastic (probabilistic) and the second is
analytic (deterministic). After a careful analysis of Refs.[1-3,
6-8] we notice that there is an abnormal problem in number
of questions: the expression of the electron TCS[1-3], the
combination between Monte Carlo and analytic model[l, 6],
the backscattering coefficient results[1,6-8], the range of
penetration[1, 6-8] and the large deviation of their
results[1-3, 6-8]. Moreover, some errors are repeated in all
Rouabah’s papers[1-3, 6-8] (see below). We note that we
have focused our attention on Rouabah’s paper “[1]” which
was the base of number of their other works.

So, the present work shows necessary considerations to
study the transport of the slow electrons and positrons in
solid targets.

This paper is organized as follows. In Section 2 we
describe our comments on the methods used in the
calculations: the transport crosssections, the normalized
combination between the Monte-Carlo simulation and the
Vicanek and Urbassek theory, the electron range, the mean
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number of wide angle collisions and the analytical
backscattering coefficient. Finally, Section 3 contains the
conclusion.

2. Methods and Comments

Our comment on the Rouabah et al works could be
summarized on three subjects: their transport cross-section
(TCS), their combination between analytic and stochastic
models and their calculated range using Monte Carlo
method.

2.1. Comment on Rouabah et al TCSs

Rouabah et al suggested a simplified expression of the
electron transport cross section using a simple fit. However,
actually, they have attributed in their work[1-3, 6-8], an old

screened TCS (denoted Gf ) to Jablonski[4]. Indeed, firstly,

we will present the demonstration that O‘tf is more than 60

years old; then we present the true Jablonski TCS.

2.1.1. The Screened Cross Sections and the Wentzel Model
(1927)

According to Fernandez- Varea et al[9]: “The Wentzel[10]
approach for describing elastic scattering of particles with
charge Z'e (Z ' =- 1 and + 1 for electrons and positrons,
respectively) by atoms of atomic number Z is based on the
simplified scattering potential

V(r) _ 1 2

exp(—r/R) (D

where the exponential factor tries to reproduce the effect of
screening. The screening radius R may be estimated from the
Thomas-Fermi model of the atom, which yields”

R ~Cpa, 27" 2

2

where @ is the Bohr radius ( ay=-—>5 ) and
me

C, =0.8853414.

“However, it is more expedient to determine R so as to
obtain agreement with more accurate elastic scattering
cross sections”’[9].

Generally, R has been taken using the next form (see
Nigam[11] (1959)):

R~R,/u 3)

where R, = CFaOZ_1/3 and p is a constant (generally u>1

which signifies that R<Ry).

It could be noted that, at high incident electron
energies we take pu = p”[12]. Moreover, the first order
Born approximation is valid only at that case (see below).

Thus:
R~R,/u” )
The agreeable value of 4” depends on the used

screened potential and the energy[12]. For example, some

authors take £” =1.12 as value corresponding to the

Thomas Fermi potential (ie. R =~ aOZ_l/3 =R,/C,
see[11-14]).

The transport cross section corresponds to the screened
Differential Cross Section (DCS) (which is obtained from
the first order Born appro ximation), which gives[9]

Z7'e*)? 1+ 4 1
!l =%2ﬂ' Infl —|-——| )
(ppc) A A+1
The screening parameter 4 is given by[7]:
1 _
zz(h/p)zR 2 (6)
where p is the momentum and B is the velocity of the
scattered particle in units ofthe speed of light c.
At no relativistic domain (v<<c), the equation (6) can be
rewritten as follows:

1 #2 N2 e IuooZZZ/s
A= (R /) =5 Y
4 2mE 8Cra, FE
Or
1 8C; E E
—= F2a° > =0.23044 ——— (8)
A e ILtDO 22/3 ﬂw 22/3
Let’s put g, = Z,
2
A e u Z2/3 u” Z2/3

Consequently, the equation (5) can be rewritten as
follows:

zz'ey? | £
o :%272' In(l+&,)——2—| (10
(ppe) I+¢, |
Atnorelativistic domain, th: can be rewritten as follows:
Ze*)? g |
tfz%bz In(1+ &, )——2 (11)
4E 1+ ¢,
Fromequation (9) the energy E is given by:
2 w252/3
e VA
E=—~r = “0 (12)

Consequently, the equation (11) can be rewritten as
follows:
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We have shown that the first order Born approximation
applied on the screened potential gives the same transport

o‘f attributed by Rouabah et al to

cross section
Jablonski[4]. Consequently the age of 0'5 is more than 60

years old (since the works of Wentzel (1927) and Nigam
1959). We note that Rouabah et al have repeated this error

(the attribution of O'tf to Jablonski[4]) in all their

works[1-3, 6-8 ]. Consequently, all these works must be
reviewed.

2.1.2. The Demonstration that the TCS Derived by

Jablonski[4] is not O'tf

Werecall that Jablonskisaid in his abstract[4]: “Analytical
description of photoelectron and Auger-electron transport in

solids requires values of the transport cross sections O,
for electron energies between 50 and 2000 eV. An analytical
Jormula is proposed to provide needed values of T, for
energies in this range and for all elements.”

To proof that &,. derived by Jablonski[4] is not O'f

we can base on Jablonski “himself’[4] as follows:
1. The great proof is the above calculations (see above
“section I”).

2. The symbolization differences between o'f and O, :

Jablonski[4] used the symbolization ¢, in the Abstract,
equations: (2[definition], 21,24a, 25, 27, 32 ..) however he

used the separate  symbolization 0'5 (ie. without

multiplying it by G(g, )) only in equations (8 and 15) and
he don’t use it in his results section.

3. The index B in O'tl:: Jablonski (himself) said[4]:“the
index B denotes the first-order Born appro ximation.”

4. The index “c0”

in g™ which signifies “At sufficiently
high incident electron energies[12]”, which is not the case
of Jablonski study[4] {50-2000 e V}. Knowing that Jablonski
himself'said[4]: “ The constant | in the screening parameter
y depends on energy, especially at energies below 1 keV.

The use of the asymptotic value p* is justified only at
energies exceeding 5 ke V.

5. The calculated deviation mentioned in Jablonski

abstract[4] correspond to O, =G£G(€0)(see equation
(27) in Jablonski paper[4])
6. We note that the index B of th denotes first order

Bom approximation. However, the first order Born
approximation is not valid at lower energies (see[4]; E must
verify E >69.4Z%7; thus, the electron energy should
exceed 229.2 eV for carbon or 1277.7 eV for gold) which is
not the case, too, of 50-2000 eV especially for heavy atoms.
In addition Jablonski himself said[4]:“Thus, the accuracy of
the first-order Born approximation for o, is generally

rather poor. To obtain a more accurate analytical

expression for o, , we need an additional analytical

function G(&py) correcting the cross section O': .

7. We recall also that Jablonski (himself) said[4]:”4n
improved analytical expression is derived here to provide

reasonably accurate values of ©,. in the energy range of
interest for surface-sensitive electron spectroscopies,
i.e.,50-2000 eV.” We note that the deviation of 0'5 by
comparison to that obtained by quantum methods reached
B M-S
tr > O-tr

(tabulated by Mayol and Salvat[15] who used the Relativitic

Partial Waves Expansion Method (RPWEM)) and the
percentage deviation between them. For examp le, we remark

drastic values. In Table 1 we presented o

that at E=250 eV the percentage deviation of o‘tf reaches
~1500 % for Au (Z=79). Has Jablonski proposed such
approximation and said “...reasonably accurate values of

”‘7
o, 7

8. In the abstract of[4], Jablonski said: “For atomic
numbers up to 30, the mean deviation between accurate

values of ©, and values from the analytical formula

reaches 0.5%. For several elements with larger atomic
numbers, this deviation increases to 5%, although it is much

lower for the majority of cases” . However, from Table 1, we
can remark that the deviation of O‘f: is always greater than

2%. Moreover, we found that the deviations reached drastic
values: 30%, 50%, 200 %, 1500%,.. Consequently, and

certainly, o s

p is not the TCS mentioned in the abstract of

Jablonski paper[4].
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Actually the TCS derived by Jablonski lies in his paper[4]:
“Thus, the accuracy of the first-order Born approximation

for o, is generally rather poor. To obtain a more accurate
analytical expression for o, , we need an additional

analytical function G(é‘o) which correcting O'i

oy, =07,Gls,) (14

With

4
i/2
G(g0 ) = &, €Xp Z A, [ln(l Ogo) ] (15)
i=1
where Ay, A1 , Az, Az, and A4 are fitted constants for each
element.”

2.1.3. Rouabah et al TCS[1]

Before quoting our point of view of this section, we recall
that Rouabah et al used the same transport cross section
expressed by equation (13) where the only difference is that

,uoO has been taken as a free parameter. Thus, to determine

47, they have adjusted o7 to Mayol et al TCS[15].
After a fitting process, they suggested the next interpolation
formof ,Lloo given by:

L7 =2.17x1072°-1.54x10*Z°+0.032+0.89 (16)

Since Rouabah et al[1] adjusted Gﬁ to G%is [15]; by

basing on the equation (13), it is easily to conclude that "™
is given by:

. [32a7°5Ctaiy”’ 77"
0.23044x Ex o)™

1/4
{m(mo)_ljg }
0

The equation (17) clearly shows that u” (as adjusted
parameter) is a function of Z and E, but Rouabah et al[1]
expressed it using equation (16) which depends only on Z.
May be the authors of[1] or any one said that “Rouabah et al.
expression depends implicitly on E. In fact what was done p”
is calculating for each element as a function of energy. Then
finding an optimal value for p”* for each element (i.e. for
each z). Finally, one fitted u” as a function of z for all the
elements of interest. So, W”° depends explicitly on z but
implicitlyon E”. Our response will be presented as follows:

e To said that an arbitrary function f(x,y,,,)depends

1/4

(17)

implicitly on the energy (as example), we should find a
relation between at least one parameter (x or y ..) depends

the f(x,y,.) is
independent explicitly and implicitly on the energy.
For example, if f(x,y):./x+y and x=FE* we

can said that f{x,y,..) depends explicitly on x and implicitly
on E. Indeed, the equation (16) does not any relation with the

explicitly on energy otherwise

energy; neither exp licit nor imp licit.

e Rouabah et al[1] have adjusted G5, to o ° [15]. So,
the large deviation between them (see below) is the proof of
the weak point of this choice.

e Elsewhere, we note that the TCS results of[1] (denoted

by G;r in their tables (1-4)[1]) don’t correspond to their fit
given by equation (16). After a number of tests we think that
they have used the next expression:

17 =2.17x1072°-1.54x10*2%+0.033672+0.89

2.1.4. The Invalidity of Rouabah et al TCS[ 1]

To show that Rouabah et al 7CS fit[ 1] is not accur ate, we
can based on their data results themselves. In fact, Table (2)
represents their TCS[ 1], Mayol and Salvat TCS[15] and the
percentage deviation between them. We think that, these
deviations are clearly invalidates their proposal fit (for Al:
21% and 12 % at E=250 and 500 eV ... respectively, for Cu:
41%, 20% and 10.2 % at E=250, 500 and 1000 eV
respectively, for Au: 96% and 30.3 % at E=250 and 500 eV
respectively ....). Unfortunately, this Rouabah et al TCS[1]
has been used in other Rouabahah’s papers[l, 6-8].
Consequently all their works[1, 6-8] must be reviewed and
revised.

2.1.5. The Invalidity of Rouabah et al TCS[2]

Rouabah et al[1], in order to show that their model[1] is
valid, have presented three tables carrying out a comparative

study: their TCS (GTCr )1], TCS of their previous work
(O'Z'?r 2], O'g. given by equation (13) and the TCS
tabulated by Mayol and Salvat (O';f_s )[15] where it is clear

that GTC’, is in better agreement with 6%75 than both

O'fr and O'fr . By contrast, this latter is not the proof of the
validity of their fit[1], but it is the proof of the invalidity of
O';f, [2] and O'}’; . Concerning the invalidity of O'f; at
lower energies; it has been discussed above. However, the
invalidity of their 071; “[2]” can be proved as follows:

Rouabah et al carried out an erratum[16] on their results
of[2] in which they precise[16]:

“(i) in all the text, the statement percentage deviation has
to be replaced by relative deviation.

(i)) In table (4) and fig.1, the deviations D and D’ are
expressed in absolute units and not as percentages.”.

We think that it will be better thatifthe table (4) and Fig. 1
of[2], expressed as percentage commonly used in literature
(i.e. more appropriate than absolute units).

So, to prove that the TCS of[2] is inaccurate, we can
combine between their results published in[2] and their
erratum[16]. Take for example their table (4) of their
work[2], the colon D (which corresponds to the deviation of
their results) of Au (Z=79) we find the next results: 4.62,
1.61, 0.49, 0.29, 0.16, .. According to their erratum[16] “the
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deviations D are expressed in absolute units and not as
percentages” so, these values (4.62, 1.61,...) are in absolute
units; by consequence these deviations become in
percentage as follows: 462%, 161%, 49%, 29%, 16% ..
These deviations are totally unacceptable for the fitting
process. Indeed, we should multiply their published
deviations by 100 (on other word the error factor is 104% ).
Consequently, we note and we reconfirm that their
erratum[ 16] also invalidates their work[2].

2.1.6. The Invalidity of Rouabah et al TCS[3]

Rouabah et al[3] repeated approximately the same above
mistake of[1] in the case of positron. After an adjustment
process to Dapor results[17], they are suggested two

interpolation forms of ,uw given by:
z
”=5.07—-43exp| — (18)
# P ( 39.17]

1” =50.785+0.106z —1.14x1072* +4.93x10°2° (19)

To show that Rouabah et al interpolated TCS[3] is not
accurate; we can base only on their data results. In fact, Table
(3) represents their TCSs[3], Dapor TCS[17] and the
percentage deviation between them. These deviations are
clearly invalidates their proposal.

2.2. The Combination between Monte Carlo Simulation
and Vicanek and Urbassek Formula

Before giving our point of view; we recall that Rouabah
et al[l] have used Monte Carlo simulation (MC) to
calculate the range and Vicanek and Urbassek formula to
calculate the backscattering coefficient (BSC).

In their MC simulation they used the screened Rutherford
cross section, given by:[18]

do, e'z’
dQ  4E*(1-cos0+2B,)°

where z, g,e and E are the atomic number, the scattering

(20)

angle, the electron charge, and the electron energy in eV,
respectively. The parameter 3 represents an atomic screening
parameter which is given by, By =uZ?>/E, where:

((E)=1910x10" E* ~9.97x107E*
+2627x10*E+7.25 for(Al)

w(E)=4538x10"E* —26.32x107 E?

+5431x10*E +16.6 for (Cu)

22)

. M .
The Transport cross section (denoted O in the

Gel

following) obtained by integrating is given by:

o = J.(l —cos 9)%dﬂ 23)

In Vicanek and Urbassek formula, the BSC ( 7]) is
expressed as[5],

n= 1+alL1+az—+a3—3+a4i2 (24)
V2 V2
6
with : a, =——, a, 22, a, :ﬂ(i—lj and
Jr % Ja\z

w=(3-42)

In relation (24), v is the mean number of wide angle
collisions defined as,

v=NRo, (25)

where O, is the transport cross-section, R s the range

tr

of penetration and N is the number of atoms per unit of
volume in the solid target given by:
N — NAvp
A
Pand A are the Avogadro number, the
density and the atomic mass of the target respectively.

So, to calculate V , Rouabah et al[1]used MC simulation
to calculate the range and for this raison, they think that they
have carried out a combination between MC simulation and
Vicanek and Urbassek formula. We think that the word
“combination” is not appropriate because, we think that to do
a combination between MC and the analytic model; the
authors of“[1]” should be used the same elastic and inelastic
models (i.e. the same input data). To show that the authors
of[1] have not carried out a normalized combination, we

(26)

where Nu, ,

have presented in Table (4) o'TCr and o';f where we

remarked a big difference between them (i.e. the TCS used
by[1] in Vicanek and Urbassek expression do not correspond

o-el

to that obtained by integrating

MC code).

Besides, is this combination between Monte Carlo method
and Vicanek and Urbassektheory evident and realistic? Most
part of the response is mentioned in our paper[19]. Indeed,
we have showed that: firstly, the Monte Carlo method is
more recommended, generally, to be used in the calculation
of'the backscattering coefficient than Vicanek and Urbassek
theory (with a condition to use the same input data)[19].

Consequently, we did not need to use this combination.
Secondly, the use of this combination should be done by
taking into account the normalization condition[19].

To make clear the normalization problem, we can give the
following example:

Let’s note by Ny, N, and Ny: the incident particles number,
the absorbed particles number and the backscattered particles
number. We suppose that Ny=10 (to facilitate calculations)

used by them in their
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We suppose also that Monte Carlo method gives
backscattering coefficient BSC1=0.3 (so we conclude that in
this case Np=3 and Na=7), and their model (combination
between Monte Carlo and Vicanek and Urbassek model)
gives BSC2=0.2 (so we conclude that in this case N,=2 and
N.=8). Now, if we take BSC2 as a reference for calculations
(accurate results), the absorbed particles number is 8, but
when we use Monte Carlo, N, is 7. Consequently, this is a
contradiction: which is the correct 7or 8? The problem of the
normalization becomes very difficult when the target is a
thin film[19] which is the case of their paper[6].

Consequently, both their works[ 1, 6] must be reviewed.

Moreover, we note that Rouabah et al[6] have used the
Vicanek and Urbassek formula to calculate the
backscattering coefficient in function of the film thickness.
Let’s ask a question: who showed that the mathematical
expression of the backscattering coefficient developed by
Vicanek and Urbassek (equation (24)) is applicable for thin
films? Knowing that this formula is wvalid only for
semi-infinite solid case or for thin film with a thickness for
which we can consider it as a semi-infinite solid. We note
that Vicanek and Urbassek said -as example- the next clear
expression “The present scheme has to be completed by
semi-infinite medium boundary condition[5]”. This latter is
the second proof of the no evidence of their BSC results in
function of the film thickness, in one hand, and the equation
(24) is not applicable for thin films, in another hand.

2.3. The Electron Range, the Mean Number of Wide
Angle Collisions and the Backscattering Coe fficient
Results

Rouabah et al[1] used Monte Carlo simulating individual
electron scattering events where the elastic model is that
given by equations (20-22) and the inelastic processes are
handled in terms of Gryzinski's excitation function[20]. The
Gryzinski's differential cross section is given by,

3 Ep
do(AE) _ me' Ej( E 2@_&)(153%&)(
dAE  (AE) E\E+E, E

1 @7
_ 2
&[1—&j+iln 2.7+ E-AE
E E) 3 »

B

where AE, E,,

electron binding energy, and the primary projectile energy,
respectively.

The electron range (R) calculated by Rouabah et al[1]
can be deduced by using their data tables[1]. So, from th
e equations (25-26) we conclude that R can be written a
s follows:

and E are the energy loss, the mean

A v

NAvp O-tr

R=

(28)

Consequently:

14
R, =16.5931——(4°)
Tr
v
= (4°)
Tr

So their electron range R,; and R, can be calculated by
combining between the equations (29, 30) and their data
(Tables 1, 2 and 4 of[ 1]).

We note that we have used the same code used by the
authors of[ 1] but, unfortunately, we have not found the same
results. So, in Table (5) we have presented their Ryj and Rey
by substituting their data in the equations (29, 30)[ 1] and that
obtained by using the same Monte Carlo code (denoted R
in the following).

The problem is the following: how to show that their
results (denoted R®) do not correspond to the true results?
We assume that there are three methods (or we propose three
methods) as follows:

The first method: is to use the Monte Carlo simulation
using the same scheme exp lained by[ 18] and calculating the
range (this way is the typical method for verification).

The second method: is to find a published work calculated
the range for Al and Cu using the same Monte Carlo scheme.
For this point, we note that we have not found any previous
works calculating this one using the same procedures except
the work of Bentabet[19] but the elastics models are not the
same.

The third method: this latter is possible and practice. So,
this method has been raised by Jablonski et al[21-22] «who
used two types of algorithms one simulating individual
electron scattering events and the other implementing CSDA.
They found that both algorithms were in satisfactory
agreement for primary energies exceeding 1 keV. At lower
energies there were deviations up to 10% occurred due to
numerical approximations[21]». We note that our work[19]
confirm the later “notification of Jablonski et al”. On other
words, since the authors of[1] have used the Monte Carlo
simu lating individual electron scattering events to calculate
the range then their range should be near to that obtained by
using CSDA (the deviation must be less than 10%
particularly for E>1keV) otherwise there is a problem in
their accuracy results.

The range calculated using the CSDA is given by

(29)

R, =11.7908

(30)

¢ dE
R= -[S— where Ey and S(E) are the primary energy
EO

and the stopping power of primary particle respectively. The
integration was performed, generally, from the primary
energy Ej to the cutoff energy instead of O e V.

Indeed, we note that in our work[19] we have calculated
the range using CSDA for Al. So, Table (6) represents their
range (RY), the range by using the same code (RM), the
range using CSDA (R“P*) and the deviation between them.
We note that Rouabah et al[1] have taken 20 eV as a cutoff
energy however the R“P* calculated by[19] has been done
for the cutoff energy equal to 100 e V. Consequently, when
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we added the range between 20 eV to 100 eV the deviation
becomes greater (reaches =13 % for E=2ke V). There fore, on
the basis of Jablonski et al notification, while the deviation is
more than 10% (particularly for E>1 keV) then the results
of[l] are incorrect. Consequently, all their results
concerning the mean number of wide angle collisions and the
backscattering coefficients are incorrect. We note that this
error has been repeated by Rouabah et al in their work[6]. By
consequence, both their works[1, 6] must be reviewed.

Important remarks:

m We are recognized that the notification “to say that the
algorithm range is true it must be no deviations between the
ranges obtained analytically and that obtained by using
CSDA in Monte Carlo scheme otherwise the used Monte
Carlo code is wrong (except a statistical fluctuation, due to
the use of the Monte Carlo simulation)” was the notice of the
reviewer chosen by the Journal Nucl. Instrum. Methods
Phys. Res. B to review the paper[19]. We think that this
notification is the key to confirm the validity of the Monte
Carlo Algorithmrange.

m In the case of the Monte Carlo method the statistical

fluctuation error is calculated as 1/ \/ﬁ , where N is the
number of initial particles[22]. Since 104 particle histories
were used by the authors of[ 1], this statistical error is found
to be about 1%. On other words, the deviation of their

ranges[1, 6] is not due to the statistical fluctuation but there is
an error calculation.

3. Conclusions

In summary, in this comment we have showed that
Rouabah et al transport cross sections are inaccurate and in
reality were not based on Jablonski s[4], as well. Moreover,
their combination between Monte Carlo and Vicanek and
Urbassek theory is not normalized and all their results
concerning the mean number of wide angle collisions and the
backscattering coefficients must be reviewed and revised. In

B
Table (1). Transport Cross Section (in A®) and the deviation of Oy,
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other words, our work about Rouabah et al papers[1-3, 6-8,
16] can be summarized by point as follows:

1. G;; (Transport cross section) attributed in[1-3, 6-8] to

Jablonski[4] is not true, but it is an old cross-section.
2. Actually the transport cross section of Jablonski[4]

that givenby o, = Ger(é‘O)

3. The tabulated results of &y, (their tables 1-3 0f[1]) do
not correspond to their fit by using:

ue =217 1072 -1.54%10* Z> +0.03Z +0.89
4. 1" Depends on Z and Ebut not only on Z.

is

5. The passage from £~ depends on Z and Eto 4~

depends only on Z is not justifiable, if is not impossible.

6. The deviation of (15 %.., 20%,.., 25%, ..30%....40%, ...)
shows clearly the invalidity of their fit[1-3].

7. The combination between Monte Carlo and Vicanek
and Urbassek theory has been used without a normalized
mannerf 1, 6].

8. The ranges calculated by Rouabah et al[l, 6] are not
correct.

9. The mean number of wide angle collisions of Rouabah
et al are not correct[1].

10. Some (if it is not all) their backscattering coefficients
[1, 6-8] are not correct.

11. We recall that Rouabah et al have calculated the range
by using Monte Carlo simulation where they used the
screened Rutherford cross section and the Gryzinski model
to describe the elastic and inelastic collisions respectively.
We confirmthat either by using CSDA or scattering by event
of Monte Carlo schemes, the range calculated by Rouabah et
al[1, 6, 8] do not correspond to the true values (of Gryzinski
range).

12. Their erratum| 16] itself invalidates their work[2].

M-S

M-S . .. M-S
to Op. . D: is the deviation. D= ‘(O_Tr ‘

B
- O-Tr )/ O-Tr

M-S . B T I
O 7.  :Theelectron transport cross section tabulated by Mayol and Salvat[15]. O 7. : TCS of Born approximation given by (13) with p*=1.22

Al Cu Ag Au
B M-S B M-S B M-S B M-S
E(eV) (s o, D(%) | o | Op D% | O | Op D(%) | o | Op D(%)
250 1.06 0.8048 31.7 | 3616 1351 | 1677 | 7261 1661 | 3371 | 1478 095 14558
500 0.391 0.3265 19.8 | 14548 | 07411 | 963 | 3.112 1056 | 1947 | 6.84 0.99 5909
1000 0.132 0.1205 9.5 | 05241 | 03258 | 609 [ 1175 | 05262 | 1233 | 274 0.69 297.1
1250 | 0.09196 | 0.08593 70 | 03706 | 02428 | 526 | 0841 | 04057 | 1073 | 198 0.58 2414
1500 00681 | 0.06483 50 | 02777 | 01895 | 465 | 0636 | 03247 | 959 | 152 049 2102
1750 00527 | 005089 | 36 | 0217 | 0.158 [ 42.0 | 04997 | 02673 | 86.9 | 121 042 188.1
2000 00421 | 004115 | 23 | 01746 | 0.1265 | 380 | 0405 | 02249 | 80.1 | 098 0.36 172.2
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Table (2). Energy dependence of the transport cross-sections and the deviation of O-ZS' to O'ZJE;I_S in function of Z expressed in A’ 2. ¢y

A. Bentabet et al.:

Transport Cross-sections: Comment on Z. Rouabah et al Papers

Study on Electron/Positron Scattering in Solid Targets Using Accurate

M-S .
Tr

:The

electron transport cross section tabulated by Mayol and Salvat[15]. (77(:; : The electron transport cross section tabulated by[l1].
r M-S c M-S
D = ‘(o-Tr - O-Tr )/ O_Tr ‘
Z=1 7=13 7=29
C M-S , C M-S , C M-S ,
E(eV) oLl | o 0S| D) | o | o7 C0S1| D) | 0oy | o (51| D(%)
250 0.0169 0.01767 436 0974 0.8048 21.02 1904 1351 40.93
500 0.005 0.00517 329 0.366 0.3265 12.10 0.891 0.7411 20.23
1000 0.0015 0.00149 0.67 0.1255 0.1205 4.15 0359 0.3258 10.19
1250 0.001 0.001 0.00 0.0876 0.08593 1.94 0262 02428 791
1500 0.00072 0.00072 0.00 0.0651 0.06483 042 02 0.1895 5.54
1750 0.00055 0.00054 1.85 0.0504 0.05089 096 0.159 0.1528 4.06
2000 0.00043 0.00043 0.00 0.0404 0.04115 1.82 0.13 0.1265 277
=47 Z=60 Z=19
C M-S s C M-S s C M-S s
E(eV) o, | o) usl| D | opn | op 0S| D@ | ol | op 51| D%
250 2.088 1.661 25.71 201 1.77 13.56 1.86 095 95.79
500 1.182 1.056 11.93 1.26 125 0.80 1.29 0.99 30.30
1000 0.56 0.5262 642 0.656 0.663 1.06 0.75 0.69 8.70
1250 0426 04057 5.00 051 0.52 192 061 058 5.17
1500 03368 0.3247 373 041 042 238 0.5 049 2.04
1750 02743 02673 2.62 0.34 035 2.86 042 042 0.00
2000 0.2285 0.2249 1.60 0.289 029 034 036 036 0.00

. . R1 . R2 . D
Table (3). Transport cross —section (in A%). O, Rouabah et al TCS given by (13, 18)[3]. Or. Rouabah et al TCS given by (13, 19)[3]. oy,

Dapor T SC[17]. Di: percentage deviation between 0'71;1 and O'T’i.Dz:percentage deviation between Gfrz and O'ﬁ.

Z Ne (Z=10) Al (Z=13)
E(keV) 0'7{3,1 0'71;2 O'TDr D: D, 0'7{3,1 0'71;2 O'TDr Dy D,

1 0.0624 0.0624 0.0458 36.24 36.24 0.0845 0.0847 0.0617 36.95 37.28
1.5 0.033 0.0331 0.0269 22.68 23.05 0.0461 0.0462 0.0374 23.26 23.53
2 0.0208 0.0208 0018 15.56 15.56 0.0295 0.0295 0.0256 15.23 15.23
2.5 0.0144 0.0144 0013 10.77 10.77 0.0207 0.0207 0.0188 10.11 10.11
3 0.0106 0.0106 0.00989 7.18 7.18 0.0154 0.0154 0.0145 621 621
3.5 0.0082 0.0082 0.00783 4.73 4.73 0.012 0012 00116 345 345
4 0.0065 0.0066 0.00635 236 394 0.0096 0.0096 0.00949 1.16 1.16

Cu (z=29) Ge (z=32)
1 0.1573 0.1571 0.119 32.18 32.02 0.1639 0.1571 0.128 28.05 22.73
1.5 0.0988 0.0988 0.0797 23.96 23.96 0.1054 0.0988 0.0855 23.27 15.56
2 0.0689 0.0689 0.0587 17.38 17.38 0.0745 0.0689 0.0631 18.07 9.19
2.5 0.0513 0.0513 0.0457 12.25 12.25 0.056 0.0513 0.0493 13.59 4.06
3 0.0399 0.0399 0.037 7.84 7.84 0.0439 0.0399 0.0401 948 0.50
3.5 0.0321 0.0321 0.0307 4.56 4.56 0.0355 0.0321 0.0334 6.29 3.89
4 0.0265 0.0265 0.0261 1.53 1.53 0.0294 0.0265 0.0284 352 6.69
Au (z=179) U (z=92)
1 0.202 0205 0238 15.13 13.87 02116 0.2025 0.284 25.49 28.70
1.5 0.1582 0.1603 0.17 6.94 5.71 0.1699 0.1632 0.2 15.05 18.40
2 0.1281 0.1297 0.131 221 0.99 0.1402 0.1352 0.154 8.96 12.21
2.5 0.1065 0.1077 0.106 047 1.60 0.1183 0.1142 0.125 536 8.64
3 0.0902 0.0912 0.0889 146 2.59 0.1014 0.0982 0.105 343 648
3.5 0.0777 0.0785 0.0761 2.10 3.15 0.0882 0.0855 0.0897 1.67 4.68
4 0.0677 0.0684 0.0663 2.11 3.17 0.0776 0.0753 0.0782 0.77 371
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M
Table (4). Energy dependence of the transport cross-sections in Al and Cu expressed in A° 2. O, : Present work by using the elastic model of[18].

" __ M C M-S
D" = ‘O-Tr —oy|/ o,
Al Cu
E (e M ” (o M ” (o
€V ol ol D" (%) ol ol D" (%)
50 5.501 5.528673 0.501 5611 3.765532 49.009
250 0974 093944 3679 1904 138317 37.655
500 0366 03451 6056 0891 0.66652 33.619
750 0.1974 0.1838 739 0532 040466 31.468
1000 0.1255 0.11582 8358 0359 027699 29.608
1250 0.0876 0.08039 8969 0262 020409 28375
1500 0.0651 0.0594 95% 0200 0.15304 26,550
1750 0.0504 0.04586 9.900 0.159 0.12678 25414
2000 0.0404 003656 10.503 0.130 0.10438 24,545

Table (5). the electron penetration range. R® : the electron range of Rouabah et al[ 1] by using equations (29-30). R™“the electron range by usingthe same
code used by Rouabah et al[1]

Al Cu
C : C o
EkeV) | o (1] vi1] R'[1] R ol vi1] R'[1] R
1 0.1256 225 2933 325 0.3595 496 1629 198
2 0.0404 2.14 8789 953 0.1299 4.60 4172 503
3 0.0204 2.10 17122 1859 0.0689 4.57 782.04 932
4 0.0124 2.08 2780.2 2990 0.0433 451 1226.8 1462

Table (6). The electron penetration range in Al. R®: the electron range of Rouabah et al by using equations (29-30). R the electron range by using the

same Monte Carlo code which has been used by Rouabah et al[1]. R the electron range by using Monte Carlo simulation calculated by[19]. R°"* the

electron range obtained by using CSDA scheme caleulated by[19]. D = ‘(RR — RESPA )/ RR‘
E(keV) RM[19] RMC R[1] RPA19] D" (%)
1 323 325 2933 327 11,49
2 947 953 8789 972 10,59
3 1841 1859 17122 1889 10,33
4 2960 2990 2780.2 3060 10,06
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