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Abstract  In this paper, we consider the development of an extended block integrator for the solution of stiff and 
oscillatory first-order Ordinary Differential Equations (ODEs) using interpolation and collocation techniques. The integrator 
was developed by collocation and interpolation of the combination of power series and exponential function to generate a 
continuous implicit Linear Multistep Method (LMM). The paper further investigates the basic properties of the block 
integrator and found it to be zero-stable, consistent and convergent. The integrator was also tested on some sampled stiff and 
oscillatory problems and found to perform better than some existing ones. 
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1. Introduction 
In this paper, we consider the numerical solution of stiff 

and oscillatory first-order differential equations of the form, 
[ ]0 0' ( , ), ( ) , ,y f x y y x y x a b= = ∈        (1) 

where 0x  is the initial point, 0y  is the solution at the 

initial point and f  is assumed to satisfy Lipchitz condition 
stated below. 

Theorem 1[13]: Let ),( yxf  be defined and continuous 
for all points ),( yx  in the region D  defined by

,a x b y≤ ≤ −∞ < < ∞ , a and b  finite, and let there 

exist a constant L  such that, for every , ,x y y∗  such that 

( , ) ( , )x y and x y∗ are both in D ; 

( , ) ( , )f x y f x y L y y∗ ∗− ≤ −  

Then, if 0y  is any given number, there exists a unique 
solution )(xy  of the initial value problem (1), where 

( )y x  is continuous and differentiable for all ( , )x y in D . 
Proof, see[11] 
According to[18], equation (1) is used in simulating the 

growth of population, trajectory of particles, simple 
harmonic motion, deflection of a beam, etc. Few equations 
that are modeled in higher order differential equations are  
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first reduced to systems of first-order before appropriate 
method of solution is applied. Most often, these problems do 
not have a closed form solutions, hence appropriate methods 
are adopted to solve such problems. Different methods have 
been proposed ranging from predictor-corrector methods to 
block methods. Despite the success recorded by the 
predictor-corrector methods, its major setback is that the 
predictors are in reducing order of accuracy especially when 
the value of the step-length is high and moreover the results 
are at overlapping interval[3]. Block methods which have 
advantage of being more efficient in terms of cost 
implementation, time of execution and accuracy were 
developed to handle the setbacks of predictor-corrector 
methods[19],[2] and[20]. 

Definition 1[13]: A differential equation is said to be stiff 
if Re( ) 0, 1(1)i i mλ < = , where λ  is the eigen value of 
the differential equation.  

Definition 2[6]: A nontrivial solution (function) of an 
ODE is called oscillating if it does not tend either to a finite 
limit or to infinity (i.e. if it has an infinite number of roots). 
The differential equation is called oscillating, if it has at 
least one oscillating solution. 

In the quest for a method that gives better stability 
condition, [14] proposed an approximate solution which 
combined power series and exponential function. In this 
paper, we extend their work by developing a block integrator 
with step number k=5.  

2. Derivation of the Extended Block 
Integrator  
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We consider an approximate solution that combines power 
series and exponential function of the form, 
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Interpolation and collocation procedures are used by 
choosing interpolation point s at a grid point and 
collocation points r  at all points giving rise to s rξ = +  
system of equations whose coefficients are determined by 
using appropriate procedures. The first derivative of (2) is 
given by, 
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where , j
ja α ∈ℜ  for 0(1)6j =  and ( )y x is 

continuously differentiable. Let the solution of (1) be sought 
on the partition 0:N a xπ = < 1x < 2x < . . . < nx < 1nx +

< . . .< Nx = b , of the integration interval [ ],a b  with a 

constant step-size h , given by, 1n nh x x+= − , 

0,1,...,n N= . 
Then, substituting (3) in (1) gives, 
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Now, interpolating (2) at point , 0n s sx + =  and 

collocating (4) at points , 0(1)5n rx r+ = , leads to the 
following system of equations,  

AX U=                   (5) 
 
where  
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Solving (5), for ' , 0(1)6ja s j =  and substituting back into (2) gives a continuous linear multistep method of the form, 
5
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where the coefficients of ny  and n jf +  
are given by, 

0 1 2 3 4 5 6[ ]TA a a a a a a a=

1 2 3 4 5[ ]T
n n n n n n nU y f f f f f f+ + + + +=
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where ( )nt x x h= − . Evaluating (6) at 1(1)5t =  gives a block scheme of the form, 

(0) ( ) ( )nm n mA hd hb= + +Y Ey f y F Y                                   (8) 

where 

[ ] [ ]1 2 3 4 5 4 3 2 1,T T
m n n n n n n n n n n ny y y y y y y y y y+ + + + + − − − −= =Y y

, 

[ ] [ ]1 2 3 4 5 4 3 2 1( ) , ( )T T
m n n n n n n n n n n nf f f f f f f f f f+ + + + + − − − −= =F Y f y ,

 

(0)
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3. Analysis of Basic Properties of the Extended Block Integrator 
3.1. Order of the Extended Block Integrator 

Let the linear operator { }( );L y x h  associated with the block (8) be defined as, 
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{ } (0)( ); ( ) ( )m n n mL y x h A Y Ey hdf y hbF Y= − − −                          (9) 

Expanding (9) using Taylor series and comparing the coefficients of h  gives,  

{ } 2 1 1
0 1 2 1( ); ( ) '( ) ''( ) ... ( ) ( ) ...p p p p

p pL y x h c y x c hy x c h y x c h y x c h y x+ +
+= + + + + + +            (10) 

Definition 3[10]: The linear operator L  and the associated continuous linear multistep method (6) are said to be of order 
p if 0 1 2 1... 0 0.p pc c c c and c += = = = = ≠   

1pc +  is called the error constant and the local truncation error is given by, 

( 1) ( 1) 2
1 ( ) ( )p p p

n k p nt c h y x O h+ + +
+ += +                            (11) 

For extended block integrator, 
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Expanding (12) in Taylor series gives, 
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Equating the coefficients of the Taylor series expansion to zero yields, 

[ ]0 1 2 3 4 5 6 70, 1.43( 02) 9.79( 02) 1.29( 02) 8.47( 03) 2.27( 02) Tc c c c c c c c= = = = = = = = − − − − − − − − − −
Therefore, the extended block integrator is of order six. 
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3.2. Zero Stability 
Definition 4[10]: The block integrator (8) is said to be 

zero-stable, if the roots , 1, 2,...,sz s k=  of the first 

characteristic polynomial ( )zρ  defined by 
(0)( ) det( )z zρ = −A E  satisfies 1sz ≤  and every root 

satisfying 1sz ≤  have multiplicity not exceeding the order 

of the differential equation. Moreover, as 0,h →  

( ) ( 1)rz z zµ µρ −= −  where µ  is the order of the 
differential equation, r  is the order of the matrices 

(0) andA E , see[5] for details.  
For our integrator, 

1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1

( ) 0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1

z zρ

   
   
   
   = − =
   
   
      

  (14) 

4
1 2 3 4 5( ) ( 1) 0, 0, 1z z z z z z z zρ = − = ⇒ = = = = = . 

Hence, the extended block integrator is zero-stable. 

3.3. Consistency 
The extended block integrator (8) is consistent since it has 

order 6 1p = ≥ . 

3.4. Convergence 

The extended block integrator is convergent by 
consequence of Dahlquist theorem stated below. 

Theorem 2[8]: The necessary and sufficient conditions 
that a continuous LMM be convergent are that it be 
consistent and zero-stable.  

3.5. Region of Absolute Stability 
Definition 5[22]: Region of absolute stability is a region 

in the complex z  plane, where z hλ= . It is defined as 
those values of z  such that the numerical solutions of 

'y yλ= −  satisfy 0jy as j→ →∞  for any initial 
condition. 

We shall adopt the boundary locus method to determine 
the region of absolute stability of the extended block 
integrator. This is achieved by substituting the test equation, 

'y yλ= −                    (15) 

into the block formula gives (8). This gives, 
(0) ( ) y ( ) ( ) ( )m n n mw w h y w h wλ λ= − −A Y E D BY (16) 

 
Figure 1.  Showing the Stability Region of the Extended Block Integrator 
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Thus, 
(0) ( ) ( )( )

( ) ( )
m n

n m

Y w y wh w
y w Y w

 −
= − + 

A E
D B

          (17) 

since h  is given by ih h and w e θλ= = . Equation 
(17) is our characteristic/stability polynomial. For the 
extended block integrator, equation (17) is given by, 
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This gives the stability region shown in the figure below. 
According to Fatunla (1988), stiff algorithms have 

unbounded RAS. Thus, from figures 1 above, the extended 
block integrator is suitable for solving stiff problems. Also, 
Lambert (1973) said that the stability region for L-stable 
schemes must encroach into the positive half of the complex 
z  plane. Thus, the extended block integrator is L-stable. 

4. Numerical Experiments 
We shall evaluate the performance of the block integrator 

on some challenging stiff and oscillatory problems which 
have appeared in literature and compare the results with 
solutions from some methods of similar derivation. The 
numerical results are obtained using MATLAB. 

The following notations shall be used in the tables below; 
ERR- Exact Solution-Computed Solution 
ESSI- Error in[17] 
ESYO- Error in[20] 

Problem 1 
Consider the highly stiff ODE 

0 0' ( , ) ( ( )) '( ), ( )y f x y y F x F x y x yα= = − − + = (19) 

which has the exact solution 

0( ) ( (0)) ( )xy x y F e F xα−= − +        (20) 

where α  is a positive constant and ( )F x is a smooth 
slowly varying function. Equation (20) exhibits two widely 
different time scales: a rapidly changing term associated with 
exp( )xα−  and a slowly varying term associated with 

( )F x .  
In[17], the authors considered a special case of (19) where 

0 010, ( ) 0, 0 1F x x and yα = = = = . They solved the 
problem 1 by adopting an L-stable hybrid block Simpson’s 
method of order six. The authors in[20] also solved problem 
1 using a block integrator with step number 4k = . 
Problem 2 

Consider the highly oscillatory ODE 

' sin 200( cos ), (0) 0y x y x y= − − − =        (21) 

whose exact solution is, 
200( ) cos xy x x e−= −           (22) 

Though in[22], the authors did not solve this problem, he 
however observed that it has a solution that oscillates and 
grows exponentially in x . He further stated that most 
numerical methods do not perform well on this problem. The 
authors in[20] solved problem 2 by adopting a block 
integrator with step number 4k = . 

Table 1.  Showing the results for stiff problem 1 

x        Exact Solution       Computed Solution         ERR           ESYO       ESSI 

0.0100  0.9048374180359595  0.9048374166087964  1.427163e-009  2.323184e-007  6.28e-03 

0.0200  0.8187307530779818  0.8187307520370371  1.040945e-009  1.006706e-007  1.88e-03 

0.0300  0.7408182206817179  0.7408182178125000  2.869218e-009  3.250567e-007  3.26e-03 

0.0400  0.6703200460356393  0.6703200496296297  1.640601e-009  4.662291e-007  1.06e-03 

0.0500  0.6065306597126334  0.6065306556828703  9.402976e-009  3.407125e-007  3.85e-03 

0.0600  0.5488116360940265  0.5488116301467602  8.594727e-009  4.816158e-007  1.45e-03 

0.0700  0.4965853037914095  0.4965853061749859  7.761642e-009  5.632829e-007  5.02e-04 

0.0800  0.4493289641172216  0.4493289927179915  7.139923e-009  4.495628e-007  2.76e-04 

0.0900  0.4065696597405992  0.4065695867598176  1.298078e-008  5.351845e-007  1.01e-04 

0.1000  0.3678794411714423  0.3678794271075826  1.140639e-008  5.787084e-007  3.74e-04 
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Table 2.  Showing the result for oscillatory problem 2 

x         Exact Solution      Computed Solution         ERR            ESYO 

0.0010  0.1812687469220599  0.1812689296296713  1.827076e-007  6.581226e-006 

0.0020  0.3296779539650273  0.3296770948154815  1.408505e-007  2.937887e-006 

0.0030  0.4511838639093485  0.4511838200033749  5.560940e-007  9.396094e-006 

0.0040  0.5506630358934451  0.5506630629736297  3.927080e-007  1.130466e-005 

0.0050  0.6321080588545993  0.6321086481741897  2.258932e-007  7.910709e-006 

0.0060  0.6987877881417979  0.6987873499226844  1.856178e-007  1.031328e-005 

0.0070  0.7533785361584351  0.7533787300449874  1.519389e-007  1.042596e-005 

0.0080  0.7980714821760110  0.7980710840204514  1.260184e-007  7.798045e-006 

0.0090  0.8346606120517877  0.8346602066907131  1.159464e-007  8.490002e-006 

0.0100  0.8646147171800527  0.8646143369623100  1.661978e-007  8.038839e-006 

 
5. Conclusions 

In this paper, we have presented an extended block 
integrator for the solution of stiff and oscillatory first-order 
ordinary differential equations. Our aim was to construct 
highly stable block integrator which is computationally more 
efficient than many of the existing numerical integrators for 
stiff and oscillatory problems. The approximate solution 
(basis function) adopted in this paper produced a block 
integrator with L-stable stability region. This made it 
possible for the block integrator to perform well on stiff and 
oscillatory problems. The extended block integrator 
proposed was also found to be zero-stable, consistent and 
convergent. The block integrator was also found to perform 
better than some existing methods in view of the numerical 
results presented. 
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