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Abstract  Important aspects of a system of interacting bosons like liquid 4He are critically analyzed to lay down the basic 
foundations of a new approach to develop its microscopic theory that explains its properties at quantitative level. It is shown 
that each particle represents a pair of particles (identified as the basic unit of the system) having equal and opposite momenta 
(q,-q) with respect to their center of mass (CM) that moves as a free particle with momentum K; its quantum state is repre-
sented by a macro-orbital which ascribes a particle to have two motions (q and K) of the representative pair. While q is re-
stricted to satisfy q ≥ qo = π/d (d being the nearest neighbor distance) due to hard core inter-particle interaction, K, having no 
such restriction, can have any value between 0 and ∞. In the ground state of the system, all particles have: (i) q = qo and K = 0, 
(ii) identically equal nearest neighbor distance r (= d), and (iii) relative phase positions locked at ∆φ (= 2q.r) = 2nπ (n = 1, 2, 
3...); they define a close packed arrangement of their wave packets (CPA-WP) having identically equal size, λ/2 = d. The 
transition to superfluid state represents simultaneous onset of Bose Einstein condensation of particles in the state of q = qo and 
K = 0 and an order-disorder process which moves particles from their disordered positions in phase space (with ∆φ ≥ 2π in the 
high temperature phase) to an ordered positions defined by ∆φ = 2nπ (in the low temperature phase). Quantum correlation 
potentials play an important role in this process. Particles in the superfluid state cease to have relative motion. They develop 
a kind of collective binding energy (Eg(T)), identified as an energy gap between normal liquid state and superfluid state. 
These inferences help in understanding all significant properties of the superfluid state including loss of viscosity, quantized 
vortices, critical velocities, infinitely high thermal conductivity, thermo-mechanical and mechano-caloric effects, etc. at 
quantitative scale; however, this fact is demonstrated in detail, elsewhere. 
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1. Introduction 
Liquid 4He (LHe-4)[a system of interacting bosons (SIB)] 

exhibits an interesting and extensively investigated phase 
transition at Tλ = 2.17K[1-5]. While its high temperature (HT) 
phase (He-I) has properties of a normal liquid, the low 
temperature (LT) phase (He-II) assumes several unique 
properties such as superfluidity, -flow through narrow 
channels without resistance (i.e., viscosity, η = 0). For the 
last seventy five years, superfluidity of He-II has been in 
focus for its widely different experimental and theoretical 
studies because it serves as a testing ground for the impacts 
of the wave nature of particles at macroscopic level and this 
has been reflected by a large number of research papers on 
the related physics published every year. 

The observation of superfluidity of LHe-4[1] in 1938, 
gave great boost to its experimental and theoretical studies. 
Within a  short per iod of about three years enough 
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experimental results were available[3] for a phenomenol-
ogical theory developed by Landau[6] which identified He-II 
as a homogeneous mixture of two fluids, i.e., superfluid 
(density ρs) and normal fluid (density ρn = ρ − ρs with ρ = 
total density of He-II) of different properties[7]; the theory is 
well known as Landau’s two fluid theory and it is elegantly 
discussed by Putterman[5]. Similarly, after a few more years 
Bogoliubov[8] reported his theory of a system of weakly 
interacting bosons as a most significant contribution towards 
the development of the microscopic theory of a SIB and 
concluded that the density of Bose Einstein condensate (BEC) 
(also known as zero momentum (p = 0) condensate[9, 10]) is 
depleted if the bosons have repulsive interaction and the 
depletion increases with the increase in its strength; this[8] 
rendered a reason to believe in London’s suggestion[11] that 
superfluidity of He-II originates from the existence of p = 0 
condensate of 4He-atoms which was presumed to be an im-
portant basis for further developments in the theory of a SIB. 

London’s suggestion[11] was further strengthened by a 
series of papers by Feynman and his collaborators[12-16] 
published during 1952-58. Starting from the exact quantum 
mechanical partition function of LHe-4, Feynman[12] not 
only showed that: (i) strong repulsion between 4He-atoms 
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does not change λ−transition qualitatively from BE- con-
densation, and (ii) the spectrum of the elementary excitations 
of He-II (as perceived by Landau[6] to develop his two fluid 
theory) has quantum mechanical basis[13-16] but also dis-
covered the origin of quantum vortices and their relation 
with criticality of He-II for its flow under rotation and 
through narrow channels[15]. In addition, Cohen and 
Feynman[17] predicted that the amplitude of neutron ine-
lastic scattering (NIS) from quasi-particle excitations of 
LHe-4 should be reasonably large and this was later proved 
to be true through experiment[4]. In a nut shell, these stud-
ies[12-17] made Landau’s two fluid theory[6] more mean-
ingful because its phenomenological concepts of phonons 
and rotons, which determine ρn(T) and ρs(T ), were shown to 
have microscopic foundation. 

In what follows after[8] and[12-16], while the main ob-
jective of the theoretical studies of LHe-4 remained to: (i) 
formulate the relation for its excitation spectrum, E(Q), and 
(ii) calculate the amount of p = 0 condensate (i.e., the frac-
tion of the total number of particles (N) in p = 0 state np=0(T) 
= Np=0(T)/N) in He-II, the experimental studies were aimed at: 
(i) finding the details of E(Q), (ii) confirming the presumed 
existence of p = 0 condensate and finding its magnitude and 
(iii) revealing other aspects of significance such as quantum 
vortices. To this effect, while Bogoliubov’s theory[8] 
emerged as the starting point for the development of the 
microscopic theory of a SIB by using perturbative approach 
and second quantization[18], Feynman’s work[12-16] laid 
the foundation for the application of variational approach of 
quantum theory[19] and path integrals to calculate different 
properties of a many body quantum system (MBQS). This 
motivated a large number of researchers to undertake theo-
retical study of LHe-4 by using different possible presump-
tions, approximations, trial functions, mathematical tools 
and computational techniques and encouraged many ex-
perimentalists to measure its different properties. The wealth 
of theoretical and experimental results, so generated, have 
been periodically reviewed and analyzed in large number of 
books and review articles. Here we refer some of them for 
their relevance to the present study. These are broadly related 
to: (i) the progress of microscopic understanding of a 
SIB[20-23], (ii) computer simulations of the properties of 
LHe-4[24], (iii) the values of np=0(T) in He-II[25-28], (iv) 
E(Q) of LHe-4[29-31], and (v) quantum vortices[32, 33]. 
The basic understanding of the subject, so developed, is also 
summarized elegantly in graduate level texts[34-36].  In 
what follows, the unique properties of He-II are understood 
in terms of two fluid theory[6] and/or Ψ−theory[37] with a 
touch of microscopic basis which correlates ρs(T) with 
np=0(T ) which is estimated to fall around 10% for He-II at T 
= 0[28]. However, this conclusion not only faces several 
unanswered questions[38] but also finds no unequivocal 
experimental support for the existence of the presumed p = 0 
condensate in He-II, -as evident from a discussion by Glyde 
and Svensson[25], Sokol[28] and Leggett[39]. 

Several research groups have been trying to revise our 
understanding of the superfluid state of a SIB, particularly, 

after the discovery of BEC in trapped dilute gases (TDG) and 
their detailed studies[40-42]. While some researchers[43-46] 
have been trying to establish the idea that the said state has a 
kind of generalized/composite condensate (p = 0 condensate 
+ pair condensate + ..), others[47, 48] have been making 
their efforts to underline the condensation of Cooper type 
pairs only. Developments in these directions are reviewed, 
recently, in several articles, viz.,[49-51]. 

As such, it is evident that the real form of condensate re-
sponsible for the superfluidity of a SIB is unclear and a mi-
croscopic theory which explains the properties of LHe-4 at 
quantitative scale is still awaited. Guided by this observation 
we worked out a new approach to develop our 
non-conventional microscopic theory (NCMT) of a SIB by 
solving the N particle differential Schrodinger equation. We 
note that different approaches (viz., variational quantum 
approach and second quantization clubbed with perturbation 
techniques) to conventional microscopic theory (CMT) of a 
SIB use single particle basis (SPB) in a sense that each par-
ticle is presumed to represent a single particle kept in a box 
of volume V of the system with its states described by plane 
waves; in other words a single particle represents the basic 
unit of the system. However, for the reasons which become 
clear in the process of the formulation of our theory, we use 
pair of particles basis (PPB) which identifies a pair of parti-
cles as the basic unit of the system. 

The paper is arranged as follows. The Hamiltonian of a 
SIB like LHe-4 and the wave mechanics of a pair of particles 
are critically analyzed to lay down the basic foundations of 
our approach in Section 2. While the wave function of 
N−particle states (with corresponding eigen energies) and 
ground state (G-state) configuration are determined in Sec-
tion 3, a detailed analysis of the λ−transition and related 
aspects is studied in Section 4. The origin of bound pair 
formation and energy gap (a kind of collective binding 
among all the N particles) between superfluid (S) and normal 
fluid (N) phases of the system and its relationship with su-
perfluidity and related aspects are revealed in Section 5. 
Important aspects of Bogoliubov’s picture, two fluid theory, 
Ψ−theory, etc. and crucial experimental observations which 
render decisive support to our theory are briefly analyzed in 
Section 6. While important aspects of our theory and CMT 
are summarized in Section 7 for their comparison, useful 
concluding remarks are made in Section 8. 

2. Basic aspects of a SIB 
2.1. Hamiltonian 

An N particle SIB like LHe-4 is described[9], to a good 
approximation, by 

H(N) = Σi
N hi+ Σi > jV(rij); with hi = -(ћ2/2m)▽i

2    (1) 
where m is the mass of a particle and V(rij) = VR(rij) + VA(rij) 
is a two body central force potential with (i) VR(rij ), being the 
short range strong repulsion and (ii) VA(rij), a weak attraction 
of slightly longer range. While VR(rij) can be approximated to 
hard core (HC) interaction VHC(rij)[defined by VHC(rij ≤ σ) = 
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∞ and VHC(rij > σ) = 0 with σ being the HC diameter of a 
particle], VA(rij) renders a flat surface of constant –ve poten-
tial (say, −Vo) for the particles (hard spheres) to remain 
confined to the volume (V) of the liquid and to move freely 
unless they collide with each other or the boundaries of the 
system (the free surface of the liquid and walls of the con-
tainer). As discussed in Section 5.1, VA(rij) also serves as a 
source of collective binding of all the N particles in the 
S-phase of a SIB. Foregoing −Vo for its constant value, the 
effective Hamiltonian of LHe-4 can be written as, 

Ho(N) = Σi
N hi + Σi > j A(rij)δ(rij)        (2) 

where we use 
                     VHC(rij) ≡ A(rij)δ(rij)             (3) 

with A(rij) being the strength of Dirac delta δ(rij) repulsion. 
For impenetrable HC particles, we have A(rij) → ∞ with rij 
→ 0. 

With a view to find the physical basis of Eqn.3 which 
agrees closely with a similar relation derived mathematically 
by Huang[52], we examine the possible configuration of two 
HC particles (say, P1 and P2) right at the instant of their 
collision which occurs with rCM (1) = σ/2 and rCM (2) = −σ/2 
where rCM (i = 1 or 2) represents the distance of the center of 
mass (CM) of i−th particle from the CM of the pair (i.e., P1 
and P2). We note that P1 and P2 encounter VHC(rij) only 
when they register their physical touch at the instant of their 
collision; no force can compress them beyond this touch. The 
process of collision does not register how far are the CM 
points of individual P1 and P2 from the point of this touch 
which is not different from the CM of the pair. The change in 
potential energy of P1 and P2 during their collision is, ob-
viously, independent of their σ and this justifies Eqn.3. We 
understand that this equivalence would not be justified in 
relation to certain physical aspects of a SIB (e.g., the volume 
occupied by a given number of particles) where the real size 
of the particle assumes importance. 

2.2. Dynamics of a Pair of Particles 

Although, particles in a SIB like LHe-4 under certain 
physical conditions can be treated, to a good approximation, 
as independent particles, even CMTs based on SPB consider 
particles in pairs to evaluate their potential energy since they 
interact through two body interactions, V(rij). This shows 
that consideration of single particle as a basic unit of the 
system does not have general validity. Evidently, for a 
complete and better understanding of a SIB we need to con-
sider a pair of particles as its basic unit whose dynamics can 
be described in the CM coordinate system by 
Ho(2)Ψ(r,R) =[(ћ2/4m) (-▽R

2 - 4▽r2) + A(rij)δ(rij)] Ψ(r,R) = 
E(2)Ψ(r,R)               (4) 

with 
Ψ(r,R) = ψk(r) exp (iK.R),          (5) 

where 
  k=p2−p1=2q and K=p2+p1,          (6) 

respectively, define their relative and CM momenta, and  
r = b2 − b1, and R = b2 + b1        (7) 

define their relative and CM positions with b1 and b2 being 
their positions and p1 and p2 being their momenta (in wave 

number). 
In order to find Ψ(r,R) (Eqns.4 and 5) we may treat 

A(r)δ(r) as a step potential, since it has infinitely large +ve 
value only at r = 0. Consequently, the quantum state of P1 
and P2 at all points (excluding r = 0) can be represented, to a 
good approximation, by 

Ψ(1, 2)± = (1/√2)[up1 (b1)up2(b2)± up2(b1)up1(b2)]  (8) 
with 

upi (bi) = exp(ipi.bi)           (9) 
being a plane wave having unit normalization. However, 

for the fact A(r)δ(r) = ∞ at r = 0, we use the condition that 
Ψ(1,2)± = 0 at r = 0. Rearranging Ψ(1,2)± (Eqn.8) in terms of 
CM coordinates, we have 

Ψ(r, R) ±= √2ψk(r)± exp (iK.R)      (10) 
with  

ψk(r)− = sin(q.r) and ψk(r)+ = cos(q.r)     (11) 
by using k = 2q. Here we note that Ψ(r,R)− (Eqn.10), sat-

isfying Ψ(r,R)|r=0 = 0, has −ve symmetry for the exchange of 
P1 and P2 for which it can be an acceptable wave function 
for two fermions (not for two bosons) but Ψ(1,2)+ (Eqn.10), 
having desired +ve symmetry for bosons, does not satisfy 
Ψ(r,R)+|r=0 = 0. Consequently, we need an alternative of 
Ψ(r,R)+ to describe a pair of HC bosons and we find 

Φ(r,R)+= √2ϕk(r)+ exp (iK.R) with φk(r)+ = sin |(q.r)| (12) 
which not only has +ve symmetry but also satisfies de-

sired condition, Φ(r, R)+ |r=0 = 0. 
Before we proceed with the formulation of our theory 

further, it is important to speak about the analytic nature of 
ψq(r)− (Eqn.11) and φq(r)+[appearing, respectively, in 
Eqn.(10) and Eqn.(12)] which represent different possible 
states of the pair distinguished, viz., by different values of 
angular momentum, l = 0, 1, 2, 3, .., identified, respectively, 
as s, p, d, ... states. The s state of q || r with lowest |q| = qo 
represents the G-state of the pair because the pair has no 
motion other than zero point motion, while states with l ≠ 0 
have an additional motion (in addition to zero-point motion) 
represented by q⊥ (component of q ⊥ to r) in addition to q|| 
(component of q || to r) indicating that the net q = q|| + q⊥ = 
qo + q⊥ . Evidently, even for a state of l ≠ 0 we have q.r = qo.r 
+ q⊥.r = qo.r which, does not vanish because qo has non-zero 
value for every particle in our system (see Eqn.(16) as well as 
Section 3.3). This observation is discussed again in Section 
6.3(i) in the light of an experimental support for it. 

Analyzing Ψ(r,R)− (Eqn.10) and Φ(r,R)+ (Eqn.12), and 
related relations we note the following: 

(i). The fact that Eqn.6 renders 
p1 = −q + K/2 andp2 = q + K/2      (13) 

which, without any loss of generality, reveals that two 
bosons[fermions] in Φ(r, R)+[Ψ(r,R)−] state can be identified 
as particles moving with equal and opposite momenta (q, -q) 
with respect to their CM which moves freely as plane wave 
of momentum K. Since this agrees with the fact that ψq(r)− 
(Eqn.11) and φq(r)+ (Eqn.12) represent a standing wave[or 
what we call as standing matter wave (SMW)], we propose 
to call the pair in Ψ(r,R)− and Φ(r,R)+ states as (q, -q) pair or 
SMW pair. In addition, we have |φq(r)+|2 = |ψq(r)−|2 which 
reveals an important fact that bosonic/fermionic nature does 
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not affect the relative configuration of two HC particles and 
implies that the laws of bosonic/fermionic distribution of 
particles should be implemented in relation to the energy 
levels of allowed K. We use this inference in constructing N 
particle wave functions (cf. Eqn.20). 

(ii) A pair of particles in 3-D has six degrees of freedom. 
Three of them represent 3 independent components of a pure 
translatory motion of their CM, while the rest of three mo-
tions include : (i) two components of a motion with k ⊥ to r 
and (ii) pure relative motion with k || to r; as discussed before, 
a combine of (i) and (ii) in general renders a planar motion, 
-a kind of rotation with l = 0 (s−state) or l ≠ 0 (p−, d−, f − ... ... 
states depending on the value of l). Since r changes only in 
(ii), the interaction V(r) affects only pure relative motion 
which evidently represents a 1-D motion, we can generalize 
our result < A(x)δ(x) > = 0 (Appendix -A) to conclude that  
<Ψ(r,R)−|A(r)δ(r)|Ψ(r,R)−> = <Φ(r,R)+|A(r)δ(r)|Φ(r,R)+> = 0     

(14) 
which renders 
E(2) = <H(2)> = (ћ2/4m)[k2+K2] = (ћ2/2m)[p1

2+p2
2]  (15) 

as the energy of two HC fermions/bosons. Note that <H(2)> 
is independent of the use of Ψ(r,R)− (Eqn.10) or Φ(r, R)+ 
(Eqn.12) as per the symmetry requirement of the states of 
two bosons/fermions. This agrees with the physical reality of 
a fluid that: (i) the energy of its particles is mainly kinetic 
and (ii) the interactions basically decide the inter-particle 
distance d and the level of flat potential −Vo on which parti-
cles move freely. It may, however, be mentioned that this 
picture is largely valid at HT where quantum nature of par-
ticles has little or no impact on the behavior of the system. 
The picture changes at LT at which a combine of in-
ter-particle interactions and wave superposition, plays a 
dominant role in modifying the behavior of the system by 
transforming a part of the kinetic energy of relative motions 
of particles into their zero-point energy[εo (Eqn.27) which 
represents a kind of potential energy for its dependence on d 
and serves as the source of zero-point repulsion]. Thus it 
should be clear that our theory adequately incorporates in-
teractions in reaching its conclusions and as shown in Sec-
tion 4 and 5, one may find the method it uses interactions to 
reveal the origin of different properties of a SIB (including 
superfluidity and related aspects). 

(iii) Analyzing the wave mechanics of two HC particles 
presumed to have 1-D motion we recently concluded[53] 
that the expectation value of their relative separation satisfies 
<x> ≥ λ/2. We use this inference with the fact that the pure 
relative motion of two particles (interacting through a central 
force) in 3-D space is equivalent to their pure relative motion 
in 1-D to conclude that P1 and P2 in their φk(r)+ state (Eqn.12) 
should have < r >≥ λ/2 for k || r case and < r >≥ λ/2 cosθ in 
general; here θ is the angle between k and r). This means (as 
| cos θ| ≤ 1) that two HC particles from an experimental view 
point can reach a shortest distance of < r >o = λ/2 only and in 
this situation their individual locations from their CM are 
given by <rCM(1)>o = − <rCM (2)>o = λ/4. Using similar result 
for their shortest possible distance on the φ−line (φ = k.r), 
we note that Φ(r,R)+ state is characterized by 

λ/2 ≤ <r > = d or q > qo (= π/d)       (16) 
with d being the nearest neighbor distance of two particles 

in a SIB and 
<∆φ> ≥ 2π.               (17) 

2.3. Macro-orbital Representation of A Particle 

As evident from Eqn.15, the wave superposition of P1 and 
P2 leading to Ψ(r,R)− (Eqn.10) or Φ(r,R)+ (Eqn.12) does not 
alter their net energy E(2) = ћ2p1

2/2m + ћ2p2
2/2min their 

states represented by two plane waves. This implies that: (i) 
P1 and P2 in Ψ(r,R)− /Φ(r,R)+ states behave, energetically, 
like independent particles, (ii) E(2) is shared equally among 
P1 and P2 and (iii) the superposition brings P1 and P2 
(having different energies, E1 = ћ2p1

2/2m and E2 = ћ2p2
2/2m) 

to a single energy state of (E1+E2)/2 (cf., Fig.1). Evidently, 
each of the two fermions/bosons, in Ψ(r,R)− /Φ(r, R)+ state, 
can be identified as an independent particle in a state repre-
sented by 

ξ(i) = ζ(ri) exp(iKi.Ri) with ζ(ri)= sin(qi.ri)    (18) 
where subscript i refers to the i−th particle (i = 1 or 2) of a 

pair it represents. Since –ve (+ve) sign of ψk(r)− (φk(r)+) 
(Eqn.10/12) loses significance in the light of ψk(r)−|2= 
|φk(r)+|2, ξ(i) can be used identically to represent a fermion or 
a boson. We call ξ(i) a macro-orbital because it serves as a 
basis for the macroscopic 3-D network of SMWs (cf. Section 
3.3, below) which enfolds the entire system in its S-state and 
there by helps in understanding the manifestations of wave 
nature of particles at macroscopic level. A brief discussion 
(Section 6.3) reveals how experimental reality of the exis-
tence of an electron bubble renders strong support for the 
accuracy of ξ(i) in describing the low energy states of a 
4He−atom in LHe-4 having zero and non-zero angular mo-
menta. 

 
Figure 1.  Three physical stages of two quantum particles: (Left) in plane 
wave states of momenta k1 and k2 (or energy E1 and E2, respectively), 
(Middle) in pair state Ψ(r,R)− (Eqn.10) or Φ(r, R)+ (Eqn.12) where each of 
them has (E1 + E2)/2 energy, and (right) in bound pair state with binding 
energy Δϵ = 2|βo(T )| (See Section 5.1) 

The fact that a particle (say i−th) in a many body quantum 
systems (MBQS) naturally assumes a physical state repre-
sented by a macro-orbital (Eqn.18) can also be established by 
tracking its motion when it collides with another particle (or 
a set of particles or a boundary of the fluid); note that the 
particle, before and after such a collision, can have different 
momenta, say, pi and p′i indicating that its state (ψ(i)±) 
around the point of collision should be represented by the 
superposition of upi(bi) and up′i(b′i) which can be expressed 
by 

ψ(i)± = upi(bi) up′i(b′i) ± upi(b′i) up′i(bi)     (19) 
Since ψ(i)−, vanishing at r = 0 (the point of collision), it 

rightly represents the state of the chosen particle (inde-
pendent of its fermionic/bosonic nature) which, obviously, 
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proves that ψ(i)− ≡ ξ(i). 
Here we note that the macro-orbital state (Eqn.18) of a 

particle has following important aspects. 
(1). MS and SS states : In what follows from this discus-

sion, Eqn.18 virtually represents the superposition of two 
plane waves which may either be identified with two dif-
ferent particles, P1 and P2, or with two states of the same 
particle. Obviously, in the former case we have a state of 
mutual superposition (MS) of two particles, while in the 
latter case we have the self superposition (SS) of the same 
particle. However, we have no means to fix whether P1 and 
P2 have their MS or each one of them (after the collision) 
falls back on itself and assumes its SS state. Guided by this 
fact, we can always identify each of the two particles (in a 
state of their wave superposition) in its SS state and represent 
it by a macro-orbital. As demonstrated in this paper, the 
macro-orbital representation of a particle emerges as a sim-
ple tool which greatly simplifies the mathematical formula-
tion of the microscopic theory of a MBQS. A more detailed 
discussion on MS and SS states can be seen in our recent 
paper[53]. 

(2). Two motions : Each particle in a macro-orbital state 
has two motions (q and K) which are, respectively, related to 
the relative and CM motions of the pair, -it represents. Since 
only relative motion encounters a potential such as A(r)δ(r), 
the possible values of only q are restricted by the interaction 
(cf., Appendix - A). The K−motion is not expected to have 
any impact of the interaction and K can have any value be-
tween 0 and ∞. 

3. N-particle State 
3.1. State Function 

Using N macro-orbitals for N particles, we obtain 
Ψn

j(N) = Πi
Nζ(ri)[ ΣP

N! (±1)P Πi
N exp (iPKi.Ri)]  (20) 

as the state function, presumably, representing j-th mi-
cro-state of the system. Here ΣP

N! refers to the sum of N! 
product terms obtained by permuting (P) N particles on 
different Ki states. We use (+1)P (or (−1)P ) depending on the  
bosonic/fermionic nature of the system to ensure symmet-
ric/anti-symmetric nature of Ψn

j(N) for an exchange of two 
particles. Since the permutation of N particles on different qi 
states also gives N! different Ψj

n(N), we have 
Φn(N) = (1/N!) Σj

N! Ψn
j(N)        (21) 

as the complete wave function of a possible quantum state 
of a bosonic/fermionic system. 

3.2. State Energy 

We define 
h(i) = (hi + hi+1)/2 = - (ћ2/4m)[▽2

Ri
 + 4▽2

ri]  (22) 
with hN +1 = h1 and write Eqn.(2) as  

Ho(N) = Σi
N h(i) + Σi >j

NA(rii)δ(rij)      (23) 
Using Eqns.21 and 14, we easily obtain 

 
<Φn(N)| Σi > j

N A(rii)δ(rij)|Φn(N)> = 0     (24) 

and  
En(N) = <Φn(N)|Ho(N)|Φn(N) > = (ћ2/8m)Σi

N[Ki
2+4qi

2]  (25) 
which concludes that Φn(N) is an eigen function of Ho(N) 

with En(N) eigen energy. 

3.3. Ground State 

With a view to determine the G-state energy of our system, 
we first use our inference that q ≥ qo (Eqn.16) and the fact 
that K can have any value between 0 and ∞ to find 

Eqi,Ki=0(N) = Σi
Nh2/8mdi

2 =Σi
Nh2/8mvi2/3 with Σi

Nvi=V (26) 
by putting qi = π/di (≈ qo) and Ki = 0 for all particles in 

Eqn.25 with di = vi
1/3 where vi represents the volume of the 

real space, exclusively occupied by i−th particle. In writing 
Σi

Nvi = V, we use the fact that each particle of the lowest 
possible q = qi has largest possible quantum size λi/2 for 
which it occupies largest possible vi exclusively. While, 
different particles can, in principle, occupy different volumes 
but simple algebra reveals that Eqi,K=0(N) assumes its mini-
mum value for v1 = v2 = ..vN = V/N and this renders  

Eo(N) = Nh2/8md2 = Nεo        (27) 
as the desired G-state energy where εo = h2/8md2 repre-

sents G-state energy of a single particle. Since all particles in 
the G-state, identically, have q = qo and K = 0 which can be 
used in Eqn.20/21 to obtain 

Φo(N) = Πi
Nζqo(ri) = Πi

N sin(qori )      (28) 
as the G-state wave function. It is clear from Eqns.27 and 

28 that each particle in the G-state represents a particle 
trapped in a box (cavity formed by its neighboring particle) 
of size d and it rests at the central point of this cavity. Since, 
each sin(qori) in Eqn.28 represents a kind of SMW which 
joins with other SMWs of neighboring particles at the 
boundaries between the two cavities, the G-state wave func-
tion seems to be a macroscopically large size 3-D network of 
SMWs which modulates the relative positions of two parti-
cles in the phase space and extends from one end of the 
container to another. We find that this network gets ener-
getically stabilized due to some kind of collective binding 
(Section 5.0) and assumes different aspects of macroscopic 
wave function of the S-state, as envisaged by London[11]. In 
view of this inference, Eqns.16 and 17 imply that the G-state 
configuration of particles in a SIB satisfies 

<k> = 0, <r> = d and < ∆φ > = 2nπ    (29) 
with n = 1,2,3. Although, each particle in the G-state of a 

SIB retains a zero-point energy εo (from which one can de-
rive zero-point momentum qo), but as evident from < k >= 0, 
particles in the G-state cease to have relative motions which 
represent the main cause of inter-particle collisions, scat-
tering and non-zero η).  This explains why G-state should be 
a state of η = 0.  However, this situation does not forbid 
particles from moving in coherence with equal velocity 
without any change in order of their locations. Since all 
particles assume <r>= d (nearest neighbor distance), the 
G-state represents a close packed arrangement of their wave 
packets (CPA-WP) in real space which can, obviously, sus-
tain phonon-like collective motions as the quasi-particle 
excitations of the system. 
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4. λ−Transition and Related Aspects 
4.1. Equation of State 

In what follows from Section 3 and Eqn.(15), energy (ϵ) of 
a single particle can be written as 

ϵ = E(2)/2 = ϵ(K) + ϵ(k) = (ћ2/8m)[K2+k2]    (30) 
which can have any value between εo and ∞. Since, this 

possibility exists even if h2k2/8m is replaced by εo (the lowest 
energy of q−motion) because K can have any value between 
0 and ∞, we can use 

ϵ = (ћ2K2/8m) + εo            (31) 
in the starting expressions of the standard theory of BEC[9, 

Ch.7] to obtain the equation of state of our system. We have 
PV/kBT = - Σ ϵ(K)ln[1-zexp(-β{ ϵ(K) + εo})]    (32) 

N = Σ ϵ(K)[z-1exp(-β{ ϵ(K) + εo}) -1]-1     (33) 
with β = 1/kBT and fugacity 

z = exp(βμ)  
with μ = chemical potential     (34) 

Once again, by following the steps of the standard theory 
of BEC[9] and redefining the fugacity by 

z′ = zexp(-βεo) = exp[β(µ− εo)] = exp(βμ′)  (35) 
with µ′ = µ − εo. We easily have 

P/kBT = (λ′T)-3g5/2(z′)           (36) 
and 

(N-No)/V = (λ′T)-3g3/2(z′)          (37) 
where we have λ′T = h/(2π(4m)kBT)1/2 and gn(z′) having its 

usual expression[9]. This reduces a SIB to a SNIB (system of 
non-interacting bosons), but with a difference. Firstly, m is 
replaced by 4m and z by z′. Secondly, the theory of a SNIB 
concludes z = 1 (or µ = 0) for T ≤ Tλ and z < 1 (or µ < 0) for T > 
Tλ while our theory fixes z′ = 1[or µ′ = 0 or µ = εo (Eqn.35)] 
for T ≤ Tλ and z′ < 1[or µ′ < 0 or µ < εo] for T > Tλ. In other 
words, we have z′ and µ′ in place of z or µ used in the theory 
of a SNIB[9]. As such, we can use Eqns.32 and 33 or 
Eqns.36 and 37 to evaluate different thermodynamic prop-
erties of a SIB. For example, using Eqns.36 and 37, we find 
its internal energy by using, U = - ∂β(PV/kBT)|z,V. We have 

U = (3/2)kBTV λ′T-3g5/2(z′) + Nεo. = U′ + Nεo    (38) 
where U′ = - ∂β(PV/kBT)|z′,V, obviously, represents the in-

ternal energy of K-motions, while Nεo comes from q-motions. 
Similarly, by using µ= µ′ + εo, we find that the Helmholtz 
free energy of a SIB can be obtained from 

F = Nμ−PV = Nεo+(Nμ′−PV) = F(q = qo)+F(K)  (39) 
Although, to find more accurate relations for U and F one 

needs to consider the facts that small fraction of particles in 
the system can have q = 2qo , 3qo ..., etc. (a rough estimate 
reveals that this fraction falls ≈ 5% at Tλ) and the real dis-
persion of K−motion may differ from ϵ(K) = ћ2K2/2(4m) due 
to inter-particle correlations which are expected to render 
phonon like dispersion; however, we plan to consider these 
aspects in our forthcoming paper. 

4.2. Onset of K = 0 Condensate and Tλ 

In what follows from Eqns.36 and 37, we can apply the 
standard theory of a SNIB[9] to conclude that a SIB should 
exhibit a transition at 

Tb =TBEC/4 = (h2/8πmkB)(N/2.61V)2/3     (40) 

which could be identified with the onset of K = 0 con-
densate in a gas of non-interacting quasi-particles. Here TBEC 
represents the usual temperature of BEC[9] in a SNIB and 
1/4 factor signifies that each boson for its K−motion behaves 
like a particles of mass 4m. However, as the derivation of 
Eqn.40, excludes q−motions of particles, to get Tλ (the real 
transition temperature), Tb should be added to 

To = h2/ 8πmkBd2             (41) 
which represents the T equivalent of εo because Nεo 

component of U (Eqn.38) and F (Eqn.39) too comes from the 
thermal energy of the system. In finding Eqn.(41), we use λT 
= 2d (with λT = h/√(2πmkBT) being the thermal de Broglie 
wave length[5]), since εo for each particle corresponds to λ = 
2d. This renders 

Tλ = To + Tb ≈ 1.53To         (42) 
which clearly differs from that of a SNIB. While, K = 0 

condensation of particles in a SIB occurs in its G-state 
characterized by non-zero energy (εo), the p = 0 condensation 
in a SNIB occurs in the G-state of zero energy. In addition 
while particles in a SIB are representatives of (q, -q) pairs, 
those in a SNIB are simply independent particles which have 
no mechanism to identify the presence of each other. 

4.3. Nature of Transition 

Following Section 3.3, we find that the system transforms 
from a state of random distribution of its particles in φ−space 
to that of orderly distribution with φ = 2nπ (n = 1, 2, 3, ..), 
when it is cooled through Tλ. Evidently, the λ−transition is an 
onset of order-disorder of particles in φ−space followed by 
the BEC of particles in the state of K = 0 and q = π/d. We note 
that the BEC of particles in K = 0 state is not different from 
the BEC of non-interacting bosons (a well known second 
order transition[9]) and the order-disorder of particles in 
φ−space is accomplished simply by a reshuffle of their 
momenta (kinetic energy) without any change in in-
ter-particle distance and potential energy; this means that 
there is no change in the total energy of the system at λ−point 
which concludes it to be second order transition. 

4.4. Free Energy and Order Parameter of Tλ 

Following Section 4.1, we have 
F = F(q) + F(K) ≈ Nεo + F(K)       (43) 

with  
F(K) = (kBT/λ′T3)g5/2(z′)          (44) 

To a good approximation Eqn.43 is valid even for T = Tλ
+ 

(just above Tλ) since almost 95% particles in the system at Tλ 
are estimated to have εo energy. Guided by this fact and the 
expected occurrence of λ−transition (cf. Section 4.2), F can 
be assumed to be a function of Ω, -an order parameter (OP) 
of the transition and be expanded as 

F(T, Ω) = Fo+ (1/2)AΩ2+(1/4)BΩ4+ (1/6)CΩ6   (45) 
where Fo is independent of T and P, while the coefficients, 

A, B, C, etc., may, in principle, depend on T and P. Since, 
F(K) (Eq.44) representing a kind of SNIB vanishes at T = 0 
where ρs/ρ = 1.0 (i.e. 100% S-component). Evidently, su-
perfluidity and related properties of a SIB have their origin in 
F(q) only; this, obviously, means that a SNIB is not expected 
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to exhibit superfluidity below Tb (Eqn.40), although, it is 
concluded to have BEC[9]. Assuming A = α(T−Tλ) and B 
being independent of T and +ve with other terms having 
powers of Ω higher > 4, we find 

ΩR(T) = (T)/ Ω(0) = √[(Tλ–T)/Tλ]       (46) 
which represents Ω(T) (in units of Ω(0)) assumed by the 

system in its LT phase. Since, almost all particles at T = To 
occupy their G-state with εo energy, the system hardly retain 
any energy with its excitations. This implies that a SIB at T = 
To is effectively in a T = 0 state for which Ω(To) ≈ Ω(0). 
Guided by this inference we re-normalize the T−scale by 
replacing T in Eqn.46 by T* = T − To and recast ΩR(T) as 

ΩR(T*)= √[(Tλ
*–T*)/Tλ

*]= √[(Tλ–T)/(Tλ-To)]    (47) 
which rightly reaches its maximum value 1.0 at T = To.  
As observed for LHe-4, a number of physical properties 

(viz., a-c, as listed below) of a SIB for their relation with (T) 
can be expected to exhibit notable dependence on T around 
Tλ. 

(a) The fraction of the number of bosons, nK=0(T) = 
NK=0(T)/N, condensed into q = qo and K = 0 state. 

(b) The fractional number of particles, n*(T ≤ Tλ) 
=[N*(Tλ)−N*(T)]/N*(Tλ)] which increases smoothly from 
n*(Tλ) = 0 to n*(0) = 1 in a manner the OP of the transition is 
expected to increase with fall in T below Tλ. Here we define 

N*(T) = A∫εc[exp{(ε-εo)/kBT}-1]-1√εdε     (48) 
[with A=(V/4π2)(2m/ћ2)3/2] as the number of particles in 

excited states of energy, ε ≥ εc(= ћ2Q2
c/2m, with Qc = 2π/σ); 

to a good approximation these states correspond to single 
particle motion, since the excitation wave length Λ ≤ σ(< d) 
which implies that the impact of the excitation is localized to 
a space shorter than the inter-particle distance indicating that 
the energy and momentum of the excitation is carried basi-
cally by a single particle. These states, obviously, lack in 
inter-particle r−, k− and φ−correlations[54] which are found 
to be basic character of particles in the G-state and n*(T) 
=[N*(Tλ)−N*(T)]/N*(Tλ)] is a measure of the number of par-
ticles which fall from a state having no inter-particle corre-
lations to the G-state having well defined correlations 
(Eqn.29). 

(c) The volume expansion of the system forced by 
zero-point force on cooling through Tλ which can be viewed 
as the origin of strain in inter-particle bonds, defined by δ(T) 
= Δd/dλ = (dT −dλ)/dλ, etc. where dT and dλ, respectively, 
represent d at a chosen T < Tλ and Tλ. 

Since particles in a SIB for their K−motions behave like 
non-interacting bosons, we evaluate nK=0(T) (identified in (a) 
above) by using nK=0(T) =[1 − (T/Tλ)3/2] obtained from the 
standard theory of BEC of a SNIB[9]. Recasting nK=0(T) on 
the T*−scale, we obtain its equivalent for a SIB given by 

nK=0(T*) = NK=0(T*)/N =[1−(T*/T*
λ)3/2] =[1-{(T-To)/(Tλ 

-To)}3/2]                  (49) 
Defining t = T/Tλ, we depict in Fig.2: (i) nK=0(t) = (1− t3/2) 

which can be applied to K−motions of particles in a SIB as 
for these motions they behave like particles in a SNIB, (ii) 
n∗(t) =[N*(Tλ)−N*(T)]/N*(Tλ)] (obtained by using Eqn.48) 
and (iii) ΩR(T) (Eqn.46), respectively, by Curves A, B and C. 
We also plot nK=0(t∗) (Eqn.49) and ΩR(T∗) (Eqn.47), respec-

tively, by Curves A∗ and C∗ as well as δ(t) (Curve 
E1)[defined in point (c) above] and ρs(t)/ρ (Curve E2) for 
LHe-4. Since, δ(t) and ρs(t)/ρ are obtained, respectively, by 
using experimental values of T−dependence of molar vol-
ume[2(a)] and second sound velocity[5] of LHe-4, they 
represent a measure of experimental OP of LHe-4. While, 
the agreement of Curves E1 and E2 closely with Curve C∗, 
Curve B and Curve A∗[cf., Fig.2] establishes the importance 
of To for the effective T−dependence of the OP of the 
λ−transition in LHe-4, their disagreement with Curves A and 
C concludes that interactions really make the nature of BEC 
in a SIB to differ from the nature of BEC in a SNIB[9]. 
Evidently, this comparison provides strong experimental 
proof that particles in a SIB fall into their q = qo state of 
energy εo ≡ kBTo on its cooling through Tλ. 

 
Figure 2.  t = T/Tλ dependence of different representatives of the order 
parameter of λ−transition: nK=0(t) = 1−t3/2 (Curve-A), n*(t) 
=[N*(Tλ)−N*(T)]/N*(Tλ)] (Curve-B, obtained by using Eqn.48), ΩR(t) 
(Curve-C, obtained from Eqn.46), nK=0(t*)(Curve-A*, Eqn.49), ΩR(t*) 
(Curve-C*, Eqn. 47), δ(t)[defined in point-(c) of Section 4.4 and plotted as 
Curve-E1, obtained from experimental volume expansion data[2(a)]), and 
ρs(t)/ρ (Curve-E2, obtained from experimental superfluid density of 
LHe-4[5]).  For further identification see last paragraph of Section 4.4 

Interestingly, since the state of a particle with q=qo (rep-
resented by ψq(r) = sin (qor)) is an eigen state of its kinetic 
energy operator ((−ћ2/2m)∂r

2) rather than its momentum 
operator, -iћ∂r, our reference to the momentum of the particle, 
basically, uses the fact that its value can be determined from 
its relation with kinetic energy of the particle; else, the 
momentum is not a good quantum number of its state. Fur-
ther, because the expectation value of the momentum op-
erator of the particle in this state, <ψq(r)|iћ∂r|ψq(r)>, has 
zero value, Curve-A* (representing the growth in the number 
of particles condensed into the state of q = qo and K = 0 with 
decreasing T) can also be seen as the growth of number of 
bosons in the state of <p> = ћ<q>= 0. In this context we also 
note that the G-state of a particle in a SNIB confined to a 
finite V also corresponds to a state of <p>= ћ<q>= 0 and 
non-zero p = po = ћqo ≈ h/2V2/3. When this physical reality is 
accepted (even for macroscopically large V), the BEC of 
bosons in a SNIB as well as in a SIB can be described iden-
tically (i.e., as a condensation of bosons in a state of <p>= 0, 
not of p = 0). Since To for a SNIB has vanishingly small 
value, BEC of such bosons should, obviously, follow Curve 
A in place of Curve A* for a SIB. 

4.5. Single Particle Density Matrix and ODLRO 
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The single particle density matrix ρ1(R′−R), -a measure of 
the probability of spontaneous motion of a particle from R to 
R′ or vice versa assumes significance at T ≤ Tλ. ρ1(R′−R) is 
also known as the measure of off diagonal long range order 
(ODLRO). To obtain ρ1(R′−R) for our system, we note that: 
(i) to a good approximation, almost all particles in a SIB[in 
its LT phase as well as at Tλ

+ (just above Tλ) in HT phase] 
have (q, -q) pair state with q = qo and (ii) such a particle, 
when made to move with momentum ∆q, assumes a state of 
(q+∆q, -q+∆q) which not only implies that its state changes 
from 

sin(q.r) → sin(q.r) exp(iK.R) with K=2∆q    (50) 
but also concludes that particles with K = 0[i.e., whose 

states are defined simply by sin(q.r)], are basically localized 
particles (each one having its wave packet (WP) spread over 
a space of size λ/2 = π/qo = d; the number of such particles 
(NK=0(T∗)), grows from its zero value (in HT phase) to a 
macroscopically large fraction in LT phase. Guided by these 
observations we easily obtain 

ρ1(R′−R) =[NK=0(T*)/V + (N/V)exp[-π| R′−R|2/λ′T]sin2(qor) 
(51) 

by separating particles having K=0 from those with K ≠ 0 
and evaluating the second term on the right by following the 
standard procedure for non-interacting bosons[9] which is 
justified because K−motions encounter no interactions. The 
(sin2qor) term in Eqn.51 represents how probability density 
varies around the center of a particle WP in the cavity (size d) 
formed by neighboring particles. In what follows from Sec-
tion 4.4, we use NK=0(T∗) (Eqn.49) in Eqn.51 rather than NK=0 
(T) = N[1− (T /Tλ)3/2] found for a SNIB[9]. 

Based on the value of NK=0(T∗), we find that ρ1(R∗−R) 
(under the limit |R∗−R| → ∞) has nonzero and zero values, 
respectively, for LT and HT phases of a SIB. This proves that 
our theory is consistent with: (i) the criterion of Penrose and 
Onsager[55] for the occurrence of BEC which is shown to 
occur in K=0 and q = π/d state which represents the G-state 
of a SIB and (ii) the idea of ODLRO advanced by Yang[56]. 
Further the fact that the particles at T=Tλ move from a state of 
disorder ∆φ ≥ 2nπ in φ−space to that of order ∆φ = 2nπ 
concludes that our theory also agrees with spontaneous 
symmetry breaking and phase coherence as envisaged, re-
spectively, by Goldstone[57] and Anderson[58]. 

4.6. Evolution of the System on Cooling 

The q−motion state of a particle in the system can be 
characterized by a parameter s = d − λ/2 which decreases 
with cooling of the system since λT/2 = h/2√(2πmkBT) 
(thermal average of λ/2) increases and d remains constant (or 
nearly constant). Evidently, since s is restricted to have only 
+ve value in the light of the condition λ/2 ≤ d (Eqn.16), the 
number of particles occupying a state of s = 0 (i.e., λ = 2d or 
q=qo= π/d) keep on increasing with falling T till the system 
reaches a point where it satisfies λT/2 = d (a condition which 
means that all particles, on an average, occupy the state of s = 
0). As soon as, this happens, particles cease to have a possi-
bility of any increase in λ/2 because it demands increase in d 
which is decided independently by V(rij). Evidently, λ/2 of 

particles at this point gets locked at d or equivalent q at qo = 
π/d indicating that q−motions of particles are left with no 
energy to lose. Naturally, this forces particles to lose their 
K−motion energy for which the system sees an onset of their 
condensation in a state of q = qo and K=0 at Tλ given by 
Eqn.(42). Naturally, the state of s = 0 (or of q = qo) is occu-
pied by almost all particles at Tλ; the state of the system at 
T<Tλ differs only in the energy of K−motions which now 
corresponds to collective excitations of the system such as 
phonons and rotons. Consequently, using q = qo for all par-
ticles in Eqn.21, the state of a SIB at T ≤ Tλ can be expressed 
by 

Φn
S(N) = Φo(N)ΨK(N) with  

ΨK(N) = ΣP
N! (±1)P Πi

N exp (iPKi.Ri)]     (52) 
The superscript S in Φn

S(N) signifies the fact that the 
system becomes superfluid at T ≤ Tλ with all the N! mi-
cro-states (Ψn

j(N), given by Eqn.20) appearing in Φn
S(N) 

(Eqn.21) merge into one state (Φn
S(N); this implies that the 

entire system at T ≤ Tλ attains a kind of oneness as envisaged 
by Toubes[59]. 

4.7. Volume Expansion on Cooling 

In what follows from Sections 4.1, 4.2 and 4.6, the 
q−motion energy of almost all particles gets frozen at q= qo 
with corresponding energy εo(Tλ) = h2/8md2 when a SIB is 
cooled to T = Tλ. However, if the system is cooled below Tλ, 
its each particle tries to, naturally, have an energy < εo(Tλ) 
which, obviously, corresponds to λ/2 > dλ which does not 
agree with the restriction λ/2 < d (Eqn.16). Evidently, any 
fall in q−motion energy below εo(Tλ) needs an increase in d 
beyond dλ (decided by a balance of forces representing V R(rij) 
and VA(rij)); however, this is made possible by the zero-point 
repulsive force, fo = −∂dεo = h2/4md3, exerted by each particle 
on its neighbors against the inter-particle attraction, fa 
(originating from VA(rij)). It is clear that fo comes into op-
eration effectively only around Tλ. We study the equilibrium 
of fo and fa in our recent study[60] of a quantum particle 
trapped in a 1-D box and Section 5.1(ii) for the present case. 
It is evident that the said equilibrium leaves an increase in the 
cavity size by ∆d = dT − dλ for almost all particles at Tλ. 
Consequently, the system on its cooling has to have a volume 
expansion around Tλ rendering εo of each particle to decrease 
by 

∆ϵ(T) =[εo(T)−εo(Tλ)] = -2εo(∆d/dλ)      (53) 
However, as shown in Section 5.1(ii) (as well as in[60]), 

the net fall in energy is only (1/2)∆ϵ(T) because (1/2)∆ϵ(T) 
energy is retained with the system as a share of each particle 
in the strain energy of inter-particle bonds which are forced 
to have an expansion by ∆d. The fact that LHe-4 is found to 
exhibit volume expansion on its cooling through Tλ[2(a)] not 
only proves the accuracy of this prediction of our theory but 
also provides strong experimental support to the WP mani-
festation of a particle (a well known consequence of wave 
particle duality) in relation to the behavior of particles in a 
SIB like LHe-4. 

4.8. Quantum Correlations and Their Importance 
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Here we show that quantum correlations between particles, 
originating from their wave nature, play an important role in 
relation to the behavior of a SIB. These can be expressed in 
terms of what is known as quantum correlation potential 
(QCP)[61-63] obtained by comparing the partition function 
(under the quantum limits of the system), Zq = 
Σnexp(−En/kBT )|Φn

S(N)|2 and its classical equivalent, Zc = 
Σnexp(−En/kBT)exp(−Un/kBT). Here Φn

S(N) is given by 
Eqn.52; note that the system at any given instant, even at T > 
Tλ, exists in one of the N! micro-states Ψn

j(N) (Eqn.20) which 
hardly differs from Φn

S(N) particularly at Tλ. The application 
of this method to our system is justified because our theory 
describes its particles by summarized plane waves rendering 
<VHC(r)> = 0 which indicates that the HC potential is com-
pletely screened out. Simplifying Un, one easily finds that 
pair wise QCP has two components, viz., 

US
ij = −kBToln[2sin2(φ/2)] = -kBToln[2sin2(2πr/λ)]  (54) 

which pertains to the relative motion of two particles; here 
λ = 2π/q is the de Broglie wavelength of a particle for its 
q−motion and To replaces T because the T equivalent of 
q−motion energy at all T ≤ Tλ is To. It is evident that US

ij 
controls the relative φ−position of two nearest neighbor. 

Following the approach of obtaining QCP for non inter-
acting bosons[63], we easily find the second component 

Uij = −kBT ln[1+exp (−2π|R′−R′′|2/λ′T2 )]     (55) 
which pertains to K−motions of particles with λ′T defined 

in Section 4.5. 

 
Figure 3.  Quantum correlation potential (QCP) Uij

S (Eqn.54 traced as 
Curve U(1)) and Uij ( Eqn.55 traced as Curve U(2)) plots against a dimen-
sionless parameter Y which represents: (i) Y = Yq = r/λ for Eqn.54, and (ii) Y 
= YK = |R′−R′′|/λ′T for Eqn.55 (See Section 4.8 for details) 

We plot US
ij(Curve U(1)) and Uij(Curve U(2)) in Fig.3 

against a dimensionless parameter Y which represents: (i) Yq 
= r/λ for Eqn.54 and (ii) YK = |R′−R′′|/λ′T for Eqn.55. We 
note that different particles in the system at T ≠ 0 can be 
identified with pairs which may have different, Yq ≥ 0.5, -a 
condition derived from our inference λ/2 ≤ d (Eqn.16) for HC 
particles. Accordingly, when the falling T approaches Tλ, 
these Yq points converse on Yq = 0.5, since US

ij/kBTo has its 
minimum value (−ln2) at this point. Evidently, particles in 
the system get locked at this point implying that they all have 
λ/2 = d or q = qo. However, the same particles (for their 
K−motions), represented by different YK points (for different 
K between 0 and ∞) continue to move toward YK = 0 where 
Uij/KBT has its minimum value (−ln2) and this process ends 
only at T = 0. In other words the condensation of particles in 

K = 0 state, which starts immediately after “all particles” for 
their q−motion get locked at Yq = 0.5, is completed at T = 0. 

Fig.3 also reveals that: (i) macro-orbital states become 
energetically favorable when Yq representing a particle or its 
representative pair assumes a value < Y1 where Uij

S < Uij, (ii) 
the K−motion of each particle gets delinked from q−motions 
as soon as particles are locked at q = qo which leaves no 
possibility for any change in their q−value on further cooling 
of the system, (iii) the relative r− and φ−positions of parti-
cles are also locked, respectively, at < r >= λ/2 and ∆φ = 2π 
as soon as the system reaches at Yq = 0.5 and (iv) the system 
at T ≤ Tλ has only K−motions to contribute for its thermal 
energy because almost all particles have their lowest q(= qo ) 
at these temperatures. 

Since Uij
S and Uij are simple representatives of wave 

mechanical probabilities, not real potentials, the above 
analysis demonstrates the way the wave nature guides BEC 
of particles as (q, -q) pairs in a state of q = qo and K = 0 and 
beautifully organizes them in a relative configuration defined 
by Eqn.29 through Uij

S and Uij clubbed with zero point force 
(another consequence of wave nature) that keeps two parti-
cles at r ≥ λ/2. 

5. Superfluidity and Related Aspects 
5.1. Energy Gap and Bound (q,-q) Pairs 

Following Sections 4.1 and 4.4, we note that: (i) cooling a 
SIB through Tλ decreases F(K) (Eqn.44) to its zero value at T 
= 0 and keeps F(q) (Eqn.43) at F(qo) = Nεo which remains 
nearly constant for a change in T from Tλ → T = 0, and (ii) ρs 
(representing the order parameter, Ω, Section 4.4, Fig.2) has 
maximum value at T = 0 where K−motions cease to exist. 
Evidently, the most relevant part of the free energy which is 
responsible for the superfluidity and related properties of LT 
phase of a SIB is F(q), -not F(K). This is corroborated by the 
fact that ρs decreases with increasing T indicating that in-
crease in the amount of thermal excitations (or their repre-
sentative F(K)) has a counter effect on these properties. 

In what follows from Section 4.7, each particle in a SIB 
exerts zero point force fo which not only tries to keep two 
particles at a distance of λ/2 (the size of their WPs) which 
increases with decreasing T but also forces an increase in d 
against the inter-particle attraction fa. Since fo comes into 
force before such a SIB reaches its T of solidification, VA(rij) 
fails to transform the fluid into solid as its normal goal. 
However, VA(rij) limits the inevitable increase in d (or 
equivalent increase in V) to a smallest possible value ∆d = dT 
− dλ. Evidently such a SIB is expected to have its volume 
expansion around Tλ by an amount permitted by a balance 
between fo and fa . The fact that this expectation agrees with 
experimentally observed volume expansion of LHe-4 on its 
cooling through Tλ[2(a)] not only reveals that the onset of 
λ−transition also has its relation with the interplay of fo and fa 
but also provides experimental support to the WP manifes-
tation of particles in the fluid at T = 0 → Tλ

+ (a T little above 
Tλ ); this is not surprising since the WP manifestation of a 
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particle is one of the basic foundations of wave mechanics. 
Interestingly, as concluded from the following discussion, 
the balance of fo and fa also renders a kind of collective 
binding Eg(T ) (or an energy gap between S-state such as 
He-II and N-state such as He-I) (see Eqn.60, below) among 
all the N particles below λ−point. Qualitatively, this kind of 
binding is also concluded[cf., point (i) below] by following a 
standard method used to understand molecular binding[64] 
where two identical atomic orbitals form two molecular 
orbitals of bonding and anti-bonding nature. 

(i). VA(rij) as source of collective binding: To understand 
how VA(rij) produces binding of two particles like 4He atoms 
in the state of their wave superposition, we diagonalize (2x2) 
energy matrix, defined by E11 = E22 = εo and E12 = E21 = βo, 
with βo = <VA(rij)>; to this effect we note that two such par-
ticles have identically equal energy εo (cf., Fig.1(middle)). 
The diagonolization renders two states of energy εo ± |βo| for 
the pair; one may better replace |βo| by |βo(T)| since the 
overlap of macro-orbitals of two particles may depend on T. 
The states of energy (εo − |βo(T)|) and (εo + |βo(T)|) can, re-
spectively, be identified as bonding (or paired) and 
anti-bonding (or unpaired) states. The pair is expected to be 
in bonding state (cf., Fig.1(right)) provided the two particles 
remain locked in the relative configuration characterized by 
Eqn.29. The fact, that this situation arises for almost all 
particles (excluding a small fraction of particles in states of q 
≥ 2qo) only at T ≤ Tλ, distinguishes the state of particles in the 
LT phase (such as He-II) from that in HT phase (He-I). In the 
following discussion we use bonding states of particles to 
conclude what we call as an energy gap Eg(T) (cf. Eqn.60, 
below) or their collective binding. 

Applying the same approach to the state of all the N par-
ticles, we construct a NxN matrix for Hr(N) = −(ћ2/m)Σi▽i

2 + 
Σi<j[A(rij)δ(rij) + VA(rij)] (where we use Eqn.22 and retain 
terms only related to q−motions of particles) with[Hr(N)]mn = 
εo for m = n and[Hr(N)]mn =[V(r)]mn for m ≠ n with[V(r)]mn 
having non-zero value only if m and n refer to two 
neighboring particles. While, this requires, in principle, the 
knowledge of the number of neighbors of a particle (which 
depends on the symmetry of the spatial arrangement as-
sumed by the particles), such details are not needed since 
quantitative value of energy gap Eg(T) (cf., Sub-section (ii) 
and Eqn.60, below) can be determined accurately by using 
the balance of fo and fa. The diagonalization of the said matrix 
renders N/2 energy levels, identified as anti-bonding 
states[as they have energies > Nεo(Tλ)] and N/2 energy levels, 
identified as bonding states[as they have energies < Nεo(Tλ)]. 
Particles, obviously, prefer to occupy bonding states leading 
the net energy of the system to fall below Nεo(Tλ) by Eg(T). 
Although, 2|βo(T)| (the measure of binding of particles in a 
pair), may have very small value, however, as shown in[65, 
66] the collective binding (Eg(T)) of macroscopically large 
number of particles, resulting from it, is found to be good 
enough to counter thermal excitations. Naturally, Eg(T) 
makes the S-state of a SIB stable against thermal motions 
and low energy perturbations such as the flow (linear or 
rotational) of the fluid with velocities below certain critical 

values. 
(ii). Energy gap and balance of fo and fa: When a SIB has 

its volume expansion (as concluded in Section 4.7) due to 
zero point force coming into operation at Tλ, the sum of: (i) 
h2/8m(dλ+x)2 representing the zero point energy of a particle 
and (ii) (1/2)cx2 representing its share in the strain energy of 
expanded inter-particle bonds can be expressed by 

E(T,x) = (1/2)cx2 + h2/8m(dλ+x)2        (56) 
where x is an expansion (at T ≤ Tλ)  in  dλ. To this effect 

we ignore the K−motion energy of the particle which re-
mains unaffected by inter-particle interactions or their rami-
fications such as zero point force, fo = −∂x[h2/8m(dλ+x)2], -a 
consequence of HC repulsion clubbed with WP manifesta-
tion of particle. It may be noted that (1/2)cx2 is nothing but a 
harmonic potential contributed by VA(rij) and this renders fa = 
−cx that opposes fo . Using 

∂xE(T, x)|x=∆d = 0              (57) 
for the state in equilibrium between fo and fa, at x = ∆d = 

dT−dλ, we have, 
(1/2)c∆d2 = h2∆d/8m(dλ+∆d)3        (58) 

Using this relation with Eqn.(56) to separately find E(T,x) 
for x = ∆d as well as x = 0 and then determine ∆E = E(T, ∆d) 
− E(Tλ, 0) given by 

∆E = - h2∆d/8mdλ
3.            (59) 

We note that this equals half the value of ∆ϵ(T) (Eqn.53) 
representing the net loss in zero point energy, εo(T ) − εo(Tλ), 
of a particle. This means that half of this loss is stored as 
strain energy in strained bonds, while the other half moves 
out of the system when it is cooled to a chosen T starting 
from Tλ. Since this happens to all particles in the system, the 
net fall in energy of the particles can be expressed by 

Eg(T) = -N|∆ϵ(T)|/2 = -Nεo(T)∆d/2d      (60) 
In view of the fact that the onset of λ−transition delinks 

q−motions from K−motions for which F(q) and F(K) assume 
their separate identities, it becomes amply clear that to bring 
the superfluid SIB back to the configuration of its N-phase 
(viz., to transform He-II at a chosen T) to the configuration of 
He-I (at Tλ

+), we need to supply Eg(T) energy from outside. 
This, evidently, means that Eg(T) represents an energy gap 
between S-phase and N-phase of a SIB. 

(iii). Bound/unbound pairs in LT/HT phase: In view of the 
fact that each particle in a SIB is a part or a representative of 
a (q,-q) pair even in HT phase close to Tλ, the zero and non 
zero value of Eg(T) in HT and LT phases, respectively, imply 
that the representative pair is an unbound (q, -q) pair in HT 
phase, while the same in LT phase is a bound (q, -q) pair. 
The energy levels of these pair states are, respectively, de-
picted in Fig.1(middle) and Fig.1(right) for their comparison 
and better perception. The figure also shows that two parti-
cles, which occupy levels of different energies (E1 and E2) in 
the absence of their wave superposition (i.e., λ/2 << d) as-
sume a single quantum level of a unbound pair (where each 
particle share E1 + E2 energy equally) when they happened to 
have their wave superposition for their λ/2 ≈ d at a T ≈ Tλ. 
While this indicates that wave superposition pushes two 
particles of different energies into a single state of energy (E1 
+ E2)/2, the argument behind Eqn.(31) indicates that two 
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particles in the N-state of a SIB, particularly, at T close to Tλ 
can be assumed to have 2εo energy. Further, since Eg(T) is the 
net binding energy of all the N particles, the entire system at 
T < Tλ behaves like a macroscopically large single molecule 
as envisaged by Foot and Steane[67] for the BEC state of 
TDG. Evidently, our theory predicts that the stability of 
S-state of a SIB cannot be disturbed by any perturbation of 
energy < Eg(T). 

(iv). New quantum quasi-particle (OMON) in LT phase: 
Each particle in LT phase of the system has ϵS(T) = ∆ϵ(T)/2 
energy as its share in the net strain energy ∆Vs(T) = NϵS(T) of 
the expanded inter-particle bonds (cf., Section. 4.7 and 
Eqn.53); we propose to call ϵS(T) as the self energy of a 
particle. Evidently, particles in the LT phase of the system 
are pushed to higher potential energy in comparison to those 
in HT phase and this increase depends on the WP size λ/2 (= 
π/q) of the particles. This means that ∆Vs(T) is a function of q 
values of particles i.e., ∆Vs = ∆Vs(q1, q2, ...qN) which, ob-
viously, prepares the system to sustain phonon like waves of 
collective oscillations of momentum q around qo which 
could be identified as a new quantum quasi-particle proposed 
to be known as omon. The existence of these waves is pre-
dicted for the first time from the present theory. A detailed 
discussion on omons is available in[65] which shows that 
energy dispersion for omons does not differ from that of 
phonons in the system. Identifying ∆Vs(T)(q1, q2, q3, ..) as 
the energy of omon field and using the fact that ∆Vs(T) in-
creases with decreasing T (which implies that omon field 
intensity increases when phonon field intensity decreases 
and vice versa), it may be concluded that an omon is an 
anti-phonon quantum quasi-particle. Evidently, collective 
motions, such as phonons, can be seen in the system even at 
T = 0 at cost of omon field energy ∆Vs(T) which assumes 
maximum value at T = 0. As discussed in Section 6.2(1), 
∆Vs(T) also serves as the origin of a force for which S-fluid 
component flows from lower to higher T. 

(v). Difference with Cooper pair of electrons: In the light 
of Eqn.29, the binding of particles in the LT phase of a SIB 
clearly means that their positions are energetically locked at 
<k>= 0, <r>= d and < φ >= 2nπ with per particle binding 
energy, Eg(T)/N, in all the three (k−, r− and φ-) spaces. We 
call it collective binding in a sense that each particle has its 
binding with all the (N−1) particles in the system. For all 
these reasons, the (q, -q) bound pair in our system differs 
from (q, -q) bound pair of electrons (known as Cooper pair 
used in the BCS theory of metallic superconductors[34, 68]). 
While the binding of electrons in a Cooper pair originates 
from electrical strain (polarization) of the lattice, binding of 
atoms in a SIB is an inter-play of fo and fa which leads to an 
expansion of all the inter-atomic bonds (a kind of mechanical 
strain in the system). In addition, while bound pair formation 
in a superconductor includes only those electrons which 
occupy energy levels around the Fermi-level of the system, 
bound pair formation in a SIB arrests all the N bosons. 

5.2. Energy Gap and its Consequences 

In what follows from Section-4.4, a SIB has two compo-

nents, fluid F1 and fluid F2 with free energies represented, 
respectively, by F(K) and F(q). F(K) and F(q) get delinked 
from each other at Tλ with freezing of q−motion at q = qo (cf. 
Section 4.8). Hence the fact, that F(K) represents 
quasi-particle excitations originating from K−motions (un-
affected by interactions), implies that only F(q) is affected by 
Eg(T) and we have F(q) = Nεo(Tλ) − Eg(T) which, obviously, 
means that the origin of different LT properties (including 
superfluidity and related aspects) of a SIB lies with Eg(T). 
We use this inference to analyze the following aspects of a 
SIB at T ≤ Tλ. 

5.2.1. Superfluidity and Related Properties 
If two heads X and Y in the system have small T and P 

(pressure) differences, the equation of state can be expressed 
as Eg(X) = Eg(Y ) + S∆T − V∆P . Using Eg(X) = Eg(Y ) for 
equilibrium, we get 

S∆T = V∆P               (61) 
This reveals that: (i) the system should exhibit 

thermo-mechanical and mechano-caloric effects and (ii) 
while, the measurement of η by capillary flow method per-
formed under the condition ∆T = 0 should find η = 0, meas-
urement of thermal conductivity (Θ) under ∆P = 0 should 
find Θ ≈ ∞. All these predictions are found to be true with 
experimentally observed behavior of LT phase of LHe-4. 
He-II is a well known superfluid of infinitely high Θ. 

Interestingly, several important aspects of our system can 
also be followed qualitatively from the configuration of F2 
defined by Eqn.29. For example (i) a CPA-WP in a fluid like 
system can have no vacant site, particularly, because two 
neighboring particles experience zero point repulsion which, 
naturally, means that the system should have very large Θ 
which further implies that the system cannot have tempera-
ture gradient and convection currents and this explains why 
He-II does not boil like He-I, (ii) since particles in F2 cease 
to have relative motion and they can move only in order of 
their locations, the system is bound to exhibit vanishingly 
small η, particularly, for their linear flow in narrow capillary, 
etc.; however, the rotating fluid may exhibit normal viscous 
nature since particles moving on the neighboring concentric 
circular paths of quantized vortices have relative velocity 
which explains both viscosity and rotation paradoxes[5]. In 
what follows from these observations the loss of viscosity in 
linear flow is not due to any loss of viscous forces among the 
particles, rather it is the property of the LT phase configura-
tion in which particles cease to have relative or collisional 
motion. 

5.2.2. Critical Velocities and Stability of LT phase 

Following Eqn.50 and the basic arguments behind it, we 
find that the G-state wave function Φo(N) changes to 

Φ∗(N) = Φo(N)exp(iK.ΣNRi) 
exp[−i[N(εo+ε(K))−Eg(T)] t/ћ        (62) 

when the system is made to flow with velocity vf = ћ∆q/m. 
This reveals that Φo(N) remains stable against the flow 
unless its energy, Nmvf

2/2 = Nε(K), overtakes the collective 
binding Eg(T) and this fact should explain critical velocity vc 
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for which the system loses its superfluidity totally. Equating 
Eg(T) and Nmvf

2/2 with vf = vc, we obtain 
vc(T) = √(2Eg(T)/Nm)            (63) 

which represents its upper bound. A vc < vc(T), at which a 
superfluid may show signs of viscous behavior, can be ex-
pected due to creation of quantized vortices. However, this 
cause would not destroy superfluidity unless energy of all 
vortices produced in the system exceeds Eg(T). 

5.2.3. Coherence length 

Since the main factor responsible for the coherence of F2 
is its configuration which locks the particles at ∆φ = 2nπ (cf. 
Eqn.29) with collective binding Eg(T), the coherence length 
(not to be confused with healing length[5]) can be obtained 
from 

ξ(T) = h/mvc(T) = h[N/2mEg(T)] = 2d(d/∆d)   (64) 

5.2.4. Superfluid Density 

Correlating the superfluid density, ρs, as the order pa-
rameter of the transition, with Eg(T), we find 

ρs(T) =[Eg(T)/Eg(0)]ρ(T) =[(dT-dλ)/(do-dλ)] ρ(T)  (65) 
to determine ρs(T) and normal density, ρn(T) = ρ(T)−ρs(T). 

Evidently, vc(T), ξ(T), and ρs(T) can be obtained if we know 
Eg(T) (Eqn. 60). Further since the S-state wave function 
(Eqn.52) is expected to vanish at the boundaries of the sys-
tem, it is natural that Eg(T) and ρs(T) also vanish there. 

5.2.5. Superfluid Velocity 

Concentrating only on the time independent part of Φo
*(N) 

(Eqn.62), we can have 
Φo

*(N) = Φo(N) exp (iS(R))          (66) 
By using  

S(R) = K.(Σi
NRi)            (67) 

as the phase of the S-state. This renders 
vs = (ћ/2m)▽RjS(R) = (ћ/m)∆q        (68) 

as a relation for the superfluid velocity; here we use the 
fact that ▽RjS(R) renders the momentum of the pair (not of a 
single particle). One may find that Eqn.66 does not differ 
from the superfluid wave function presumed in the Ψ−theory 
of superfluidity[37] (cf. Section (6.2(2) below) of Refer-
ence[34]); of course for the well defined phenomenological 
reasons, Ψ−theory assumes S(R) to be a complex quantity. 

5.2.6. Quantized Vortices 

Using the symmetry property of a state of bosonic system, 
Feynman[15, 69] showed that κ (the circulation of the ve-
locity field) should be quantized and be given by κ = n(h/m) 
with n = 1, 2, 3, ... However, Wilks[2(a)] has rightly pointed 
out that this account does not explain the fact that He-I to 
which Feynman’s argument applies equally well, does not 
exhibit quantized vortices. Using Eqn.67, we find that  

κ = Σi vs(i) ).∆ri = (ћ/m) Σi ∆qi.∆ri = n(h/m)   (69) 
by using the condition that Σi ∆qi.∆ri = 2nπ which pre-

sumes that particles moving on a closed path maintain phase 
correlation. To this effect our theory reveals that particles 
have their φ-positions locked at ∆φ = 2nπ only in the LT 

phase for which only this phase can exhibit quantized vor-
tices. Since particles in HT phase have random distribution 
(∆φ ≥ 2nπ) in φ-space, they cannot sustain φ−correlation and 
quantized vortices 

5.3. Laser Like State 

We note that the system below Tλ defines a 3-D network of 
SMWs, extending from its one end to another end without 
any discontinuity. In lasers too these are the standing waves 
of electromagnetic field that modulate the probability of 
finding a photon at a chosen phase point. The basic differ-
ence between the two lies in the number of bosons in a single 
anti-nodal region of a SMW. In case of lasers this could be 
any number since photons are non-interacting particles but 
for a SIB like 4He or 87Rb one such region can have only one 
atom. 

6. Facts which Corroborate Our Theory 
6.1. Thermodynamic and Hydrodynamic Properties 

We note that the excitation spectrum of a SIB (E(Q) = 
ћ2Q2/4mS(Q), with S(Q) being the structure factor of the 
fluid at wave vector Q), as concluded by our theory[70], not 
only agrees well with Landau spectrum[6(b)] at qualitative 
level but also matches closely with the experimentally ob-
served spectrum[4, 25, 31] for LHe-4 at quantitative level. 
Similarly, the calculated values of vc, ρs and ρn, etc., by using 
relevant relations (Section 5.2), are found to agree[71] 
closely with their experimental values for LHe-4[5]. In what 
follows these facts ensure that our theory has great potential 
to accurately account for the thermodynamic and hydrody-
namic properties (including superfluidity and related aspects) 
of the S-phase of a SIB. 

6.2. Phenomenological Pictures 

6.2.1. Two Fluid Theory 

As concluded from Sections 4.4 and 5.2, a SIB at T ≤ Tλ 
gets separated into two fluids F1 and F2. While, F2 has all 
characteristic properties of a superfluid viz., zero entropy, 
zero viscosity, etc., since it comprises particles in their 
G-state with their positions locked at <k>= 0, <r>= λ/2 = d 
and ∆φ = 2nπ (Eqn.29) for which they cease to have relative 
motion (or collisional motion), F1 identified with a gas of 
non-interacting quasi-particle excitations, has all properties 
(such as non-zero entropy, non-zero viscosity, etc.) of a 
N-fluid. This not only concludes that a SIB below Tλ should, 
undoubtedly, behave as a homogeneous mixture of two flu-
ids that have all properties envisaged by Landau[6] but also 
provides microscopic foundation for two fluid phenome-
nology. It further reveals that each particle with its q−motion 
participates in F2 and with K−motion in F1. It does not 
support the perception that certain atoms participate in F1 
and rest in F2. 

As an important aspect of Landau’s two fluid theory, 
S-fluid component of He-II is assumed to flow in a direction 
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opposite to N-fluid component which flows from the point of 
higher T to that of lower T. Our theory finds a sound reason 
for it. Since ρs(T) and VS(T) = NϵS(T) both have monotonic 
increase with decrease in T, a point of lower T has higher 
amount of both, ρs(T) and VS(T), in comparison with a point 
of higher T. Naturally, particles having higher value of VS(T) 
at a region of lower T experience a force which make them 
move towards the region of higher T where they have lower 
VS(T) unless the two regions attain a state of equal VS(T), i.e. 
a state of equal strain energy which happens to occur at 
points of equal T. Alternatively, this means that ρs(T) flows 
from the region of lower T towards the region of higher T 
unless the two regions have equal ρs(T). Note that liquids 
cannot sustain pockets of different strain energy, NϵS(T), 
obviously, for its fluidity which allows them to flow from the 
regions of higher strain energy to those of lower strain en-
ergy and this task is completed by flow of omons which have 
higher density in the regions of lower T in comparison to 
those of higher T. 

6.2.2. Ψ−theory 

We find that superfluidity of a SIB is basically a property 
of its F2 component (or the G-state) represented by Φo(N) 
(Eqn.28) which can also be expressed as 

Φo(N) = √n                (70) 
with n = N/V. However, when F2 is made to flow, its state 

is given by Φo∗(N) (Eqn.66). For the phenomenological basis 
that ρs(T) = nsm (at 0 < T < Tλ) is < ρ = nm, it is imperative to 
assume that the phase S(R) (Eqn.67) is a complex quantity 

S(R) = ξr(R) + iξi(R)           (71) 
this shows that our theory also renders microscopic 

foundation to Ψ−theory[37].  

6.2.3. Quantum Phase Transition 
As discussed in Section 4.8, our theory finds that 

λ−transition and superfluidity are the results of quantum 
nature of particles. When this observation is clubbed with the 
fact that superfluidity is basically a property of F2 compo-
nent (comprising particles in their T = 0 state) of a SIB.   
However, F2 exists even at non-zero T < Tλ due to its 
proximity with F1 (a gas of quasi-particle excitations) whose 
energy measures the T of the system. In what follows 
λ−transition could be identified as a quantum transition[72] 
which occurs at non-zero T for the said proximity. Although,  
particles in excited states attributed to their q−motions (viz., 
with q = 2qo , 3qo, ...,etc.) are, naturally, the part of F2, 
however, their number are found to be only ≈ 5% at Tλ and it 
decreases exponentially to 0 value at T = 0. 

6.3. Other Experimental Observations 
(i). Physical reality of existence of an electron bubble: An 

excess electron in liquid helium exclusively occupies a self 
created spherical cavity (known as electron bubble) of cer-
tain radius, when it assumes its lowest possible energy in the 
cavity. To create the said cavity it exerts its zero-point force 
on the surrounding atoms against the forces originating from 
inter-atomic interactions and external pressure on the liq-

uid[73]. It is evident that the bubble formation is a conse-
quence of the facts that: (i) an excess electron experiences a 
strong short range repulsion with He atoms which does not 
allow its binding with the said atoms and (ii) the electron, for 
its quantum nature, manifests as a WP whose size increases 
with the decrease in its energy. This implies that any quan-
tum particle that experiences similar repulsion with He at-
oms should have similar state in liquid helium and this is 
found to be true with positron[74] and other particles (ions, 
atoms, molecules, etc.[75]). Guided by these observations, it 
is natural to believe that each 4He-atom in LHe-4 should 
assume similar state when it occupies its lowest possible 
energy because it too is a quantum particle and it experiences 
strong short range repulsion with other helium atoms. Here 
we also find that the electron in a drifting bubble has two 
motions (q− and K−motions), respectively, identified with its 
zero-point motion as a trapped particle and its drift with the 
bubble. This not only helps in having a better understanding 
of the two motions of a single quantum particle in a SIB like 
LHe-4, but also proves that the state of the electron in elec-
tron bubble is not different from the state that we represent 
by a macro-orbital. In other words the existence of an elec-
tron bubble not only renders a clear experimental proof for 
the macro-orbital state of a HC boson in a SIB like LHe-4 
and provides strong experimental foundation to our theory 
but also reveals that ζ(r) part of the macro-orbital (Eqn.(18)) 
for s−, p−, d− .... states can be represented to a good ap-
proximation by the respective state functions of a particle 
trapped in a spherical cavity of size d[76]. 

(ii) Spectroscopy of molecules embedded in He-droplets 
or clusters: Experimental study of high resolution rovibra-
tional spectra of embedded molecules (e.g., OCS/N2O 
molecule in 4He droplets and 4Hey:OCS or 4Hey:N2O clus-
ters[77] where y = number of 4He atoms) provides another 
foundation to our theory because these studies conclude that 
superfluidity exists even in systems having few 4He atoms 
(viz., about 6 or more) which implies that the phenomenon 
has no relation with p = 0 condensate since 4He atoms in 
these systems are confined to a space of size, s ≈ 5Ǻ for 
which each atom is expected to have reasonably high mo-
mentum ≈ π/s rather than zero. Further since each cluster is 
expected to have certain stable structure (which of course 
would depend on inter-particle interactions and may change 
with change in y), the embedded molecule sees a time in-
dependent potential which implies that 4He atoms around the 
rotor cease to have collisional motions. In other words 4He 
atoms in these droplets and clusters are localized with posi-
tion uncertainty decided by their least possible momentum of 
their confinement which agrees closely with our theory. In 
addition, as inferred in Section 3.3, particles in S-state of a 
SIB can move with equal velocity on a closed path without 
any change in order of their locations which implies that 
particles on two such nearest possible paths (viz., two con-
centric circular paths) can have different velocities consistent 
with the theory of experimentally observed quantized cir-
culation in superfluid 4He[5]. Evidently, it is not surprising 
that a molecule (or its cluster with few neighboring atoms 
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which bind with it to follow its rotation) is observed to have 
free rotation within a 3-D shell or a ring (formed by 4He 
atoms in its surrounding) that does not participate in the 
rotation. It also finds that OCS or N2O molecule embedded 
in S-state of 4He droplets shows sharp rotational lines be-
cause 4He atoms cease to have collisional motion but not in 
N-state of 3He[77(a)] where particles are known to have 
mutual collisions. In other words rotational lines do not have 
collisional broadening in superfluid 4He which they have in 
liquid 3He. As such experimental observations related to the 
rovibrational spectra of embedded molecules support our 
theory. 

6.4. Experimental Evidence for CPA-WP 

Diffraction experiments using X-ray, neutron and electron 
beams are expected to provide accurate information about 
the atomic arrangement in any system provided the high 
energy/momentum of these radiations does not dam-
age/perturb this arrangement. Although, atoms in CPA-WP 
cease to have their relative motions, they remain the parts 
and parcel of a fluid where shear forces have vanishingly 
small magnitude which makes CPA-WP highly fragile. It 
differs significantly from the atomic arrangement in a 
solid/crystal which have appreciably strong shear forces. 
Particles in CPA-WP remain free to move coherently (all 
with same velocity keeping their relative positions, residual 
momentum and the relative phase positions fixed) in order of 
their locations on a line/closed path (or bundles of parallel 
lines/closed paths). In other words, atoms in He-II can slip on 
a line/plane with respect to those on neighboring lines/planes; 
they are likely to get displaced from their positions with a 
collective motion when they are hit by particles of high 
energy/momentum in a beam of said radiations. Even the 
relative distance of particles is expected to change, since it 
depends on the size of their WPs (λ/2 = π/q) which can have 
large fluctuations when the system is exposed to the said 
radiations. Evidently, the said diffraction tools are not suit-
able to get reliable information about the CPA-WP and it is 
for this reason that CPA-WP could not be detected for so 
long. 

However, we identify other experiments which prove 
CPA-WP of 4He-atoms in He-II from the fact that this ar-
rangement locks atoms at a distance d, relative momentum 
at k = 2qo = 2π/d and relative phase position ∆φ = 2nπ. To 
this effect we note the following: 

(1).The excitation spectrum E(Q) of He-II matches closely 
with that predicted for a mono-atomic chain with atoms 
separated by d not only at low Q (observed for most liquids) 
but also at high Q(> 2π/d). The momentum and energy of an 
excitation at such a high Q basically correspond to a motion 
of a single particle for the fact that the corresponding wave 
length Λ < d (the size of space occupied by a particle); this 
clearly proves that particles have an orderly arrangement 
with a separation d. 

(2) Landau two fluid model which explains the properties 
of He-II to a good accuracy envisages S-component of He-II 
to have S = 0 and η = 0 and CPA-WP representing this 

component has S = 0 because all particles occupy single 
quantum state of q = qo and η = 0 because particles cease to 
have relative motions or mutual collisions for their relative 
positions remain locked with r = d. 

(3) Superfluid is observed to have coherent motion and 
vortices of quantum circulation and their possibility de-
mands a configuration like CPA-WP where particles satisfy 
∆φ = 2nπ.  

Although, the above listed experimental observations have 
been there for many years, however, these were not analyzed 
to see the existence of CPA-WP because it was not perceived 
in the framework of CMT. Finally, we also note that several 
other experimental observations on He-II, such as T3 de-
pendence of specific heat, infinitely high thermal conduc-
tivity, etc. too support CPA-WP. 

7. Comparison of our NCMT and CMT 
7.1. Important Aspects of our NCMT 

Our approach to the microscopic understanding of a SIB 
uses PPB which identifies each particle as a representative or 
a part of a pair of particles moving with equal and opposite 
momenta (q, -q) with respect to their CM which moves with 
momentum K. Consequently, the state of the particle is 
represented by a macro-orbital (Eqn.18) and the accuracy of 
this representation is established, beyond doubt, by the ex-
istence of electron bubble[Section 6.3(i)]. It is further 
strengthened by the fact that this representation identifies 
each particle to have two motions (q− and K−) which provide 
the origin of two fluid behavior of He-II (Section 6.2(ii)). 

The onset of λ−transition is an order-disorder of particles 
in φ−space followed, simultaneously, by their BEC in the 
state of q = qo and K = 0. The T dependence of the condensate 
fraction nK=0(T∗) (Eqn. 49) starting from nK=0(Tλ) = 0 to 
nK=0(T∗ =0) = 1.0 agrees closely with experimentally ob-
served ρs(T)/ρ for He-II which represents a kind of order 
parameter of the transition (Curves A∗ and E2, cf. Fig. 2). 

The fact that λ−transition is a consequence of the wave 
nature of particles is made more clearly visible by our theory, 
since it finds: (i) how wave nature of particles leads to their 
quantum correlations represented by corresponding poten-
tials (US

ij (Eqn.54) and Uij (Eqn.55) depicted in Fig. 3) which 
drive their q and K, respectively, toward q = qo and K = 0, (ii) 
how zero-point force (another consequence of the wave 
nature), fo = h2/4md3, exerted by each particle on its 
neighbors pushes them away against the inter-particle at-
traction, fa (originating from inter-particle potential) and 
renders an increase in d by dT−dλ (Section 4.7) representing a 
kind of mechanical strain in inter-particle bonds when fo and 
fa reach a state of equilibrium, (iii) why energy of this strain, 
∆VS(T) = NϵS(T) (Section 5.1), depends on the q−values 
(fluctuating around qo) of particles for which the system 
sustains a new quantum quasi-particle omon similar to a 
phonon (Section 5.1), (iv) how zero-point energy (yet an-
other consequence of wave nature) of each particle falls by 
small amount (Eqn.53) and how Eg(T) (Eqn. 60) represents a 



46  Yatendra S. Jain:  Microscopic Theory of a System of Interacting Bosons-I : Basic Foundations and Superfluidity 
  

collective binding between all atoms for which the entire 
system behaves like a macroscopic single molecule, (v) how 
collective binding serves as an energy gap Eg(T) between 
S-state and N-state (Section 5.1), (vi) how this gap helps in 
accounting for the superfluidity and related properties of 
He-II (Section 5.2), and (vii) how zero-point force (Section 
4.7) serves as a basis for our prediction that a SIB should 
exhibit −ve thermal expansion coefficient around Tλ which is 
confirmed by the experimental observation on LHe-4[2(a)]. 

The theory reveals that the S-state is characterized by a 
fraction of particles[nK=0(T∗)] condensed into the G-state 
represented by q = qo and K = 0 with no particle having q < 
qo . It not only concludes the absence of p = 0 condensate but 
also explains why existence of p = 0 condensate in He-II 
could not be confirmed through any experiment beyond a 
point of doubt[26-28]. Inferences of our theory are also 
consistent with the criteria of the occurrence of BEC, viz. (i) 
the expected observation of ODLRO[55, 56], (ii) spontane-
ous symmetry breaking[57] and phase coherence[58], as 
well as with the excluded volume condition envisaged by 
Kleban[78] who argued that each 4He-atom in LHe-4 occu-
pies certain volume exclusively. 

The theory also explains why LT phase of a SIB should 
behave like a homogeneous mixture of two fluids[(F1 
(normal) and F2 (super) found to have different properties[7] 
as envisaged exactly by Landau’s theory[6]] and thereby 
renders microscopic basis to two fluid theory and 
Ψ−theory[37]. It further reveals that Superfluidity and re-
lated properties are, basically, associated with the T = 0 state 
of the system (represented by F2) which means that 
λ−transition is a kind of quantum transition which occurs at a 
non-zero T for the proximity of F2 with F1. 

Particles in F2 represent (q, -q) bound pairs, not only in 
q−space but also in r−and φ−spaces. They constitute a kind 
of CPA-WP and define a 3-D network of SMWs which locks 
their relative momentum, relative separation and relative 
position on φ−line, respectively, at k = 2π/d, r = d and ∆φ = 
2nπ with a net amount of collective binding represented by 
Eg(T); this provides reasons for the stability of S-state for 
small energy perturbations such as its flow (linear/rotational) 
with a velocity below certain values or small amplitude 
thermal oscillations. The S-state is consistent with micro-
scopic uncertainty as evident from q ≥ π/d as well as mac-
roscopic uncertainty since the 3-D network of SMWs rep-
resented by ΦS

o(N) (Eqn.28) vanishes at the boundaries of 
the system. 

Our theory predicts that a SIB can have an onset of su-
perfluidity provided it keeps its fluidity up to a T ≈ To ≡ εo) at 
which the zero-point force of its particles dominates its 
physical state. Since the WP size (λ/2) for all particles in the 
S-state of a SIB remains as small as d (Eqn.(42)), it is not 
surprising that superfluidity is observed in nano droplets and 
clusters of few atoms as reported recently in[75, 77]. 

The merit of our approach lies with the fact that it con-
cludes the present theory simply by analyzing the solutions 
of its N−particle Schrodinger equation. It makes no assump-
tion such as the existence of p = 0 condensate or pair con-

densate, etc. in the S-phase of a SIB as made by CMT. The 
theory is mathematically simple and its results cannot be 
manipulated since it uses no adjustable parameter. It does not 
use any drastic approximation in determining the role of 
inter-particle interactions. It beautifully demonstrates that 
the wave nature has amazing capacity to organize particles in 
phase space at φ = 2nπ with <r>= λ/2 = d.  

 
Figure 4.  Schematic of distribution of particles at T = 0. (A) All the N 
particles occupy single particle state of p = 0 in a system of non-interacting 
bosons, (B) depletion of p = 0 condensate (i.e. only a fraction of N occupy p 
= 0 state) in weakly interacting boson system as predicted by Bogoliubov 
model[8], and (C) all the N particles occupy a state of qo = π/d and K = 0 as 
concluded from the present theory 

7.2. Important Aspects of CMT 

Following the basic theory of BEC[9] in SNIB, one finds 
that 100% particles occupy a single particle state of p = 0 
(presumed to represent the G-state of the system) as depicted 
by Fig.4(A). However, as indicated by Bogoliubov’s the-
ory[8], this does not hold for a SIB; Np=0 gets depleted by  
Np≠0 = N − Np=0 which move to different states of p ≠ 0 beca 
use the G-state energy of the system increases by certain 
value (say, ∆Eo) due to inter-particle repulsion V R(rij); the 
momentum distribution of particles (N(p)) in the G-state of a 
SIB, so expected is shown in Fig.4(B).  Np≠0 and ∆Eo, pre-
sumably, increase with the increasing strength of V R(rij). 
CMT calculations reveal that p = 0 condensate gets depleted 
to a value as low as ≈ 10%[25-28] in He-II and ≈ 60% or 
more in TDG[40]. However, recent theoretical studies of 
He-II and TDG consider that S-phase of a SIB also has in-
tensive pair coherent condensate (PCC), -analogous to the 
Cooper condensate in a Fermi liquid with an attraction be-
tween the fermions. Having a slightly different view point 
Jeon et al[47(a)] and Hao[47(b)] try to revive an old con-
sideration[48(a-c)] and try to conclude that the unique 
properties of the S-phase of a SIB are the consequences of 
the condensation of only Cooper type pairs of 4He-atoms. 
Interestingly, since N(p) in the G-state of a SIB, as concluded 
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by all these theories, does not differ qualitatively from that 
depicted in Fig.4(B), it is clear that these theories differ only 
for their presumed emphasis on single particle condensate or 
pair condensate or composite condensate as the origin of 
superfluidity and related aspects. However, in the absence of 
a clear experimental evidence in support of the existence of 
any form of the condensate, this difference may have only 
academic importance; what remains to be noted is that all 
these studies use SPB to describe a SIB and approximation 
methods (perturbative or variational) to reach their conclu-
sions and in this context it is important to note that single 
particle representation does not agree with a physical reality 
of the LT states of a SIB in which particles bound to have 
states of their wave superposition which cannot be under-
stood unless we take at least two waves as discussed in Sec-
tion 2.2. 

7.3. Should Results of PPB and SPB Approaches Differ? 

“Physical quantities should not depend on the basis (SPB 
or PPB) used for describing a system, if the theoretical 
treatment is exact. This motivated us to examine the reason 
for the difference of G-state of a SIB concluded by SPB 
(Fig.4(B)) and that concluded by PPB (Fig.4(C)) because no 
system can be correctly understood unless we have the cor-
rect understanding of its G-state. In this context our simple 
mathematical analysis[79], unequivocally, concludes that 
N(p) (Fig.4(B)) does not represent a state of minimum pos-
sible energy as expected for every physical system in its 
G-state. Subjecting N(p) (Fig.4(B)) to the condition which 
can minimize its energy, we discovered[79] that: (i) all par-
ticles in the true G-state of a SIB should have identically 
equal energy εo = h2/8md2 and equivalent momentum q = qo = 
π/d, and (ii) no particle has a q < qo which establishes the 
absence of p = 0 condensate. In the light of the fact that these 
inferences agree exactly with corresponding ones of our 
theory and our results (for the G-state) of a SIB can be ob-
tained from those of CMT (not vice versa) simply by mini-
mizing the energy of N(p) (Fig.4(B)), we can use the opening 
statement of this section to state that our theory is nearly 
exact. 

A quantum theory is said to be exact if it finds solutions of 
the Schrodinger equation of a system without leaving any 
part of the potential involved. To this effect it may be noted 
that our theory starts by using V(rij) = VR(rij) + VA(rij) without 
any approximation. In a next step it uses an approximation 
VR(rij) ≡ VHC(rij) ≡ A(rij)δ(rij) and replace the contribution of 
VA(rij) by −Vo in a good agreement with the physical realities 
of a fluid (i.e., particles in a fluid move freely like impene-
trable hard balls; two particles encounter infinitely strong 
potential only when their bodies have a mutual touch). Fi-
nally, when the system is dominated by the wave nature of 
particles at LTs with their wave superposition, our theory 
considers their zero-point repulsion (a combine of A(r)δ(r) 
and WP manifestation of a particle) in its totality and derives 
its consequences by balancing fo and fa (Section 5.1) and in 
this process it uses only one approximation in which fa is 
derived from a harmonic potential, (c/2)x2, while its source 

potential VA(rij) can contribute an-harmonic terms too. Evi-
dently, all these points justify that our theory is nearly exact. 

8. Conclusions 
This paper reports a nearly exact microscopic theory of a 

SIB by solving N−body Schrodinger differential equation by 
using the simplest possible method. The accuracy of our 
theory finds strong experimental support from: (i) the 
agreement of its concluded excitation spectrum, E(Q) = 
ћ2Q2/4mS(Q)[65,70], (planned to be published as Paper-II) 
with experimentally observed E(Q) of LHe-4[25], (ii) con-
formity of its calculated values of the parameters of two fluid 
hydrodynamics(viz., ρs(T), ρn(T), etc. reported in[71]) with 
corresponding experimental results for He-II[5], (iii) ex-
perimentally observed quantized circulation, (iv) flow of 
ρs(T) in the direction opposite to that of ρn(T) which flows 
from the region of higher T to that of lower T, etc. 

Its concluded energy gap (Eg(T)) between the S-state and 
N-state of LHe-4 not only serves as the origin of superfluid-
ity and related aspects but also provides reasons for the sta-
bility of the S-state against the small energy perturbations. 
This is demonstrated by the fact that the critical velocity of 
its linear flow (vc) and that of its rotational flow (Ωc) (for 
which its superfluidity is totally lost) obtained by us[71] 
from Eg(T) for He-II agree closely with experiments[5]. 
Since the maximum value of per particle share in Eg(T) 
(Eqn.(60)) for He-II falls around mK energy, superfluidity is 
an energetically weak effect and this is evident from the 
small values of vc and Ωc.  

As concluded in Section 4.4, BEC of bosons (in a SNIB as 
well as a SIB like LHe-4) has a unified picture in the 
framework of our NCMT; for both cases it can be identified 
as a condensation of particles in their G-state where each 
particle has <p>= 0 (not p = 0). It may be noted that: (i) 
momentum of a particle in both systems (SNIB and SIB) 
kept in finite V does not remain a good quantum number, 
particularly, when their λT becomes of the order of d and (ii) 
each particle even in the G-state of a SNIB has non-zero 
energy (≈ h2/8mV2/3) and corresponding non-zero momen-
tum (q = qo ≈ π/V1/3). The fact that corresponding energy and 
momentum values for a SIB fall at about N2/3 and N1/3 times 
higher speaks of the impact of the HC interaction among the 
particles in a SIB; N = 1000, these factors, respectively fall at 
100 and 10, while for N = 1024, they fall at 1016 and 108 which 
are very large factor. To this effect we note that a particle in a 
SNIB has no means to know about the presence of other 
particles hence each particle behaves as if the entire V be-
longs to it. However, this is not the case for a SIB, since 
effective volume available for each particle is only V/N. 

In what follows from ρs(Tλ) = 0, it can be stated that the 
onset of BEC at T= Tλ occurs merely few particles occupying 
the state of q = qo and K = 0 and ends with all particles having 
this state at T=0. Evidently, the <p>=0 condensation in a SIB 
grows from n<p>=0(Tλ) =0 to reach n<p>=0(T=0) =1.0(100% 
condensation). Since this is consistent with ρs(Tλ) = 0 and 
ρs(0) = 1.0, our NCMT has no difficulty (of the type faced by 
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CMT where only ≈10% 4He atoms are found to have p = 0 
even at T = 0) in using two fluid description of He-II. 

CMT based on SPB approach can also help in concluding 
the true G-state (Fig.4(C)) of a SIB provided the energy 
(corresponding to the G-state N(p) (Fig.4(B)) concluded by it) 
is minimized by making pairs of particles, -as shown in[79]. 
Evidently, the difference of CMT results with those of ours 
are the consequences of its SPB approach clubbed different 
possible presumptions and approximations, -not of the 
mathematical approach(es) used in it.  

We applied our approach to study some other MBQS. As, 
discussed briefly in[80], it has great potential to unify the 
physics of widely different systems of interacting bosons and 
fermions including low dimensional systems, newly dis-
covered BEC states of TDG, etc. Our studies of N HC par-
ticles in 1-D box[81] and basic foundations of the micro-
scopic theory of superconductivity[82] make it evident that a 
fermionic system differs from a bosonic system for its par-
ticle-distribution on the allowed states of K−motions which 
are constrained to follow Fermi-Dirac statistics in place of 
Bose-Einstein statistics followed for a bosonic system. 
Consequently, a fermionic system retains more energy in 
K−motions of particles even at T = 0.  Consequently, fer-
mions do not assume stable bound pairs unless their T falls 
below the T equivalent of  Eg(T) where q−motions get de-
linked from K−motions; note that binding of particles con-
trols only q−motions (relative motions) not the K−motions. 
This not only explains how excess energy of K−motions 
pushes down the T of the onset of superfluidity in a fermionic 
system in comparison to a bosonic system but also under-
lines the fact that superfluidity of both systems has a com-
mon origin which lies with the formation of bound SMW 
pairs. A SMW bound pair differs slightly from a Cooper pair 
for the basic source of its binding (Section 5.1(v)). Our ap-
proach finds that superfluid transition in a SIB should occur 
at a T ≈ To (≡ εo), while that in a fermionic system should 
occur around a T ≡ Eg(0)/N and this agrees closely with 
experimental values[36] of the temperature of the onset of 
superfluidity in LHe-4 and LHe-3, respectively. 

It is interesting to find that our theory of superconductiv-
ity[82] can account for the highest Tc of a high T supercon-
ductor that we know to-day. It can also explain the pressure 
dependence of the Tc of superfluid transition in LHe-3 at 
quantitative scale[83]. The zero-point force of a particle 
emphasized in these studies as the origin of a strain in the 
structure of the neighboring particles (viz. the lattice in case 
of superconductors and inter-atomic bonds in liquid 3He) is a 
natural consequence of wave nature of particles for which a 
particle behaves as a WP and occupies exclusively a space of 
size λ/2. This is clearly supported by the experimental ob-
servation that an electron in LHe-4 and LHe-3 exclusively 
occupies large size spherical cavity (or what is known as 
electron bubble) which has a radius of the order of ≈ 19Ǻ and 
the volume expansion exhibited by LHe-3 on its cooling 
below about 0.6 K[2(a)]. In a recent paper[84], we explained 
that only our theory concludes an ordered arrangement of 
particles (free from collisions) in the S-phase of a SIB de-

sired to explain the experimental observation of Stark effect 
of roton transition[85] in He-II. Evidently, the observation of 
Stark effect renders strong experimental support to our the-
ory and the absence of p = 0 condensate. 

Our non-conventional approach works well in developing 
the microscopic theory of a bosonic system like LHe-4 (as 
discussed in this paper) and a fermionic system like electron 
fluid in superconductors discussed in[82] (valid also for 
liquid 3He type systems). We hope that a critical discussion 
and scientific debate on our approach may further improve 
its strength and accuracy and it will help in concluding the 
desired theory of widely different many body systems of 
interacting bosons and fermions. 

It may be noted that our theory uses only the realistic 
picture of a fluid. It makes no assumption such as the exis-
tence of p = 0 condensate as the origin of superfluidity used 
by CMT. It is, obviously, consistent with the well known 
philosophical principle, -the Occam’s razor, which states that 
the explanation of a phenomenon should make as few as-
sumptions as possible or the simplest solution of a problem is 
preferable to more complicated solutions. In this context it is 
interesting that our theory helps in clarifying the difference 
between S-fluid and N-fluid states even to a layman since 
these states can be identified, respectively, with: (i) the or-
dered positions and motions of soldiers in an organized army 
platoon and (ii) random positions and motions of people in a 
crowd. While the people in the former have coherent motion 
with no chance of mutual collision, those in the latter have 
incoherent motion with high probability of such collisions.  
The analogy seems to agree with what has been depicted 
in[86] about the BEC state of atoms in TDG and what has 
been perceived by Leggett[87] about 4He atoms in the so 
called p=0 condensate in He-II but with a difference. Ac-
cording to our theory, all atoms in the S-state of a SIB behave 
like soldiers in an organized army platoon, while in view 
of[86,87], this analogy applies only to the atoms which 
constitute the so called p = 0 condensate (i.e. about 10% 4He 
atoms in He-II or about 60% atoms in BEC state of TDG).  
  In summary, we succeeded in developing the long awaited 
microscopic theory of a SIB like LHe-4 and TDGs. It finds 
that superfluidity of a SIB is basically a property of its 
G-state configuration which persists at all T < Tλ; it can be 
exhibited by a SIB of any size (as small as a microscopic 
cluster having a few bosons or as large as bulk LHe-4) pro-
vided the system retains fluidity at To(≡ εo).  The theory 
predicts that such a SIB would exhibit –ve thermal expansion 
coefficient around its transition to superfluid state.  It also 
predicts the presence of phonon like waves of oscillations in 
q values around qo (proposed to be known as omon) which 
propagate from the points (or regions) of lower T to those of 
higher T.  For the first time our theory underlines the im-
portance of the WP manifestation of a quantum particle and 
zero point force fo exerted by each of them on the 
neighboring particles in organising their relative positions in 
r- and φ-spaces.  Our similar study of N interacting bosons 
confined to a 1-D box[81] clearly concludes that superfluid-
ity and related properties can also be exhibited by systems of 
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low dimensions (viz., 1-D and 2-D) below certain T(of the 
order of To).  The results of our theory can have meeting 
points with those of CMT[8, 50] provided the energy cor-
responding to their concluded N(p) (Fig.4(B) is minimized. 
This point is concluded in our recent paper[79(c)] which not 
only reveals the absence of p=0 condensate but also demon-
strates the possibility of N (=2, 3, ...) body correlations in 
superfluid state of a SIB; these correlations have been central 
to the recent developments in CMT[43-46].  The fact that 
our theory has been developed by solving its N-body 
Schrodinger equation in its standard differential form breaks 
the myth that such a solution is practically impossible to 
achieve. It also sets aside the speculation[5] that wave me-
chanics does not have basic principles to explain superflu-
idity of He-II.  We hope that this theory would be accepted 
widely by the physics community and in this context, we 
would like to submit that 75 years is a long time to test the 
validity of the idea of p = 0 condensate as the origin of su-
perfluidity.  It is high time to give a chance to newer ideas.  
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Appendix – A 
A Critical Analysis of < Aδ(x) >= 0 

In general A(x), in VHC(x) ≡ A(x)δ(x), can be such that A(x) 
→ ∞ for x → 0. It can, therefore, be expressed as 

A(x) = Bx−(1+α)              (A-1) 
with B and α being > 0. Using Ψ(x,X)± = √2ψk(x)±exp (iKX) 

as the 1-D analogue of the pair states Ψ(r,R)± (Eqn.10) with 
ψk(x)− = sin (kx/2) in place of ψk(r)− = sin (k.r)/2) (Eqn.11) 
and φk(x)+ = sin(|kx/2|) in place of φk(r)+ = sin(|k.r|)/2) 
(Eqn.12). Since |ψk(x)−|2 = |φk(x)+|2, we find that 

< A(x)δ(x) > = B{[2sin2(kx/2)/x(1+α)     (A-2) 
is an in-determinant which can be simplified to Bk2x1- α/2 

for x ≈ 0. Evidently, when x → 0 we have  
<A(x)δ(x)> = 0 for α < 1         (A-3) 

a finite +ve value 
<A(x)δ(x)> = Bk2/2  for α = 1     (A-4) 

and  
<A(x)δ(x)> = ∞ for α > 1         (A-5) 

Since no physical system can ever occupy a state of ∞ 
potential energy, α > 1 corresponds to a physically uninter-
esting case. Among the remaining α values (corresponding to 
physically interesting configurations), α = 1 is the sole point 
on the α−line for which <A(x)δ(x)>≠ 0. It stands as a sharp 
divide between <A(x)δ(x) >= 0 (for α < 1) and < A(x)δ(x) >= 
∞ (for α > 1). To understand the physical significance of 

these results, we note the following. 
1. < A(x)δ(x) > =0 is clearly valid for α < 1 
2. Using Eqn.(A-4) and hi = -(ћ2/2m) ∂xi[1-D analogue of 

3-D hi (Eqn.1)], we evaluate E(2) = <H(2)> = <h1+h2+A(x) 
δ(x)>for Ψ(x,X)± state and find 

Erel(2) = ћ2k2/4m + Bk2/2 = ћ2k2/4m(1+2Bm/ ћ2)  (A-6) 
which represents the total energy expectation of the rela-

tive motion of two HC particles for α = 1 case.  We note that 
< A(x)δ(x) > = Bk2/2 and ћ2k2/4m can be absorbed into one 
single term by defining  

Erel(2)* = ћ2k2/4m* with m* = m/(1+2Bm/ ћ2)  (A-7) 
which justifies <A(x)δ(x)>= 0 also for α = 1 if m is re-

placed by m∗. Although, this shows that Eqn.(14) stands 
valid for all situations of physical interest, however, it does 
not explain why the energy of the relative motion of two HC 
particles at x >> 0 should be Erel(2)∗, rather than Ek = h2k2/4m 
expected for the fact that A(x)δ(x) is experienced only if x = 0, 
and why <A(x)δ(x)> (as indicated by its value Bk2/2) should 
be kinetic in nature; note that <A(x)δ(x)>= Bk2/2 does not 
have potential energy character of A(x)δ(x) because it is 
neither a function of x nor of <x>. Evidently, <A(x)δ(x)>= 
Bk2/2 needs an alternative explanation (cf. points 3 and 4, 
below). 

3. Writing <A(x)δ(x)>= ʃ0ϵ…. + ʃϵ∞…. and evaluating 
these integrals under the limit 0→ϵ and ϵ→0, we find that 
<A(x)δ(x)> = Bk2/2 (Eqn.A-4) is the solitary contribution 
from x = 0 only. Similarly, we also observe that 
<-ћ2/m)∂x2>= ћ2k2/4m(the expectation value of kinetic en-
ergy of relative motion) has no contribution from x = 0; the 
related integral is found to be independent of the inclusion or 
exclusion of x = 0 point. These observations prove that 
Eqn.A-4 is a result of the conservation of energy of the pair 
<-ћ2/m)∂x2>. It appears that two particles in their relative 
motion have only kinetic energy (Ek= ћ2k2/4m), till they 
reach the point of their collision at x = 0 where they come to a 
halt and ћ2k2/4m gets transformed into an equal amount of 
potential energy (as a result of energy conservation). This 
potential energy should, naturally, be proportional to k2 as 
seen in Eqn.A-4. This not only implies that Bk2/2 in Eqn.A-4 
does not represent an additional energy to be added in 
<-ћ2/m)∂x2>= ћ2k2/4m to determine Erel(2) as appears from 
Eqn.(A-6) but also suggests that the physical meaning of 
non-zero < A(x)δ(x) > of an ill behaved potential such as 
A(x)δ(x) should be distinguished from that of <V(x)> of a 
well behaved (i.e. continuous and differentiable) V(x). Using 
the said conservation of ћ2k2/4m energy at x = 0, we can 
equate it to Bk2/2 and find that  

B = ћ2/2m and V(x) = A(x) δ(x) = ћ2/2mx-(1+ α)δ(x)(A-8) 
In wave mechanics, two colliding particles either ex-

change their positions (across the point x = 0) or their mo-
menta. In the former case they can be seen to cross through 
their δ−potential, possibly, by some kind of tunneling (in 
which their kinetic energy does not transform into potential 
energy), while in the latter case they return back on their path 
after a halt at x = 0 in which case their potential energy rises 
at the cost of their kinetic energy which reappears as the two 
particles move away from x = 0 point. While, the two pos-
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sibilities can be identified, respectively, with Eqn.A-3 and 
Eqn.A-4 of this Appendix, however, it is also clear that one 
has no means to decide whether the two particles exchanged 
their positions or their momenta which implies that the two 
situations are indistinguishable and it should not be surpris-
ing if < A(x)δ(x) > is found to have any value between 0 to 
Bk2/2 (i.e. <A(x)δ(x)> has an uncertainty as large as Bk2/2); 
this is particularly possible because a collision of two HC 
particles at x = 0 (i.e. an exact x) is a state of zero uncertainty 
in x and infinitely high uncertainty in k or Ek = ћ2k2/4m. 

In summary, non-zero < A(x)δ(x) > = Bk2/2, observed for 
α = 1, should be treated as fictitious. Else it can best be at-
tributed to energy conservation at x = 0 which implies that 
<A(x)δ(x) >= 0 (i.e. Eqn.14) is relevant for all possible 
physical situations of two HC particles that can be repre-
sented by α ≤ 1. 
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