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Abstract  We should be very carefu l, when we applied a combination between two  models, especially if the first one is 
stochastic (probabilistic) and analytic (deterministic) for the second , which is the case of the papers of Rouabah et al[Appl. 
Surf. Sci. 255 (2009) 6217 and Appl. Surf. Sci. 256 (2010) 3448]. In fact, this work has an aim to show the valuable 
approaches to study the transport of electron/positron in solid target. Our work is presented as a comment on the papers of 
Rouabah et al. Indeed, after mentioned some weak points of Rouabah et al works we have discussed different points: the 
screened Born transport cross-section (TCS) and the true model of Jablonski[Phys. Rev. B 58 (1998) 16470], the large 
deviation between Rouabah et al TCSs and the accurate values, the combination between Monte Carlo simulat ion and 
Vicanek and Urbassek theory[Phys. Rev. B 44 (1991) 234] and the normalizat ion condition as well. Besides, we have given 
some recommendations on the range calculation using Monte Carlo method.  

Keywords  Electron Scattering, Positron Scattering, Transport Cross-Sections, Electron Range, Monte Carlo Simulation, 
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1. Introduction 
The electron and positron material interaction has a great 

importance in  several domains of the analytical techniques of 
the material such as electron probe microanalysis, electron 
energy-loss spect roscopy, Auger elect ron  spectroscopy, 
positron annihilat ion spectroscopy, etc. Electron-t ransport 
calcu lat ions  are usually  perfo rmed by means o f either 
analytical theory or Monte Carlo simulat ion. It is important 
to know that the latter (Monte Carlo method) has become a 
powerful tool in the calcu lation and prediction o f radiation 
effects in  the so lids. Both methods requ ire an  accurate 
knowledge o f the cross-sect ion fo r elast ic scattering  of 
electrons as functions of the project ile  kinetic energy E. For 
that reason, Rouabah  et  al[1-3] have been interested to 
p ropos e a s impl i f ied  e xp res s ion  o f the t rans port 
cross-section of electron and positron by basing on analytical 
expression reported by Jablonski[4]. The direct calculation 
of the deviation between their interpolated results and the 
accurate values shows that there are drastic deviations. In  
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addition, Rouabah et al have combined between the Vicanek 
and Urbassek theory[5] (deterministic model) and the Monte 
Carlo simulat ion (probabilistic model) to investigate the 
transport of 0.5–4keV electrons in solid targets[1, 6]. 
However, when we applied a combination between two 
different methods we should be very careful especially if the 
first model is stochastic (probabilistic) and the second is 
analytic (determin istic). After a carefu l analysis of Refs.[1-3, 
6-8] we notice that there is an abnormal problem in  number 
of questions: the expression of the electron TCS[1-3], the 
combination between Monte Carlo and analytic model[1, 6], 
the backscattering coefficient results[1,6-8], the range of 
penetration[1, 6-8] and the large deviation of their 
results[1-3, 6-8]. Moreover, some errors are repeated in all 
Rouabah’s papers[1-3, 6-8] (see below). We note that we 
have focused our attention on Rouabah’s paper “[1]” which 
was the base of number of their other works.  

So, the present work shows necessary considerations to 
study the transport of the slow electrons and positrons in 
solid targets. 

This paper is organized as fo llows. In Section 2 we 
describe our comments on the methods used in the 
calculations: the transport cross-sections, the normalized 
combination between  the Monte-Carlo simulation and the 
Vicanek and Urbassek theory, the electron range, the mean 
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number of wide angle collisions and the analytical 
backscattering coefficient. Finally, Section 3 contains the 
conclusion. 

2. Methods and Comments 
Our comment on the Rouabah et al works could be 

summarized on three subjects: their transport cross-section 
(TCS), their combination between analytic and stochastic 
models and their calculated range using Monte Carlo 
method.  

2.1. Comment on Rouabah et al TCSs 
Rouabah et al suggested a simplified expression of the 

electron transport cross section using a simple fit. However, 
actually, they have attributed in their work[1-3, 6-8], an old 
screened TCS (denoted B

trσ ) to Jablonski[4]. Indeed, firstly, 

we will present the demonstration that B
trσ  is more than 60 

years old; then we present the true Jablonski TCS. 

2.1.1. The Screened Cross Sections and the Wentzel Model 
(1927) 

According to Fernandez-Varea et al[9]: “The Wentzel[10] 
approach for describing elastic scattering of particles with 
charge Z'e (Z ' =- 1 and + 1 for electrons and positrons, 
respectively) by atoms of atomic number Z is based on the 
simplified scattering potential  
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where the exponential factor tries to reproduce the effect of 
screening. The screening radius R may be estimated from the 
Thomas-Fermi model of the atom, which yields” 
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“However, it is more expedient to determine R so as to 

obtain agreement with more accurate elastic scattering 
cross sections”[9]. 

Generally, R has been taken using the next form (see 
Nigam[11] (1959)): 

µ/0RR ≈                   (3) 

where 3/1
00

−≈ ZaCR F and µ is a constant (generally µ>1 
which signifies that R<R0).

 It could be noted that, at high incident electron 
energies we take µ = µ∞[12]. Moreover, the first order 
Born approximation is valid only at that case (see below). 

Thus: 
∞≈ µ/0RR               (4) 

The agreeable value of ∞µ  depends on the used 
screened potential and the energy[12]. For example, some 
authors take 12.1=∞µ  as value corresponding to the 

Thomas Fermi potential (i.e. FCRZaR /0
3/1

0 =≈ −

 
see[11-14]).  

The transport cross section corresponds to the screened 
Differential Cross Section (DCS) (which is obtained from 
the first order Born approximation), which gives[9] 
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The screening parameter A is given by[7]: 
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where p is the momentum and β is the velocity of the 
scattered particle in units of the speed of light c.  

At no relativistic domain (v<<c), the equation (6) can be 
rewritten as follows: 
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Consequently, the equation (5) can be rewritten as 
follows: 
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At no relat ivistic domain, B
trσ can be rewritten as follows: 
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From equation (9) the energy E is given by: 
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Consequently, the equation (11) can be rewritten as 
follows:
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We have shown that the first order Born approximat ion 
applied on the screened potential gives the same transport 
cross section  attributed by Rouabah et al to 

Jablonski[4]. Consequently the age of  is more than 60 
years old (since the works of Wentzel (1927) and Nigam 
1959). We note that Rouabah et al have repeated this error 
(the attribution of to Jablonski[4]) in all their 
works[1-3, 6-8 ]. Consequently, all these works must be 
reviewed.  

2.1.2. The Demonstration that the TCS Derived by 

Jablonski[4] is not B
trσ  

We recall that Jablonski said  in  his abstract[4]: “Analytical 
description of photoelectron and Auger-electron transport in 
solids requires values of the transport cross sections trσ  
for electron energies between 50 and 2000 eV. An analytical 
formula is proposed to provide needed values of trσ  for 
energies in this range and for all elements.”  

To proof that trσ  derived by Jablonski[4] is not B
trσ  

we can base on Jablonski “himself”[4] as follows: 
1. The great proof is the above calculations (see above 

“section I”).  
2. The symbolization differences between B

trσ  and trσ : 

Jablonski[4] used the symbolization trσ  in  the Abstract, 
equations: (2[definit ion], 21,24a, 25, 27, 32 ..) however he 
used the separate  symbolizat ion B

trσ  (i.e. without 

multip lying it by ( )0εG ) only in equations (8 and 15) and 
he don’t use it in h is results section. 

3. The index B in B
trσ : Jablonski (himself) said[4]:“the 

index B denotes the first-order Born approximat ion.” 
4. The index “∞” in ∞µ  which signifies “At sufficiently 

high incident electron energies[12]”, which is not the case 
of Jablonski study[4] {50-2000 eV}. Knowing that Jablonski 
himself said[4]: “ The constant µ in the screening parameter 
γ  depends on energy, especially at energ ies below 1 keV. 

The use of the asymptotic value µ∞
 is justified only at 

energies exceed ing 5 keV”.  

5. The calcu lated deviation mentioned in  Jablonski 

abstract[4] correspond to ( )0εσσ GB
TrTr = (see equation 

(27) in Jab lonski paper[4]) 
6. We note that the index B of B

trσ  denotes first order 
Born approximat ion. However, the first order Born 
approximation is not valid at lower energ ies (see[4];  E must 
verify 3/24.69 ZE ≥ ; thus, the electron energy should 
exceed 229.2 eV for carbon or 1277.7 eV for gold) which  is 
not the case, too, of 50-2000 eV especially for heavy atoms. 
In addition Jablonski himself said[4]:“Thus, the accuracy of 
the first-order Born approximation for trσ is generally 
rather poor. To obtain a more accurate analytical 
expression for trσ , we need an additional analytical 

function G(ε0) correcting the cross section B
trσ  ”. 

7. We recall also that Jablonski (h imself) said[4]:”An 
improved analytical expression is derived here to provide 

reasonably accurate values of trσ  in the energy range of 
interest for surface-sensitive electron spectroscopies, 
i.e.,50–2000 eV.” We note that the deviation of B

trσ  by 
comparison to that obtained by quantum methods reached 
drastic values. In  Table 1 we presented B

trσ , 
SM

tr
−σ  

(tabulated by Mayol and Salvat[15] who used the Relativit ic 
Partial Waves Expansion Method (RPW EM)) and the 
percentage deviation between them. For example, we remark 
that at E=250 eV the percentage deviation of B

trσ  reaches 
≈1500 % for Au (Z=79). Has Jablonski proposed such 
approximation and said “…reasonably accurate values of 

trσ ..”?  
8. In  the abstract of[4], Jablonski said: “For atomic 

numbers up to 30, the mean deviation between accurate 
values of trσ and values from the analytical formula 
reaches 0.5%. For several elements with larger atomic 
numbers, this deviation increases to 5%, although it is much 
lower for the majority of cases” . However, from Table 1, we 
can remark that the deviation of B

trσ  is always greater than 
2%. Moreover, we found that the deviations reached drastic 
values: 30%, 50%, 200 %, 1500%,.. Consequently, and 
certainly, B

trσ  is not the TCS ment ioned in the abstract of 
Jablonski paper[4]. 

B
trσ

B
trσ

B
trσ
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Actually the TCS derived by Jab lonski lies in  his paper[4]: 
“Thus, the accuracy of the first-order Born approximation 
for is generally rather poor. To obtain a more accurate 

analytical expression for , we need an additional 

analytical function  which correcting  

              (14) 

With  

 (15) 

where A0 , A1 , A2 , A3 , and A4 are fitted constants for each 
element.”  

2.1.3. Rouabah et al TCS[1] 
Before quoting our point of view of this section, we recall 

that Rouabah et al used the same transport cross section 
expressed by equation (13) where the only d ifference is that 

 has been taken as a free parameter. Thus, to determine

, they have adjusted  to Mayol et al TCS[15]. 
After a fitting process, they suggested the next interpolation 
form of  given by: 

= 2.17×10-7Z3-1.54×10-4Z2+0.03Z+0.89

 

    (16) 

Since Rouabah et al[1] ad justed  to [15]; by  
basing on the equation (13), it is easily to conclude that "μ∞" 
is given by: 
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The equation (17) clearly shows that μ∞ (as adjusted 
parameter) is a function of Z and E, but Rouabah et al[1] 
expressed it using equation (16) which depends only on Z. 
May be the authors of[1] or any one said that “Rouabah et al. 
expression depends implicitly on E. In fact what was done μ∞ 
is calculating for each element as a function of energy. Then 
finding an optimal value for μ∞ for each element (i.e. for 
each z). Finally, one fitted μ∞ as a function of z for all the 
elements of interest. So, μ∞ depends explicitly on z but 
implicitly on E”.  Our response will be presented as follows: 

● To said that an arbitrary function depends 
implicitly on the energy (as example), we should find a 
relation between  at least one parameter (x o r y ..) depends 
explicit ly on the energy otherwise is 
independent explicitly and implicitly on the energy.  

For example, if and  we 
can said that f(x,y,..) depends explicitly on x and implicit ly 
on E. Indeed, the equation (16) does not any relation with the 

energy; neither exp licit nor implicit.  
● Rouabah et al[1] have adjusted  to [15]. So, 

the large deviation between them (see below) is the proof of 
the weak point of this choice.  

● Elsewhere, we note that the TCS results of[1] (denoted 
by  in their tables (1-4)[1]) don’t correspond to their fit 
given by equation (16). After a number of tests we think that 
they have used the next expression: 

= 2.17×10-7Z3-1.54×10-4Z2+0.03367Z+0.89 

2.1.4. The Invalid ity of Rouabah et al TCS[1]  

To show that Rouabah et al TCS fit[1] is not accurate , we 
can based on their data results themselves. In fact, Table (2) 
represents their TCS[1], Mayol and Salvat TCS[15] and the 
percentage deviation between them. We think that, these 
deviations are clearly invalidates their p roposal fit  (for Al: 
21% and 12 % at E=250 and 500 eV… respectively, for Cu: 
41%, 20% and 10.2 % at E=250, 500 and 1000 eV 
respectively, for Au: 96% and 30.3 % at E=250 and 500 eV 
respectively ….). Unfortunately, this Rouabah et al TCS[1] 
has been used in other Rouabahah’s papers[1, 6-8]. 
Consequently all their works[1, 6-8] must be reviewed and 
revised.  

2.1.5. The Invalid ity of Rouabah et al TCS[2] 
Rouabah et al[1], in order to show that their model[1] is 

valid, have presented three tables carrying out a comparative 
study: their TCS ( )[1], TCS of their prev ious work 

( )[2],  given by equation (13) and the TCS 

tabulated by Mayol and Salvat ( )[15] where it is clear 

that  is in better agreement with  than both 

 and . By contrast, this latter is not the proof of the 
validity of their fit[1], but it is the proof of the invalidity of 

[2] and . Concerning the invalid ity of  at 
lower energ ies; it has been discussed above. However, the 
invalid ity of their “[2]” can be proved as follows: 

Rouabah et al carried out an erratum[16] on their results 
of[2] in which they precise[16]: 

“(i) in all the text, the statement percentage deviation has 
to be replaced by relative deviation.  

(ii) In table (4) and fig.1, the deviations D and D’ are 
expressed in absolute units and not as percentages.”.  

We think that it  will be better that if the table (4) and Fig. 1 
of[2], expressed as percentage commonly used in literature 
(i.e . more appropriate than absolute units).  

So, to prove that the TCS of[2] is inaccurate, we can 
combine between their results published in[2] and their 
erratum[16]. Take for example their table (4) of their 
work[2], the colon D (which  corresponds to the deviation of 
their results) of Au (Z=79) we find the next results: 4.62, 
1.61, 0.49, 0.29, 0.16, .. According to their erratum[16] “the 
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deviations D are expressed in absolute units and not as 
percentages” so, these values (4.62, 1.61,…) are in absolute 
units; by consequence these deviations become in 
percentage as follows: 462%, 161%, 49%, 29%, 16% .. 
These deviations are totally unacceptable for the fitting 
process. Indeed, we should mult iply their published 
deviations by 100 (on other word the error factor is 104% ). 
Consequently, we note and we reconfirm that their 
erratum[16] also invalidates their work[2]. 

2.1.6. The Invalid ity of Rouabah et al TCS[3]  
Rouabah et al[3] repeated approximately the same above 

mistake of[1] in the case of positron. After an adjustment 
process to Dapor results[17], they are suggested two 
interpolation forms of  given by:  


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
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17.39
exp3.407.5 zµ       (18) 

3623 1093.41014.1106.0785.50 zzz −−∞ ×+×−+=µ  (19) 

To show that Rouabah et al interpolated TCS[3] is not 
accurate; we can base only on their data results. In fact, Tab le 
(3) represents their TCSs[3], Dapor TCS[17] and the 
percentage deviation between them. These deviations are 
clearly invalidates their proposal. 

2.2. The Combination between Monte Carlo Simulation 
and Vicanek and Urbassek Formula 

Before giv ing our point of view; we recall that Rouabah 
et al[1] have used Monte Carlo simulat ion (MC) to 
calculate the range and Vicanek and Urbassek formula to 
calculate the backscattering coefficient (BSC).  
In their MC simulat ion they used the screened Rutherford 
cross section, given by:[18] 

           (20)  

where z, θ,e  and E are the atomic number, the scattering 
angle, the electron charge, and the electron energy in eV, 
respectively. The parameter β represents an atomic screening 
parameter which is given by, βN =µZ2/3/E, where: 
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The Transport cross section (denoted in the 

following) obtained by integrating  is given by: 

           (23) 

In Vicanek and Urbassek formula, the BSC ( ) is 
expressed as[5], 
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with : , ,  and  

. 

In relat ion (24),  is the mean number of wide angle 
collisions defined as, 

               (25) 

where  is the transport cross-section,  is the range 

of penetration and  is the number of atoms per unit of 
volume in the solid target given by: 

               (26) 

where NAv , and A are the Avogadro number, the 
density and the atomic mass of the target respectively. 

So, to calculate , Rouabah et al[1] used MC simulat ion 
to calculate the range and for this raison, they think that they 
have carried  out a combination  between MC simulation and 
Vicanek and Urbassek formula. We think that the word 
“combination” is not appropriate because, we think that to do 
a combination between MC and the analytic model; the 
authors of“[1]” should be used the same elastic and inelastic 
models (i.e . the same input data). To show that the authors 
of[1] have not carried out a normalized combination, we 
have presented in Table (4)  and  where we 
remarked a big difference between them (i.e . the TCS used 
by[1] in Vicanek and Urbassek expression do not correspond 

to that obtained by integrating  used by them in their 

MC code). 
Besides, is this combination between Monte Carlo method 

and Vicanek and Urbassek theory evident and realistic? Most 
part of the response is mentioned in our paper[19]. Indeed, 
we have showed that: firstly, the Monte Carlo  method is 
more recommended, generally, to be used in  the calculation 
of the backscattering coefficient than Vicanek and Urbassek 
theory (with a condition to use the same input data)[19]. 

Consequently, we did not need to use this combination. 
Secondly, the use of this combination should be done by 
taking into account the normalization condition[19].  

To make clear the normalization problem, we can give the 
following example: 

Let’s note by N0, Na and Nb: the incident particles number, 
the absorbed particles number and the backscattered particles 
number. We suppose that N0=10 (to facilitate calculations) 
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We suppose also that Monte Carlo method gives 
backscattering coefficient BSC1=0.3 (so we conclude that in 
this case Nb=3 and Na=7), and their model (combination 
between Monte Carlo and Vicanek and Urbassek model) 
gives BSC2=0.2 (so we conclude that in this case Nb=2 and 
Na=8). Now, if we take BSC2 as a reference for calcu lations 
(accurate results), the absorbed particles number is 8, but 
when we use Monte Carlo, Na is 7. Consequently, this is a 
contradiction: which is the correct 7 o r 8? The problem of the 
normalizat ion becomes very d ifficult  when the target is a 
thin film[19] which is the case of their paper[6]. 

Consequently, both their works[1, 6] must be reviewed.  
Moreover, we note that Rouabah et al[6] have used the 

Vicanek and Urbassek formula to calculate the 
backscattering coefficient in function of the film thickness. 
Let’s ask a question: who showed that the mathematical 
expression of the backscattering coefficient developed by 
Vicanek and Urbassek (equation (24)) is applicable for thin 
films? Knowing that this formula is valid only for 
semi-infin ite solid case or for thin film with a thickness for 
which we can consider it  as a semi-infinite solid. We note 
that Vicanek and Urbassek said -as example- the next clear 
expression “The present scheme has to be completed by 
semi-infinite medium boundary condition[5]”. Th is latter is 
the second proof of the no evidence of their BSC results in 
function of the film thickness, in one hand, and the equation 
(24) is not applicable for thin films, in another hand.  

2.3. The Electron Range, the Mean Number of Wide 
Angle Collisions and the Backscattering Coefficient 
Results 

Rouabah et al[1] used Monte Carlo simulat ing individual 
electron scattering events where the elastic model is that 
given by equations (20-22) and the inelastic processes are 
handled in terms of Gryzinski`s excitation function[20]. The 
Gryzinskì s differential cross section is given by, 

3
4 2

3

1
2

( )( ) 1
( )

4                1 ln 2.7
3

B

BB

B

B

B B

E
E EEd E e E E

d E E E E E E

EE E E
E E E

σ π +∆ ∆ ∆ = − ×   ∆ ∆ +   
  

 ∆ − ∆    − + +            

(27) 

where , , and E are the energy loss, the mean  
electron binding energy, and the primary pro jectile  energy, 
respectively. 

The electron range (R) calculated by Rouabah et al[1] 
can be deduced by using their data tables[1]. So, from th
e equations (25-26) we conclude that R can be written a
s follows: 

           (28) 

Consequently: 

       (29) 

      (30) 

So their electron range RAl and RCu can be calculated by 
combin ing between the equations (29, 30) and their data 
(Tables 1, 2 and 4 of[1]). 

We note that we have used the same code used by the 
authors of[1] but, unfortunately, we have not found the same 
results. So, in Table (5) we have presented their RAl and RCu 
by substituting their data in the equations (29, 30)[1] and that 
obtained by using the same Monte Carlo code (denoted RMC 

in the following). 
The problem is the following: how to show that their 

results (denoted RR) do not correspond to the true results? 
We assume that there are three methods (or we propose three 
methods) as follows: 

The first  method: is to use the Monte Carlo simulat ion 
using the same scheme exp lained by[18] and calculating the 
range (this way is the typical method for verification).  

The second method: is to find a published work calculated 
the range for Al and Cu using the same Monte Carlo scheme. 
For this point, we note that we have not found any previous 
works calculating this one using the same procedures except 
the work of Bentabet[19] but the elastics models are not the 
same.  

The third method: this latter is possible and practice. So, 
this method has been raised by Jablonski et al[21-22] «who 
used two types of algorithms one simulat ing indiv idual 
electron scattering events and the other implement ing CSDA. 
They found that both algorithms were in satisfactory 
agreement for primary energ ies exceeding 1 keV. At lower 
energies there were deviations up to 10% occurred due to 
numerical approximations[21]». We note that our work[19] 
confirm the later “notification of Jablonski et al”. On other 
words, since the authors of[1] have used the Monte Carlo 
simulating indiv idual electron scattering events to calculate 
the range then their range should be near to that obtained by 
using CSDA (the deviation must be less than 10% 
particularly for E>1keV) otherwise there is a problem in 
their accuracy results.  

The range calculated using the CSDA is given by 

 
where E0 and S(E) are the primary energy  

and the stopping power of primary particle respectively.
 
The 

integration was performed, generally, from the primary 
energy E0 to the cutoff energy instead of 0 eV. 

Indeed, we note that in our work[19] we have calculated 
the range using CSDA for Al. So, Table (6) represents their 
range (RR), the range by using the same code (RMC), the 
range using CSDA (RCSDA) and the deviation between them. 
We note that Rouabah et al[1] have taken 20 eV as a cutoff 
energy however the RCSDA calculated by[19] has been done 
for the cutoff energy equal to 100 eV. Consequently, when 
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we added the range between 20 eV to 100 eV the deviation 
becomes greater (reaches ≈13 % for E=2keV). Therefore, on 
the basis of Jablonski et al notificat ion, while the deviation is 
more than 10% (particularly  for E>1 keV) then the results 
of[1] are incorrect. Consequently, all their results 
concerning the mean  number of wide angle co llisions and the 
backscattering coefficients are incorrect. We note that this 
error has been repeated by Rouabah et al in their work[6]. By 
consequence, both their works[1, 6] must be reviewed. 

Important remarks: 
■ We are recognized that the notification “to say that the 

algorithm range is true it  must be no deviations between the 
ranges obtained analytically and that obtained by using 
CSDA in Monte Carlo  scheme otherwise the used Monte 
Carlo code is wrong (except a statistical fluctuation, due to 
the use of the Monte Carlo simulat ion)” was the notice of the 
reviewer chosen by the Journal Nucl. Instrum. Methods 
Phys. Res. B to review the paper[19]. We think that this 
notification is the key to confirm the validity of the Monte 
Carlo Algorithm range. 

■ In the case of the Monte Carlo method the statistical 
fluctuation error is calculated as , where N is the 
number of in itial particles[22]. Since 104 particle histories 
were used by the authors of[1], this statistical error is found 
to be about 1%. On  other words, the deviation of their 
ranges[1, 6] is not due to the statistical fluctuation but there is 
an error calculation. 

3. Conclusions 
In summary, in this comment we have showed that 

Rouabah et al transport cross sections are inaccurate and in 
reality were not based on Jablonski’s[4], as well. Moreover, 
their combination between Monte Carlo and Vicanek and 
Urbassek theory is not normalized and all their results 
concerning the mean  number of wide angle co llisions and the 
backscattering coefficients must be reviewed and revised. In 

other words, our work about Rouabah et al papers[1-3, 6-8, 
16] can be summarized by point as follows: 

1. (Transport cross section) attributed in[1-3, 6-8] to 
Jablonski[4] is not true, but it is an old cross-section. 

2. Actually the transport cross section of Jablonski[4]  is 
that given by  

3. The tabulated results of  (their tables 1-3 o f[1]) do 
not correspond to their fit by using: 

 

4.  Depends on Z and E but not only on Z.  

5. The passage from  depends on Z and E to 
depends only on Z is not justifiable, if is not impossible. 

6. The deviation of (15 %.., 20%,.., 25%, ..30%,...40%, …) 
shows clearly the invalid ity of their fit[1-3].   

7. The combination between Monte Carlo and Vicanek 
and Urbassek theory has been used without a normalized 
manner[1, 6].  

8. The ranges calculated by Rouabah et al[1, 6] are not 
correct. 

9. The mean  number of wide angle collisions of Rouabah 
et al are not correct[1]. 

10. Some (if it is not all) their backscattering coefficients 
[1, 6-8] are not correct. 

11. We recall that Rouabah et al have calculated the range 
by using Monte Carlo simulation where they used the 
screened Rutherford cross section and the Gryzinski model 
to describe the elastic and inelastic collisions respectively. 
We confirm that either by using CSDA or scattering by event 
of Monte Carlo schemes, the range calculated by Rouabah et 
al[1, 6, 8] do not correspond to the true values (of Gryzinski 
range). 

12. Their erratum[16] itself invalidates their work[2]. 

Table (1).  Transport Cross Section (in A°2) and the deviation of  to . D: is the deviation. . 

: The electron transport cross section tabulated by Mayol and Salvat[15]. : TCS of Born approximation given by (13) with µ∞=1.22 

 Al Cu Ag Au 

E(eV)   D(%) 
  

D(%) 
  

D(%) 
  

D(%) 

250 1.06 0.8048 31.7 3.616 1.351 167.7 7.261 1.661 337.1 14.78 0.95 1455.8 
500 0.391 0.3265 19.8 1.4548 0.7411 96.3 3.112 1.056 194.7 6.84 0.99 590.9 
1000 0.132 0.1205 9.5 0.5241 0.3258 60.9 1.175 0.5262 123.3 2.74 0.69 297.1 
1250 0.09196 0.08593 7.0 0.3706 0.2428 52.6 0.841 0.4057 107.3 1.98 0.58 241.4 
1500 0.0681 0.06483 5.0 0.2777 0.1895 46.5 0.636 0.3247 95.9 1.52 0.49 210.2 
1750 0.0527 0.05089 3.6 0.217 0.1528 42.0 0.4997 0.2673 86.9 1.21 0.42 188.1 
2000 0.0421 0.04115 2.3 0.1746 0.1265 38.0 0.405 0.2249 80.1 0.98 0.36 172.2 
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Table (2).  Energy dependence of the transport cross-sections and the deviation of  to  in function of Z expressed in A˚ 2. : The 

electron transport cross section tabulated by Mayol and Salvat[15]. : The electron transport cross section tabulated by[1]. 

 

 Z=1 Z=13 Z=29 

E(eV) [1] [15] D’ (%) [1] [15] D’ (%) [1] [15] D’ (%) 

250 0.0169 0.01767 4.36 0.974 0.8048 21.02 1.904 1.351 40.93 
500 0.005 0.00517 3.29 0.366 0.3265 12.10 0.891 0.7411 20.23 

1000 0.0015 0.00149 0.67 0.1255 0.1205 4.15 0.359 0.3258 10.19 
1250 0.001 0.001 0.00 0.0876 0.08593 1.94 0.262 0.2428 7.91 
1500 0.00072 0.00072 0.00 0.0651 0.06483 0.42 0.2 0.1895 5.54 
1750 0.00055 0.00054 1.85 0.0504 0.05089 0.96 0.159 0.1528 4.06 
2000 0.00043 0.00043 0.00 0.0404 0.04115 1.82 0.13 0.1265 2.77 

 Z=47 Z=60 Z=79 

E(eV) [1] [15] D’ (%) [1] [15] D’ (%) [1] [15] D’ (%) 

250 2.088 1.661 25.71 2.01 1.77 13.56 1.86 0.95 95.79 
500 1.182 1.056 11.93 1.26 1.25 0.80 1.29 0.99 30.30 

1000 0.56 0.5262 6.42 0.656 0.663 1.06 0.75 0.69 8.70 
1250 0.426 0.4057 5.00 0.51 0.52 1.92 0.61 0.58 5.17 
1500 0.3368 0.3247 3.73 0.41 0.42 2.38 0.5 0.49 2.04 
1750 0.2743 0.2673 2.62 0.34 0.35 2.86 0.42 0.42 0.00 
2000 0.2285 0.2249 1.60 0.289 0.29 0.34 0.36 0.36 0.00 

Table (3).  Transport cross –section (in A°2). 1R
Trσ  : Rouabah et al TCS given by (13, 18)[3]. 

2R
Trσ  : Rouabah et al TCS given by (13, 19)[3]. 

D
Trσ  

Dapor TSC[17]. D1: percentage deviation between 1R
Trσ  and D

Trσ . D2: percentage deviation between 2R
Trσ  and D

Trσ .  

Z Ne (Z=10) Al (Z=13) 

E(keV) 1R
Trσ  2R

Trσ  D
Trσ  D1 D2 1R

Trσ  2R
Trσ  D

Trσ  D1 D2 

1 0.0624 0.0624 0.0458 36.24 36.24 0.0845 0.0847 0.0617 36.95 37.28 
1.5 0.033 0.0331 0.0269 22.68 23.05 0.0461 0.0462 0.0374 23.26 23.53 
2 0.0208 0.0208 0.018 15.56 15.56 0.0295 0.0295 0.0256 15.23 15.23 

2.5 0.0144 0.0144 0.013 10.77 10.77 0.0207 0.0207 0.0188 10.11 10.11 
3 0.0106 0.0106 0.00989 7.18 7.18 0.0154 0.0154 0.0145 6.21 6.21 

3.5 0.0082 0.0082 0.00783 4.73 4.73 0.012 0.012 0.0116 3.45 3.45 
4 0.0065 0.0066 0.00635 2.36 3.94 0.0096 0.0096 0.00949 1.16 1.16 
 Cu (z = 29) Ge (z = 32) 

1 0.1573 0.1571 0.119 32.18 32.02 0.1639 0.1571 0.128 28.05 22.73 
1.5 0.0988 0.0988 0.0797 23.96 23.96 0.1054 0.0988 0.0855 23.27 15.56 
2 0.0689 0.0689 0.0587 17.38 17.38 0.0745 0.0689 0.0631 18.07 9.19 

2.5 0.0513 0.0513 0.0457 12.25 12.25 0.056 0.0513 0.0493 13.59 4.06 
3 0.0399 0.0399 0.037 7.84 7.84 0.0439 0.0399 0.0401 9.48 0.50 

3.5 0.0321 0.0321 0.0307 4.56 4.56 0.0355 0.0321 0.0334 6.29 3.89 
4 0.0265 0.0265 0.0261 1.53 1.53 0.0294 0.0265 0.0284 3.52 6.69 
 Au (z = 79) U (z = 92) 

1 0.202 0.205 0.238 15.13 13.87 0.2116 0.2025 0.284 25.49 28.70 
1.5 0.1582 0.1603 0.17 6.94 5.71 0.1699 0.1632 0.2 15.05 18.40 
2 0.1281 0.1297 0.131 2.21 0.99 0.1402 0.1352 0.154 8.96 12.21 

2.5 0.1065 0.1077 0.106 0.47 1.60 0.1183 0.1142 0.125 5.36 8.64 
3 0.0902 0.0912 0.0889 1.46 2.59 0.1014 0.0982 0.105 3.43 6.48 

3.5 0.0777 0.0785 0.0761 2.10 3.15 0.0882 0.0855 0.0897 1.67 4.68 
4 0.0677 0.0684 0.0663 2.11 3.17 0.0776 0.0753 0.0782 0.77 3.71 

C
Trσ SM

Tr
−σ SM

Tr
−σ

C
Trσ

( ) SM
Tr

C
Tr

SM
TrD −− −=′ σσσ /

C
Trσ SM

Tr
−σ C

Trσ SM
Tr

−σ C
Trσ SM

Tr
−σ

C
Trσ SM

Tr
−σ C

Trσ SM
Tr

−σ C
Trσ SM

Tr
−σ



 American Journal of Condensed Matter Physics 2013, 3(3): 31-40 39 
 

 

Table (4).  Energy dependence of the transport cross-sections in Al and Cu expressed in A˚ 2. : Present work by using the elastic model of[18]. 

SM
Tr

C
Tr

M
TrD −−=′′ σσσ /  

E (eV) 

Al Cu  

[1]  D” (%) [1]  D” (%) 

50 5.501 5.528673 0.501 5.611 3.765532 49.009 
250 0.974 0.93944 3.679 1.904 1.38317 37.655 
500 0.366 0.3451 6.056 0.891 0.66652 33.679 
750 0.1974 0.1838 7.399 0.532 0.40466 31.468 
1000 0.1255 0.11582 8.358 0.359 0.27699 29.608 
1250 0.0876 0.08039 8.969 0.262 0.20409 28.375 
1500 0.0651 0.0594 9.596 0.200 0.15804 26.550 
1750 0.0504 0.04586 9.900 0.159 0.12678 25.414 
2000 0.0404 0.03656 10.503 0.130 0.10438 24.545 

Table (5).  the electron penetration range. RR : the electron range of Rouabah et al[1] by using equations (29-30). RMC the electron range by using the same 
code used by Rouabah et al[1] 

 Al Cu 

E(keV) [1] v[1] RR[1] RMC [1] v[1] RR[1] RMC 

1 0.1256 2.25 293,3 325 0.3595 4.96 162,9 198 
2 0.0404 2.14 878,9 953 0.1299 4.60 417,2 503 
3 0.0204 2.10 1712.2 1859 0.0689 4.57 782.04 932 
4 0.0124 2.08 2780.2 2990 0.0433 4.51 1226.8 1462 

Table (6).  The electron penetration range in Al. RR: the electron range of Rouabah et al by using equations (29-30). RMC the electron range by using the 

same Monte Carlo code which has been used by Rouabah et al[1]. RMC2 the electron range by using Monte Carlo simulation calculated by[19]. RCSDA the 

electron range obtained by using CSDA scheme calculated by[19].  

E(keV) RMC2[19] RMC RR[1] RCSDA[19] DR (%) 
1 323 325 293,3 327 11,49 
2 947 953 878,9 972 10,59 
3 1841 1859 1712.2 1889 10,33 
4 2960 2990 2780.2 3060 10,06 
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