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Abstract  We consider the problem of finding the staircase kernel in orthogonal polygons, with or without holes, in the 
plane. Orthogonal polygon is a simple polygon in the plane whose sides are either horizontal or vertical. We generalize the 
notion of visibility in the following way: We say that two points a and b in an orthogonal polygon P are visible to each other 
via staircase paths if and only if there exist an orthogonal chain connecting a and b and lying entirely in the interior of P. 
Furthermore, the orthogonal chain should have the property that the angles between the consecutive segments in the chain are 
either +90∘ or −90∘, and these should alternate along the chain. There are two principal types of staircases, NW-SE and 
NE-SW. The notion of staircase visibility has been studied in the literature for the last three decades. Based on this notion we 
can generalize the notion of star-shapedness. A polygon P is called star-shaped under staircase visibility, or simply s-star if 
and only if there is nonempty set of points S in the interior of P, such that any point of S sees any point of P via staircase path. 
The largest such set of points is called the staircase kernel of P and denoted ker P. Our work is motivated by the work of Breen 
[1]. She proves that the staircase kernel of an orthogonal polygon without holes is the intersection of all maximal orthogonally 
convex polygons contained in it. We extend Breen's results for the case when the orthogonal polygon has holes. We prove the 
necessary geometric properties, and use them to derive a quadratic time, O(𝑛𝑛2) algorithm for computing the staircase kernel 
of an orthogonal polygon with holes, having n vertices in total, including the holes' vertices. The algorithm is based on the 
plane sweep technique, widely used in Computational Geometry[4]. Our result is optimal in the case of orthogonal polygon 
with holes, since the kernel (as proven) can consist of quadratic number of disjoint regions. In the case of polygon without 
holes, there is a linear time algorithm by Gewali[3], that is specific to the case of a polygon without holes. We present ex-
amples of our algorithm's results. 
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1. Introduction 
The problem of visibility in a polygon has been considered 

in Computational Geometry over the last four decades. The 
well-known Art Gallery Problem and its variations are the 
most prominent examples of visibility problems. To begin, 
consider a simply connected polygon P in the plane, P is 
convex if for every point q in P, q is visible from each other 
point in P. By introducing the notion that P is non-convex, 
this becomes no longer possible. P is non-convex if there 
exist points p and q in P such that p is not visible from q via a 
line segment that lies entirely in the interior of P. Thus not all 
pairs of points in P have direct visibility. The notion of 
non-convexity also provides the possibility that P is 
star-shaped. A polygon P is star-shaped, if there exists a 
point p such that for each point q in P the line segment pq lies 
entirely within P. Since there exists such a point p we want to 
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find the core set of p, the set of all such points that see all 
other points in P. The core set of all points p will be referred 
to as the kernel of P. The kernel of a polygon is the inter-
section of all its interior half-planes, an algorithm to find the 
kernel was constructed to run in O(𝑛𝑛) time. However not all 
polygons are star-shaped, so a generalization is needed. 
Fortunately, a simple thing to generalize is the notion of 
visibility. A path in ℝ2 from point p to point q is referred to 
as an orthogonal path or orthogonal chain if its edges are 
parallel to the coordinate axes and alternate in direction, and 
thus p “sees” q. As it can be seen in Figure 2, any simply 
connected orthogonal polygon is convex in terms of visibil-
ity by orthogonal paths. Further refinement of the concept is 
the introduction of the notion of staircase paths. An or-
thogonal path is called a staircase path, if the turns along the 
path alternate between +90∘  and −90∘ . A polygon P is 
star-shaped via staircase paths if there is a point p in P that 
sees every other point of P via staircase paths. 

We now introduce the concept of orthogonal polygons 
(rectilinear polygon). A polygon P in the plane is orthogonal 
if its edges are parallel to the coordinate axes, thus its edges 
meet at right-angles, and the interior angle at each vertex is 
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either 90° or 270°. 

 
Figure 1.  Star-shaped polygon under the definition of staircase visibility 

1.1. Theorem 1 

Any simple orthogonal polygon P is convex with respect 
to orthogonal paths. 

Proof: Choose any points p,q in P. Since P is a simple 
orthogonal polygon its edges are parallel to the coordinate 
axes, and its interior is simply connected. Then an orthogo-
nal path can be drawn from p to q. Then p “sees” q, and under 
the definition of orthogonal visibility each point of P is 
visible from every other point, and thus P is convex with 
respect to orthogonal paths. 

 
Figure 2.  A polygon that is convex via orthogonal paths 

Now consider the restriction that an orthogonal path can 
only travel North West/South East or North East/South West. 
This restriction does not guarantee that every orthogonal 
polygon is convex. Refer to the polygon in Figure 1, the two 
given points are not visible to each other via staircase path. 
However, a question now arises, is the orthogonal polygon 
star-shaped? Is there a point p that sees all other points via 
staircase paths? This gives rise to the question of our re-
search, how to find the core sets of all such points p, which 
will be referred to as the staircase kernel of P. 

2. Geometric Preliminaries 
There have been several papers on the subject of staircase 

visibility and orthogonal polygons. Much of the material 
considered is from Dr. Marilyn Breen's publications. Breen's 
approach follows from a well-known argument that for a 
polygon P that is star-shaped via line segments, the convex 
kernel of P is the intersection of all maximal convex subsets 
of P. What is shown in[1] is that for P, a simply connected 
orthogonal polygon that is star-shaped via staircase paths, 
the staircase kernel of P is the intersection of all maximal 
orthogonally convex polygons in P, which is itself an or-
thogonally convex polygon. Breen uses the following lem-
mas to prove this case. Refer to[1] for the proofs and the full 
proof of Theorem 2 [1, Theorem 1]. 

Lemma 1: If P is an orthogonal polygon, then P contains 
finitely many maximal orthogonal convex polygons. More-
over, every orthogonally convex polygon in P lies in a 

maximal orthogonally convex polygon in P.  
Lemma 2: Let x, y, z be points in P, and let λ 1, λ 2, λ 3 be 

staircase paths joining x to y, y to z, and x to z respectively. 
Then the bounded region T determined by λ=λ1∪λ2∪λ3 is an 
orthogonally convex polygon. 

2.1. Theorem 2 

[1, Theorem 1] Let P be a simply connected orthogonal 
polygon which is star-shaped via staircase paths. Then (1) 
the staircase kernel of P is the intersection of all maximal 
orthogonal convex polygons in P and (2) it is again an or-
thogonally convex polygon. 

Proof: Let ker P refer to the staircase kernel of P, and P be 
a simply connected polygon in the plane. 

(1) Let M denote the family of all maximal orthogonally 
convex polygons in P. By Lemma 1, M is finite and as such 
every orthogonally convex polygon in P lies in a member of 
M. It will be shown that the ker P = ∩ { m : m ∈ M} 

Choose any point x in ∩ { m : m ∈ M}, and let y be any 
point in P. Then some member m0 of M contains y, so x, y∈ 
m0. By [2, Lemma 1], there is an orthogonally convex 
polygon in P containing x and y if and only if there is a 
staircase path in P from x to y. Hence x sees y via a staircase 
path, x ∈ ker P, and ∩{ m : m ∈M} ⊆ ker P. 

(2) To show that ker P is an orthogonally convex polygon, 
it is shown that the ker P is connected. Let x, y ∈ ker P, and 
let λ 1 be any staircase path in P from x to y, to show that λ 1⊆ 
ker P. That is for w ∈ λ 1 and z ∈P, show that w sees z via a 
staircase path in P. Since x, y ∈ ker P, there are staircase 
paths λ2, λ3 in P from y to z, and x to z, respectively. Then by 
Lemma 2, the bounded region T determined by λ1∪λ2∪λ3 is 
an orthogonally convex polygon. Hence, by [2 Lemma 1], 
every two points of T are joined by a staircase path in T. 
Moreover since P is simply connected, T ⊆ P, so every two 
points of T are joined by a staircase path in P. Thus for w ∈ λ1, 
w sees z via a staircase path in P, λ1⊆ ker P, and ker P is 
indeed connected. 

Since ker P is a connected intersection of finitely many 
orthogonally convex polygons, ker P is an orthogonally 
convex polygon. 

While Breen's approach is sound, it is not constructive 
enough for our purposes. By analysing the proof, we can find 
a way to construct an algorithm for the problem in question. 
Theorem 2 considers an orthogonal polygon that is already 
known to be star-shaped via staircase paths, so we will con-
sider the converse of Theorem 2. 

2.2. ConverseTheorem 2 

Let P be a simply connected orthogonal polygon in ℝ2. If 
P is a union of maximal orthogonally convex polygons 
which have a common intersection that is convex. Then P is 
star-shaped via staircase paths. 

Proof: Let ker P refer to the staircase kernel of P, and P be 
a simply connected polygon in the plane. Let M denote the 
family of all maximal orthogonally convex polygons in P, 
and let ker P = ∩ { m : m in M}. Choose any point x ∈ ker P, 
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and y ∈ P. Then since y ∈ P, y ∈ m in M and since ker P = ∩ 
{m : m in M}, there is a staircase path λ from x to y since 
each m in M is convex. Thus for all x ∈ ker P, and y ∈ P, x 
sees y via staircase paths, and thus P is star-shaped. 

By analysing the converse we can observe that given an 
orthogonal polygon P in the plane, we can decompose P into 
maximal orthogonally convex polygons. Then their inter-
section will be the staircase kernel of P. In Figure 3, given P 
observe that the red and the blue polygons are the maximal 
orthogonally convex subpolygon decomposition of P, and 
their intersection yields the staircase kernel shown in green. 

 
Figure 3.  Decomposition of P into maximal orthogonally convex 
sub-polygons, and its resulting kernel 

We can also observe from [1, Theorem 1] that if any 
maximal orthogonally convex polygon within P is not part of 
the intersection then P is not star-shaped. However, con-
structing an algorithmic approach that will efficiently de-
compose an orthogonal polygon into maximal orthogonally 
convex polygons is assumed to be of a high degree of time 
complexity, so we will consider another approach that will 
compute the staircase kernel of an orthogonal polygon. 

3. Main Result 
From Theorem 2 we know that the staircase kernel is an 

orthogonally convex polygon. So we will consider an algo-
rithmic approach that given an orthogonal polygon P in the 
plane, will decompose P into parts, each will be an or-
thogonally convex polygon that is possibly not maximal. 
Since the staircase kernel is the set of all points that see 
each other point of P via staircase paths, each convex region 
must be verified to satisfy this property. Here we give an 
algorithm to compute the staircase kernel of any given or-
thogonal polygon in the plane. We have generalized the 
results of Breen as the algorithm has been constructed to 
also handle orthogonal polygons with holes. To begin, defi-
nitions of terms used, and lemmas are given. 

3.1. Definitions 

● Questionable Region: A region that is determined to be 

both horizontally and vertically convex. 
● Non-Visible Region: A region that cannot see another 

region via staircase paths. 
● Flagged Region: A region that is defined as either 

questionable or non-visible during a plane sweep. 
● Open Region: A region that is defined by an edge that 

enters the plane sweep or by an edge that is created to close 
an open region. Regions that are not simply connected are 
open. 

● Closed Region: An open region that has been closed by 
an edge, making it simply connected. 

3.2. Lemmas 

Lemma 1: During the plane sweep of a polygon P in ℝ2, 
if a region is convex, then the following region is 
non-convex. The converse is also true. 

Lemma 2: During the plane sweep of a polygon P in ℝ2, 
while sweeping a non-convex region and a new edge enters 
the queue, if the edge is disjoint from the current regions, a 
new region is defined; else it is determined to be part of one 
of the current regions. 

Lemma 3: During the plane sweep of a polygon P in ℝ2, 
a region becomes closed if it encounters another defined 
region. 

Lemma 4: Regions within an orthogonal polygon P that 
are not vertically and horizontally convex are not part of the 
staircase kernel of P. 

Lemma 5: The intersections of horizontal convex regions 
with vertically convex regions within a polygon are hori-
zontally and vertically convex. 

Lemma 6: The staircase kernel of a polygon P is verti-
cally and horizontally convex [1, Theorem 1]. 

Lemma 7: If there are multiple regions within a 
star-shaped polygon P that “see” every point in P via stair-
case paths, then the staircase kernel of P is disjoint. 

3.3. Algorithm 

Input: An orthogonal polygon P in ℝ2 
Output: The staircase kernel of P 

3.3.1. Part A: Search for Convex regions Within P 

Step 1: Horizontal Plane Sweep, O(𝑛𝑛) 
While sweeping P: 
● If an open region is closed while no other open regions 

are present, flag it as questionable. 
● If an open region is closed while one or more open re-

gions are present, flag all regions currently part of the sweep 
as non-visible. 

● Place flagged regions top-down in the list Horizontal 
Convex Regions. 

While sweeping P, close an open region with an edge: 
● If two or more open regions meet. 
● If only one open region is present in the sweep and a 

disjoint edge enters the plane sweep. 
● If only two open regions are present in the sweep and 

one is closed. 
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When a horizontal edge enters the plane sweep: 
● If no regions are present in the sweep, an open region is 

defined 
● If the edge is disjoint from any current region, an open 

region is defined 
● If the edge was created to close an open region, an open 

region is defined 
● If the edge is part of any current region, the sweep con-

tinues. 
Step 2: Vertical Plane Sweep, O(𝑛𝑛) 
While sweeping P: 
● If an open region is closed while no other open regions 

are present, flag it as questionable. 
● If an open region is closed while one or more open re-

gions are present, flag it as non-visible. 
● Place flagged regions top-down in the list Vertical 

Convex Regions. 
While sweeping P, close an open region with an edge: 
● If two or more open regions meet. 
● If only one open region is present in the sweep and a 

disjoint edge enters the plane sweep. 
● If only two open regions are present in the sweep and 

one is closed. 
When a vertical edge enters the plane sweep: 
● If no regions are present in the sweep, an open region is 

defined 
● If the edge is disjoint from any current region, an open 

region is defined 
● If the edge was created to close an open region, an open 

region is defined 
● If the edge is part of any current region, the sweep con-

tinues. 
Step 3: Intersect the questionable regions from both lists, 

O(𝑛𝑛2) 
● Partition any questionable regions that become disjoint 

into the number of disjoint pieces 
● Update lists: Horizontal Convex Regions and Vertical 

Convex Regions 

3.3.2. Part B: Check for Visibility 
Step 1: Horizontal Convex Regions questionable region 

visibility check, O(𝑛𝑛2) 
● Scan the list top-down 
● When a questionable region is found in the list, draw a 

staircase to each non-visible region before and after it in the 
list. 

● If successful, flag the region as H-visible and remove 
the region from the list 

● If unsuccessful, remove the region from the list 
● If no questionable regions remain, clear the list 
Step 2: Vertical Convex Regions questionable region 

visibility check, O(𝑛𝑛2) 
● Scan the list top-down 
● When a questionable region is found in the list, draw a 

staircase to each non-visible region before and after it in the 
list. 

● If successful, flag the region as V-visible and remove 

the region from the list 
● If unsuccessful, remove the region from the list 
● If no questionable regions remain, clear the list 
Step 3: Determine the staircase kernel 
● A region is part of the staircase kernel if it is both 

H-visible and V-visible 
● If there are no regions that are both H-visible and 

V-visible, output is empty. 

4. Analysis 
4.1. Part A: Search for Convex Regions within P 

4.1.1. Steps 1 and 2 

The horizontal plane sweep of P follows from Lemmas 1 
through 3. The plane sweep is meant to check the horizontal 
convexity of P. A convex region of P is defined as ques-
tionable since by [1, Theorem 1] the staircase kernel is 
horizontally and vertically convex, and non-convex regions 
are defined as non-visible since under the definition of 
staircase paths, no point in one region is visible from the 
points in any other defined as non-visible at an equivalent 
time. By Lemma 1 questionable regions are adjacent to 
non-visible regions, when a region is defined an edge is 
placed to close the region which divides the region from the 
next, the closed region is then placed into a list. So each 
region is defined by its closing edge, the closing edge is 
either a created edge or one that enters the plane sweep. Thus 
there are at most n defined regions placed into list which 
results in O(𝑛𝑛) time. The vertical plane sweep behaves in the 
same manner as the horizontal plane sweep, thus also having 
a time complexity of O(𝑛𝑛). 

4.1.2. Step 3 

To find the staircase kernel of P, we must consider regions 
within the polygon that are both vertically and horizontally 
convex, [1, Theorem 1]. Thus the intersection of horizontally 
convex regions and vertically convex regions must be found. 
The intersection follows from Lemmas 4 and 5. Any convex 
regions that do not intersect are discarded since they do not 
satisfy the properties of the kernel. To find the intersection, 
each questionable region in the Horizontal Convex Regions 
list has to be checked with each questionable regions in the 
Vertical Convex Regions list to determine if they intersect. 
This requires O(𝑛𝑛2) time. 

 
Figure 4.  O(n) vertical regions intersecting O(n) horizontal regions 

Figure 4 illustrates the case when the staircase kernel of an 
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orthogonal polygon with holes has O(𝑛𝑛2 ) complexity as 
there are O(𝑛𝑛) vertical strips intersecting O(𝑛𝑛) horizontal 
strips, thus there at most O(𝑛𝑛2) intersections. Regions that 
become disjoint from the intersection are partitioned, and 
each partition is subject to further steps in the algorithm. The 
lists are updated as such; when the intersection of two or 
more questionable regions is found, the regions in both lists 
that correspond to the intersection are replaced with the 
intersection. The replacement regions will either be a smaller 
region maintaining the same number of regions in the lists, or 
be a group of partitions increasing the number of regions in 
the lists. Questionable regions that have non-empty inter-
sections are removed from the lists, since by Lemma 6 will 
not be part of the staircase kernel; the removed items will in 
turn decrease the number of regions in the lists. Thus each 
questionable region in the updated lists corresponds to ex-
actly one region in the other list, a one-to-one ratio. Updating 
the lists may increase or decrease the number of regions to 
check in later steps, but there will be still at most O(𝑛𝑛) de-
fined regions in the lists. 

4.2. Part B: Check for visibility 

4.2.1. Steps 1 and 2 

Finding the kernel of P follows from Lemma 6. Since any 
point in the staircase kernel of P can see all points of P via 
staircases, a staircase path must be constructed from each 
questionable region in the lists to the non-visible regions in 
the list. If such a path cannot be constructed then the region 
does not satisfy the properties of the staircase kernel. As 
regions are checked they are determined as successful or 
failed and are removed from the list. When no questionable 
regions remain, then the list is cleared. Thus items enter the 
queue and are eventually removed. A staircase path can be 
constructed in O(𝑛𝑛) time, as there are O(𝑛𝑛) edges to traverse. 
With O(𝑛𝑛) constructions in both lists, the time complexity of 
the visibility check is O(𝑛𝑛2). 

4.2.2. Step 3 

Once the lists are cleared, the staircase kernel is the region 
that is successful in the Horizontal Convex Regions list and 
the Vertical Convex Regions list, since by [1, Theorem 1] the 
staircase kernel of P is horizontally and vertically convex, 
and under the definition of a staircase kernel sees each point 
in P. Thus if the output is non-empty then P is star-shaped via 
staircase paths. If no regions were successful in both lists, 
then there is no staircase kernel and as such P is not 
star-shaped. However, we find that with in the case that P has 
holes, Breens theorem, that the staircase kernel is in itself a 
convex orthogonal polygon no longer applies. Lemma 7 is a 
case where the kernel is disjoint and is as such non-convex. 
But each disjoint piece of the kernel is a convex orthogonal 
polygon and sees each point of P via staircase paths. Thus P 
still has a staircase kernel, and is star-shaped. 

The time complexity of the algorithm is O(𝑛𝑛2) as argued 
in the analysis. The space complexity is also O(𝑛𝑛2), since 

there might be as many as O(𝑛𝑛2) regions in the kernel. The 
lists and the queue have linear complexity. The optimal time 
complexity to find the staircase kernel of an orthogonal 
polygon, possibly with holes is O(𝑛𝑛2 ) as also proven by 
Laxmi P. Gewali [3, Theorem 6], refer to[3] for a different 
approach to the problem. 

5. Examples 
5.1. Example 1 

Here we present an example of a simply connected or-
thogonal polygon P with no holes such that the algorithm 
will have a non-empty output. 

 
Figure 5.  An orthogonal polygon P 

Part A: Step 1 yields the Horizontal Convex Regions list, 
while Step 2 yields the Vertical Convex Regions list. 

 
Figure 6.  Horizontal sweep and vertical sweep of P 

Table 1.  Sweep, the vertical and horizontal lists 

Horizontal Convex Regions Vertical Convex Regions 
A C 

1   2 5   6 
B D 

3   4 7   8 
E 

Part A: Step 3 intersects the horizontal convex regions and 
the vertical convex regions to yield the updated lists con-
taining regions that are both horizontally and vertically 
convex. Note that region B is partitioned into B1, B2, and B3, 
while region C and D are reduced in size. Since region A has 
an empty intersection it is removed from the lists. 
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Figure 7.  Intersections of the horizontal and vertical convex regions 

Table 2.  The updated lists 

Horizontal Convex Regions Vertical Convex Regions 
1   2 C 

B1   B2   B3 5   6 

3   4 
D 

7   8 
E 

Part B: Step 1 checks the staircase visibility of the ques-
tionable regions in the Horizontal Convex Regions list, and 
yields that region B2 is the only successful region. 

 
Figure 8.  Staircase visibility check of the horizontal convex regions 

Table 3.  Updated horizontal list after the visibility check 

Horizontal Convex Regions 
1   2 

B1(success)   B2(success)   B3(success) 
3   4 

Part B: Step 2 checks the staircase visibility of the ques-
tionable regions in the Vertical Convex Regions list, and 
yields that region D is the only successful region. 

 
Figure 9.  Staircase visibility check of the vertical convex regions 

Table 4.  Updated vertical list after the visibility check 

Vertical Convex Regions 
C(fails) 
5   6 

D(success) 
7   8 

E(success) 

Part B: Step 3 finds that regions B2, and D were successful 
in the staircase visibility step. Since the regions in both lists 
correspond to each other, it is determined that the staircase 
kernel of P is the region defined by B2, and D. Thus P is 
star-shaped via staircase paths. 

 
Figure 10.  The staircase kernel of P 

5.2. Example 2 

This is an example of a simply connected orthogonal 
polygon P with no holes such that the algorithm will have an 
empty output. 

 
Figure 11.  An orthogonal polygon P 

Part A: Step 1 yields the Horizontal Convex Regions list, 
while Step 2 yields the Vertical Convex Regions list. 

 
Figure 12.  Horizontal sweep and vertical sweep of P 

Table 5.  Sweep, the vertical and horizontal lists 

Horizontal Convex Regions Vertical Convex Regions 
A 7   8 

1   2   3 D 
B 

9   10 4   5   6 
C 
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Part A: Step 3 intersects the horizontal convex regions and 
the vertical convex regions to yield the updated lists con-
taining regions that are both horizontally and vertically 
convex. Note that region D is partitioned into D1, D2, and 
D3, while regions A, and C are reduced in size. 

 
Figure 13.  Intersections of the horizontal and vertical convex regions 

Table 6.  The updated lists 

Horizontal Convex Regions Vertical Convex Regions 
A 7   8 

1   2   3 D1   D2   D3 
B 

9   10 4   5   6 
C 

Part B: Step 1 checks the staircase visibility of the ques-
tionable regions in the Horizontal Convex Regions list, and 
yields that region A, and C are successful regions. 

 
Figure 14.  Staircase visibility check of the horizontal convex regions 

Table 7.  Updated horizontal list after the visibility check 

Horizontal Convex Regions 
A(success) 
1   2   3 
B(fails) 

4   5   6 
C(success) 

Part B: Step 2 checks the staircase visibility of the ques-
tionable regions in the Vertical Convex Regions list, and 
yields that no region is successful. 

 
Figure 15.  Staircase visibility check of the vertical convex regions 

Table 8.  Updated vertical list after the visibility check 

Vertical Convex Regions 
7   8 

D1(fails)   D2(fails)   D3(fails) 
9   10 

Part B: Step 3 finds that regions A, and C were successful 
in the staircase visibility step. But since both regions do not 
correspond to any successful regions in the other list, the 
output is empty. Thus P has no staircase kernel and is thus 
not star-shaped via staircase paths. 

5.3. Example 3 

This is an example of a simply connected orthogonal 
polygon P with holes such that the algorithm will have a 
non-empty output. 

 
Figure 16.  An orthogonal polygon P with holes 

Part A: Step 1 yields the Horizontal Convex Regions list, 
while Step 2 yields the Vertical Convex Regions list. 

 
Figure 17.  Horizontal sweep and vertical sweep of P 

Table 9.  Sweep, the vertical and horizontal lists 

Horizontal Convex Regions Vertical Convex Regions 
A D 

1   2 5   6 
B 

E 3   4 
C 

Part A: Step 3 intersects the horizontal convex regions and 
the vertical convex regions to yield the updated lists con-
taining regions that are both horizontally and vertically 
convex. Note that region B is partitioned into B1, and B2, 
region C is partitioned into C1, and C2, region D is parti-
tioned into D1, and D2, and region E is partitioned into E1, 
and E2, and E3, while region A does not change. 
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Figure 18.  Intersections of the horizontal and vertical convex regions 

Table 10.  The updated lists 

Horizontal Convex Regions Vertical Convex Regions 
A D1   D2 

1   2 5   6 
B1   B2 

E1   E2   E3 3   4 
C1   C2 

Part B: Step 1 checks the staircase visibility of the ques-
tionable regions in the Horizontal Convex Regions list, and 
yields that region B1, B2, C1, and C2 are successful regions. 

 
Figure 19.  Staircase visibility check of the horizontal convex regions 

Table 11.  Updated horizontal list after the visibility check 

Horizontal Convex Regions 
A(fails) 
1   2 

B1(success)   B2(success) 
3   4 

C1(success)   C2(success) 

Part B: Step 2 checks the staircase visibility of the ques-
tionable regions in the Vertical Convex Regions list, and 
yields that all regions are successful. 

 
Figure 20.  Staircase visibility check of vertical convex regions 

Table 12.  Updated vertical list after the visibility check 

Vertical Convex Regions 
D1(success)   D2(success) 

5   6 
E1(success)   E2(success)   E3(success) 

Part B: Step 3 finds that the only region that is unsuc-
cessful in the staircase visibility step is A. So region A and 
region E1 which corresponds to A are not part of the output. 
Then the staircase kernel is determined by the regions de-
fined by B1 and D1, B2 and E2, C1 and D2, and C2 and E3. 
In this case there are multiple corresponding successful 
regions, so the staircase kernel is disjoint, but each piece is in 
itself a convex orthogonal polygon. Thus P is star-shaped via 
staircase paths. 

 
Figure 21.  The staircase kernel of P 

6. Conclusions 
As we can see, given a simply connected orthogonal 

polygon P possibly with holes, in the plane, we can find the 
staircase kernel of P in O(𝑛𝑛2) time using the plane sweep 
method. As shown, if P is an orthogonal polygon without 
holes, the staircase kernel is a single region within P. If P is 
an orthogonal polygon with holes, it is possible for the 
staircase kernel to be disjoint within P. 
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