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Abstract  An attractive feature of many simulation packages is their availability on desktop computers and their potential 
for allowing the user to run a simulation model under different conditions in a highly interactive way. Such a way of studying 
a system is attractive because of its immediacy and the direct control it offers the user. Design of Experiments is a statistical 
technique for quickly optimizing performance of systems. It starts with a screening experimental design test plan involving 
all of the known factors that are suspected to affect the system’s performance (or output). When the number of input variables 
or test factors is large, the primary experimental objective is to pare this number down into a manageable few. This is usually 
followed by another designed experiment design or test plan with the objective of optimizing the system’s performance. For 
an easy and interactive use of the design of experiments technique, a new tool called DOET (which stands for ‘Design Of 
Experiments Tool’) has been developed. This paper aims to illustrate the design of experiments technique using the DOET. 
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1. Introduction 
Engineering Design, in its modern form, is undergoing a 

transformation from "a process leading to producing a 
product" to "a product in itself that should be optimally de-
signed". With modern technological advances, products have 
become more becoming exceedingly complicated. This re-
quires the formation of new design methods and concepts, 
high performance analysis tools and more powerful optimi-
zation/modification algorithms. These techniques now are 
becoming essential for modern engineering design. 

As the cost of experimentation rises rapidly it is becoming 
impossible for the analyst, who is already constrained by 
resources and time, to investigate the numerous factors that 
affect these complex processes using trial and error meth-
ods[1]. Computer simulations can solve partially this issue. 
Rather than building actual prototypes, engineers and ana-
lysts can build computer simulation prototypes. However, 
the process of building, verifying, and validating the simu-
lation model can be arduous, but once completed, it can be 
utilized to explore different aspects of the modelled proto-
type or device.  

If the input variables (called also factors) of a process 
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(design and/or optimization) vary, the outputs (responses) 
causing the majority of the variability in the output? In other 
words, which factors are the most significant drivers? It is 
desirable to determine where the variability is coming from 
(also known as sensitivities) with an optimum utilization of 
resources[2]. A technique is needed to identify these "vital 
few" factors in the most efficient manner and then directs the 
process to meet the desired quality criteria. One extremely 
effective way for accomplishing this is to use experimental 
designs, also called Design of Experiments (DOE)[3]. Ac-
cording to[4], many simulation practitioners could obtain 
more information from their analysis if they use statistical 
theories, especially with the use of DOE. 

Compared to one-factor-at-a-time experiments, i.e. only 
one factor is changed at a time while all the other factors 
remain constant, the DOE technique is much more efficient 
and reliable. Though, the one-factor-at-a-time experiments 
are easy to understand, they do not tell how a factor affects a 
product or process in the presence of other factors[1]. If the 
effect of a factor is altered, due to the presence of one or 
more other factors, we say that there is an interaction be-
tween these factors[1]. Usually the interactions’ effects are 
more influential than the effect of individual factors[1]. This 
is because the actual environment of the product or process 
comprises the presence of many factors together instead of 
isolated occurrences of each factor at different times.  

The major drawbacks of one factor at a time method 
are[5]: 
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Many experiments are needed to study the effects of the 
input factors. 

The optimum combination of all the variables is not 
known. 

The interactions can also not be known. 
Conclusions are not clear and may be misleading. 
One cannot get results for non statistical experiments. 
Since there is no clear distinction, wrong variables may be 

studied and data obtained may be insufficient or too much. 
The DOE methodology ensures that all factors and their 

interactions are systematically investigated. Therefore, in-
formation obtained from a DOE analysis is much more re-
liable and comprehensive than results from the 
one-factor-at-a-time experiments that ignore interactions 
between factors and, therefore, may lead to wrong conclu-
sions[1]. 

Let’s assume, for instance, that we want to optimize an 
induction motor taking into account, for simplicity, only two 
factors: the length and the external radius. Thus, the length is 
the first factor and is denoted by 𝑥𝑥1 while the external radius 
is the second factor and is denoted by 𝑥𝑥2. Each factor can 
take several values between two limits, i.e. �𝑥𝑥1𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥1𝑚𝑚𝑚𝑚𝑥𝑥 � 
and �𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥2𝑚𝑚𝑚𝑚𝑥𝑥 �. We desire to study the influence of each 
of these factors on the system response or output (for ex-
ample the torque) called Y. The classical or traditional ap-
proach is to study the two factors 𝑥𝑥1 and 𝑥𝑥2, separately. First 
we put 𝑥𝑥2 at the mean level 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and study the response 
of the system when 𝑥𝑥1  varies between 𝑥𝑥1𝑚𝑚𝑚𝑚𝑚𝑚 to 𝑥𝑥1𝑚𝑚𝑚𝑚𝑥𝑥 , for 
example, 4 steps (experiments or simulations) are shown in 
Figure 1. Similarly, we repeat the same procedure to study 
the effect of 𝑥𝑥2. The total number of tests is 8. But, do we 
have a good knowledge about the system with these 8 ex-
periments. The simple and direct answer to this question is 
no. To get a better knowledge about the system, we have to 
mesh the validity domain of the two factors and test each 
node of this mesh as shown in Figure 1.  One experiment at 
each node of the mesh 

. In this case, we have to achieve 4×4 =16 experiments. In 
this example only two factors are taken into account. If the 
number of factors increases to 7, for example, the number of 
tests to be performed rises to 47 = 16384  experiments, 
which is definitely a time and cost consuming process. 
Knowing that it is impossible to reduce the number of values 
for each factor to less than 2, the designer often reduces the 
number of factors, which leads to incertitude of results. To 
reduce both cost and time, the DOE is used to establish a 
design experiment with less number of tests. The DOE, for 
example, allows identifying the influence of 7 factors with 2 
points per variable with only 8 or 12 tests rather than 128 
tests with the traditional method[2][4]. 

The advantages of implementing a DOE may be listed 
as[5]: 

It is more economical and since many factors can be 
evaluated simultaneously it is less interruptive. 

In designs the noise factors cannot be controlled but input 
factors can be. Thus the output produced is deprived of the 
noise factors. 

Since the design is well planned, statistically speaking 
there is no need for in depth knowledge. 

When compared to one factor at a time method, fewer 
experiments are carried out. 

An easy distinction can be made between the factors 
(noise and important factors). 

The conclusions drawn are strong since the designs are 
balanced. 

Unlike when the classical method of experimentation, the 
results are clear and any fact overlooked is indicated. 

Statistical analyses are more precise with the use of sta-
tistical software packages. 

Using this method many quality and reliability issues have 
been sorted leading to cost savings. 

 
Figure 1.  One experiment at each node of the mesh 

 

Figure 2.  one experience at each node of the mesh 

Recently, the DOE technique has been adopted in the de-
sign and testing of various applications including automotive 
assembly[6], computational intelligence[7], bioassay ro-
bustness studies[8] and many others. 

In this paper we consider the implementation of the 
methodology of the design of simulation experiments in the 
form of interactive tool attached to the simulation model 
called DOET (which stands for ‘Design Of Experiments 
Tool’). The DOET receives the output from the simulation 
model and automatically processes this output using the 
DOE technique. The DOET thus can be used interactively 
either to give advice to the user conducting the simulation 
study, or else to directly control the conduct of the runs. 
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The outline of the paper is as follow: this first section 
constitutes an introduction to the DOE technique. Section 2 
explains in detail the methodology of the DOE technique. 
The implementation of the DOET is described in section 3. 
The results of applying DOET to some case studies are re-
ported in section 4.  Finally, the paper conclusions are pro-
vided in Section 5. 

2. Methodology 
The design and analysis of experiments revolves around 

the understanding of the effects of different variables on 
other variable(s)[1]. In terms of mathematical jargon, the 
objective is to establish a cause-and-effect relationship be-
tween several independent variables and a dependent vari-
able of interest[1]. The dependent variable, in the context of 
DOE, is called the response, and the independent variables 
are called factors. Experiments are run at different values of 
the factors, called levels[1]. Each run of an experiment in-
volves a combination of levels of the investigated factors[1]. 
The number of runs of an experiment is determined by the 
number of levels being investigated in the experiment.  

For example, if an experiment involving two factors is to 
be performed, with the first factor having 𝑚𝑚1 levels and the 
second having 𝑚𝑚2  levels, then 𝑚𝑚1 × 𝑚𝑚2  combinations can 
possibly be run, and the experiment is an 𝑚𝑚1 × 𝑚𝑚2 factorial 
design. If all 𝑚𝑚1 × 𝑚𝑚2  combinations are run, then the ex-
periment is a full factorial. If only some of the 𝑚𝑚1 × 𝑚𝑚2 
combinations are run, then the experiment is a fractional 
factorial. In full factorial experiments, all factors and their 
interactions are investigated, whereas in fractional factorial 
experiments, certain interactions are not considered. Facto-
rial designs play a fundamental role in the theory and prac-
tice of physical experiments. They have been used in a wide 
range of fields including engineering, social science, agri-
culture and biology. They allow experimenters to study 
simultaneously the effects of multiple input variables on the 
response[9]. 

It can be seen that the size of an experiment escalates 
rapidly as the number of factors, or the number of the levels, 
increases. For example, if 2 factors at 2 levels (22) each are to 
be used, the number of possible combinations for a full fac-
torial design is 2×2=4. Likewise, for 3 factors at 4 levels (43), 
the full factorial design has 4×4×4=64 experiments. In case 
of a design where the factors have different number of levels, 
the determination of the number of experiments is similar. 
For instance, if we have 3 factors at 2 levels and 2 factors at 4 
levels, the full factorial design has 23×42=128 experiments. 
For this reason, many factors are restricted to two levels, and 
these designs are given a special treatment in this paper. 
Fractional factorial experiments further reduce the number of 
treatments to be executed in an experiment as will be ex-
plained in the following sections. 

2.1. Mathematical Concept 
Assume that 𝑦𝑦 is the response (or output) of an experi-

ment (or a simulation) and {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑘𝑘} are 𝑘𝑘 factors 
acting on this experiment where each factor has two levels of 
variation 𝑥𝑥𝑚𝑚−  and 𝑥𝑥𝑚𝑚+. The value of 𝑦𝑦, is approximated by 
an algebraic model given by the following equation: 

𝑦𝑦 = 𝑚𝑚0 + 𝑚𝑚1𝑥𝑥1 + 𝑚𝑚2𝑥𝑥2 + ⋯+ 𝑚𝑚𝑘𝑘𝑥𝑥𝑘𝑘 + ⋯+ 𝑚𝑚1𝑥𝑥1𝑥𝑥2 +
⋯𝑚𝑚1𝑥𝑥1𝑥𝑥𝑘𝑘 + 𝑚𝑚1…𝑘𝑘𝑥𝑥1…𝑘𝑘                           (1) 
where 𝑚𝑚𝑗𝑗  are coefficients which represent the effect of 

factors and their interactions on the response of the experi-
ment. 

2.2. Full Factorial Design 

The study of full factorial design consists of exploring all 
possible combinations of the factors considered in the ex-
periment[10]. Note that the design 𝑋𝑋𝑘𝑘  means that this ex-
periment concerns a system with 𝑘𝑘 factors with 𝑥𝑥 levels. 

Usually, two values of the 𝑥𝑥’s (called levels) are used. 
The use of only two levels implies that the effects are 
monotonic on the response variable, but not necessarily 
linear[2]. For each factor, the two levels are denoted using 
the "rating Yates” notation (named after its author) by -1 for 
the low level of each factor and by +1 the high level of each 
factor (Figure 3). Thus, the number of experiments carried 
out by a full factorial design with 2 levels is given by: 

𝑚𝑚 = 2𝑘𝑘                 （2） 
where k is the number of factors to be considered.  
Table 1 shows the design matrix of a full factorial design 

for 2 factors. Figure 3 sketches the mesh of the experimental 
field where points correspond to nodes. 

Table 1. Design Matrix for a full factorial design for 2 factors with 2 levels 

Run Factor 𝒙𝒙𝟏𝟏 Factor 𝒙𝒙𝟐𝟐 Response 𝑌𝑌 

1 -1 -1 𝑌𝑌1 
2 -1 +1 𝑌𝑌2 
3 +1 -1 𝑌𝑌3 
4 +1 +1 𝑌𝑌4 

2 4

1 3

Factor x2

Factor x1

Mesh

 

Figure 3.  strategy of experimentation; points corresponding to nodes in 
the mesh of the experimental field for a full factorial design for 2 factors 
with 2 levels 

The advantage of full factorial designs, is the ability to 
estimate not only the main effects of factors, but also all their 
interactions, i.e. two by two, three by three, up to the inter-
action involving all k factors. However, when the number of 
factors increases, the use of such design leads to a prohibitive 
number of experiments or simulations. 

The question to be asked is then: is it necessary to perform 
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all experiments of the full factorial design to estimate the 
system’s response? In other words, is it necessary to conduct 
a test at each node of the mesh? 

2.3. Fractional Factorial Design 

A full factorial design consists of all possible treatments. 
This run size grows rapidly as the number m of factors in-
creases. For example, this run size grows from 32 to 512 as 
the number of factors increases from 5 to 9. Therefore, run-
ning a full factorial design becomes impractical even for a 
moderately large value of n (runs). Instead, fractional facto-
rial designs are commonly used in practice as they only use a 
fraction or a subset of the full factorial design[9]. 

It is not necessary to identify the effect of all interactions 
of the analytical model given by equation (2), because the 
interactions of order > 2 (like 𝑥𝑥1𝑥𝑥2𝑥𝑥3) are usually negligible. 
Therefore, certain runs specified by the full factorial design 
can be used instead of using all runs. To illustrate this phe-
nomenon, an analogy can be made with a Taylor series ap-
proximation where the information given by each term de-
creases if its order increases. So, fractional factorial designs 
can be used to estimate factors effect and interactions that 
influence the experiments more with a reduced number of 
runs[4]. Taguchi Tables[11], or G. Box generators[12], give 
the fractional factorial design matrix of experiments. 

To illustrate fractional factorial designs let’s take an ex-
ample. If the number of factors is 𝑘𝑘 = 3, the design matrix 
of these three factors is given by G. Box generators in a way 
that the third factor is the product of the two other factors. 
The factor 𝑥𝑥3  and interaction 𝑥𝑥1𝑥𝑥2  are either confused or 
aliased, and there is a confusion of these aliases because only 
their sums are reachable[11][13].  

Table 2.  Design Matrix for a full factorial design for 3 factors with 2 
levels 

Run Factor 𝑥𝑥1 Factor 𝑥𝑥2 Factor 𝑥𝑥3 Response 𝑌𝑌 
1 -1 -1 -1 𝑌𝑌1 
2 -1 -1 +1 𝑌𝑌2 
3 -1 +1 -1 𝑌𝑌3 
4 -1 +1 +1 𝑌𝑌4 
5 +1 -1 -1 𝑌𝑌5 
6 +1 -1 +1 𝑌𝑌6 
7 +1 +1 -1 𝑌𝑌7 
8 +1 +1 +1 𝑌𝑌8 

Table 3.  Design Matrix for a fractional factorial design for 3 factors with 
2 levels 

Run Factor 𝑥𝑥1 Factor 𝑥𝑥2 Factor 𝑥𝑥3 Response 𝑌𝑌 
1 -1 -1 +1 𝑌𝑌1 
2 -1 +1 -1 𝑌𝑌2 
3 +1 -1 -1 𝑌𝑌3 
4 +1 +1 +1 𝑌𝑌4 

Table 4.  G. Box generator of fractional factorial design for 3 factors 

Resolution Design name Number of Runs Generators 

3 23-1 4 𝑥𝑥3 =  𝑥𝑥1 × 𝑥𝑥2 

Table 2 shows a full factorial design for 3 factors with 2 
levels. The number of runs is 23 = 8. This number is re-
duced to 4 using a fractional factorial design as shown in 
Table 3. As mentioned above the third factor is generated 
using the G. Box generator for 3 factors given in Table 4. 
The comparison of the 2 designs is shown in Figure 4. 

 

6

2 4

5 7

1 3

Factor x3

Factor x2

Factor x1

8

 
（a) full factorial design 
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(b) fractional factorial design 

Figure 4.  Comparison between the design experimental field of full and 
fractional factorial designs with 3 factors 

2.4. Estimation of Model Coefficients 

The value of the coefficient 𝑚𝑚0  is estimated from the 
arithmetic average of all observed responses and it is given 
by: 

𝑚𝑚0 = 𝑦𝑦� = 1
𝑚𝑚
∑ 𝑦𝑦𝑚𝑚𝑚𝑚
𝑚𝑚=1              (3) 

where 𝑦𝑦𝑚𝑚  is the response observed for the experiment 𝑚𝑚 
and 𝑚𝑚 is the total number of experiments. 

The effect of a factor 𝑥𝑥𝑗𝑗  at the level 𝑥𝑥𝑗𝑗+ can be calculated 
thus, the coefficient associated with this effect can be iden-
tified using the following equations: 

aj = ea j = yxj
+ − a0             (4) 

And 
𝑦𝑦𝑥𝑥𝑗𝑗

+ = 1
𝑚𝑚+∑ 𝑦𝑦𝑚𝑚+𝑚𝑚

𝑚𝑚=1               (5) 

where 𝑦𝑦𝑥𝑥𝑗𝑗
+  is the response observed for experiment 𝑚𝑚 

when 𝑥𝑥𝑗𝑗  is at level 𝑥𝑥𝑗𝑗+, 𝑚𝑚+ is the number of  experiments 
when 𝑥𝑥𝑗𝑗  is at level 𝑥𝑥𝑗𝑗+  and 𝑚𝑚𝑚𝑚𝑗𝑗  is the effect of 
cient 𝑚𝑚𝑗𝑗 . 

Once the method of how to calculate the coefficients of the 
model and how to identify the existing confusion between 
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these factors has been presented, we can evaluate the con-
tributions of contrasts (the sum of confusions) and therefore 
the most significant factors (affecting the response). In[12] 
the identification of the significant factors has been proposed 
by evaluating the coefficients contribution (or contrasts, for 
fractional designs) on the model response from the nor-
malization of their values compared to the sum of squared 
responses, such as given in the following equations: 

𝐶𝐶𝑚𝑚𝑗𝑗 =
𝑆𝑆𝐶𝐶𝑆𝑆�𝑚𝑚𝑗𝑗 �

𝑆𝑆𝐶𝐶𝑆𝑆(𝑦𝑦)
 [%]              (6) 

With 
𝑆𝑆𝐶𝐶𝑆𝑆(𝑦𝑦) = ∑ (𝑦𝑦𝑚𝑚 − 𝑦𝑦�)2𝑚𝑚

𝑚𝑚=1          (7) 
𝑆𝑆𝐶𝐶𝑆𝑆�𝑚𝑚𝑗𝑗 � = 𝑚𝑚

𝑠𝑠
∑ �𝑚𝑚𝑚𝑚𝑗𝑗 �

2
𝑠𝑠
𝑗𝑗=1           (8) 

where 𝑠𝑠 is the number of levels (equals to 2 in this case), 
𝑚𝑚𝑚𝑚𝑗𝑗  is the effect of coefficient 𝑚𝑚𝑗𝑗 , and 𝐶𝐶𝑚𝑚𝑗𝑗  is the contribution 
of the contrast associated with the coefficient 𝑚𝑚𝑗𝑗 .  

According to[12]: 
The contribution given by (6) is deemed significant if 

Caj ≥ 5%. 
The interactions of order higher than two are negligible. 
If a contrast is negligible, all effects composing this con-

trast are negligible also. 
Two significant factors can generate a significant interac-

tion. On the other side, two insignificant factors do not gen-
erate a significant interaction. 

3. Implementation 
For an efficient use of the DOE methodology, it has been 

implemented in the form of interactive tool the DOET at-
tached to the simulation model. It is a combination of Matlab 
and Java. Matlab is an efficient software which puts the 
powerful calculation function, visual and program designing 
together in an easily used development environment.  Java 
is a cross-platform program development language which is 
created by Sun. It is the most advanced program language 
and has the richest characteristic and the most powerful 
functions. In DOET, Matlab is used for all calculation func-
tions, and java is used to generate interactive User Interfaces. 

as mentioned earlier the DOET receives the output from 
the simulation model and automatically processes this output 
using the DOE technique. The DOET thus can be used in-
teractively either to give advice to the user conducting the 
simulation study, or else to directly control simulations. 

When DOET starts, the first window that appears is shown 
in Figure 5.This is a starting point where the user can mange 
factors by choosing either options ‘dynamic’ or ‘static’. 
Dynamic option means that this factor will be considered in 
the design experiments matrix and will vary between a 
maximum and a minimum values. The maximum and 
minimum values of each factor are assigned by the user 
respectively in the columns ‘Max’ and ‘Min’. Static option 
means that the factor will not be considered as a varying 
factor but as a constant and therefore it will not be considered 
in the design matrix. The values of static factors are assigned 
by the user in the middle column called ‘Value.’ So the user 

can set factors and their values to manage the simulation. 
The user can also choose from the list of ‘functions to be 
estimated’ which output or answer he/she wants to study. 
The ‘OK’ button allows running the experiments set in the 
design matrix. Finally, a sidebar shows the progress of the 
simulation. 

 
Figure 5.  Main interface of DOET 

4. Applications 
4.1. Case Study 1: 3-Factors Ball Bearing Example 

The ball and roller bearings consist of an inner race which 
is mounted on the shaft or journal and an outer race which is 
carried by the housing or casing. In between the inner and 
outer race, there are balls or rollers as shown in Figure 6. A 
number of balls or rollers are used and these are held at 
proper distances by retainers so that they do not touch each 
other. The retainers are thin strips and is usually in two parts 
which are assembled after the balls have been properly 
spaced. The ball bearings are used for light loads and the 
roller bearings are used for heavier loads. 

The life of an individual ball bearing may be defined as the 
number of revolutions (or hours at some given constant 
speed) which the bearing runs before the first evidence of 
fatigue develops in the material of one of the rings or any of 
the rolling elements. 

The purpose of this design is to test (under accelerated 
conditions) new bearing prototypes for use in a specific 
application for which the current design’s performance was 
“unsatisfactory”. 

 
Figure 6.  A Typical Ball Bearing 

The design factors with their levels and types are given in 
Table 5. The response of interest (y) corresponds to the 
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bearing life (h). The 8 standard runs of the 23 design were 
randomly ordered, and each prototype bearing tested. 

Table 5. Design Factors with their levels and types 

Name Description Low 
Level 

High 
Level Type 

A Cage Design Current New Discrete 

B Outer Ring Osculation Current New Discrete 

C Inner Ring Heat Treatment. Current New Discrete 

Using the DOET we have investigated this example by 
generating: 

The 23 design matrix (see Figure 7).  
The Contribution obtained. (see Figure 8). 
The plot of effects given in Figure 9 
The plot of interactions of factors shown in Figure 10. 

 
Figure 7.  Design matrix generated by the 23 factorial design and the 
response or case study 1 

 
Figure 8.  Contribution obtained 

 
Figure 9.  Plot of factor effects 

 
Figure 10.  Plot of interactions between factors 

From Figure 10 it is evident that to maximize the bearing 
life the high level of factors A and B must be. The interac-
tions AC and BC are negligible only AB is significative (the 
lines are not in parallel). 
Interpretation of the experiment 

Unexpected Interaction Discovered (Would Not Have 
Been Discovered Using “One-at-a-Time” Experimentation).  
Results May Carry Over to Other Bearing Designs. 

Contrary to Existing Beliefs, the Two Cage Designs had 
Very Similar Lifetimes. This was Very Important Since 
Bearings Were Much Cheaper to Produce Under One of the 
Two Cage Designs. 

New Design’s Performance (In the Specific Application 
Under Investigation) Far Superior to That of the Current 
Bearing Being Used. 

4.2. Case Study 2: 6-Factors Switched Reluctance Motor 
Example 

Various advantages of switched reluctance machines and 
rapid development in the areas of power electronics make 
them attractive compared to existing DC and AC engines in 
adjustable speed drives[14]. They have been considered as 
strong contenders for auxiliary power application in ve-
hicular systems, non-conventional energy sources, and other 
industrial machineries and equipments[15]. This is owing to 
their simple and robust construction, fault tolerant capabili-
ties, and extended constant power torque-speed characteris-
tics. They also find application in consumer appliances, such 
as washing machines and electric bicycles, and they are 
expected to have growing application in the future[15].  

The switched reluctance machine produces torque by the 
tendency to move its rotor to a position where the inductance 
of the excited winding is maximized[14]. The construction 
of the cross-section is very simple and robust because the 
machine has salient poles on both stator and rotor as shown 
in Figure 6. 

Concentrated coils are placed around the stator poles and 
there are no windings on the rotor, which results in a low 
rotor inertia and fast dynamic characteristics[14]. The ab-
sence of windings and permanent magnets on the rotor and 
high peak torque-to-inertia ratios makes them well suited for 

0 1 2 3 4 5

20

25

30

35

40

45

50

55

60

65

70

A B C

Plot of Effects

R
es

po
ns

e

Factors

0 1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

110

A*B A*C B*C

Plot of Interactions

R
es

po
ns

e

Interactions



84  Houssem R. E. H. Bouchekara et al.:  Interactive Implementation of Experimental  
  Design Method -Application to Engineering Optimal Design 

 

high-speed applications[15]. 
Furthermore, the high power-to-weight and high 

torque-to-weight ratios of a switched reluctance machine 
lead to excellent starting characteristics with a high starting 
torque, a wide speed range as well as a high speed per-
formance[14]. 

 
Figure 11.  Geometry of switched reluctance motor 

The purpose of this application is to optimize the geome-
try of a switched reluctance motor to maximize the magnetic 
torque exerted by the machine when the rotor is in the posi-
tion shown in Figure 11[13]. 

This problem can be solved by the finite element method, 
using a two-dimensional magnetostatic non-linear formula-
tion. Matlab has been used for this purpose. 

The geometry of the machine is described by seven dif-
ferent geometrical parameters (𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5, 𝛽𝛽𝑟𝑟and 𝛽𝛽𝑠𝑠) 
shown in Figure 11. In our study, only 6 parameters are 
considered because 𝑟𝑟2 depends on 𝑟𝑟3. The air gap between 
the rotor and the rotor is constant and equal to 0.25 mm. The 
limits (or levels) of variation of these parameters were cho-
sen to avoid geometry configuration where the machine is 
not feasible. These limits are given in Table 6. 

The objective function of this problem is the Torque 
T[Nm] exerted by the motor when the rotor is in the desired 
position. 

Table 6.  Design Factors with their levels and types 

Name Description Low 
Level 

High 
Level Type 

𝑟𝑟1 Rotor inner 
radius 

8.0 
mm 

18.0 
mm Continuous 

𝑟𝑟2 Rotor outer 
radius 

20.0 
mm 

35.0 
mm Continuous 

𝑟𝑟4 
Stator yoke 

inner ra-
dius 

46.0 
mm 

53.0 
mm Continuous 

𝑟𝑟5 
Stator yoke 

outer ra-
dius 

58.0 
mm 

65.0 
mm Continuous 

𝛽𝛽𝑟𝑟  
Rotor pole 

arc 
0.40 
rad 

0.90 
rad Continuous 

𝛽𝛽𝑠𝑠 
Stator pole 

arc 
0.40 
rad 

0.72 
rad Continuous 

4.2.1. Identification of Significant Parameters Using a  
Fractional Factorial Design 

To limit the number of runs or simulations to evaluate the 
objective function, a 16 experiments fractional design based 
on the G. Box generators is used here. This design is called a 
26-2 fractional factorial design. 

Using the DOET we have investigated this example by 
generating: 

The 26-2 design matrix and the response as shown in  
Figure 12. 

The Contrasts and contribution obtained (see Figure 13). 
The plot of effects given in Figure 14. 
By analysing the contributions obtained for each pa-

rameter, we can conclude that only 𝑟𝑟2, 𝛽𝛽𝑟𝑟  and 𝛽𝛽𝑠𝑠 are sig-
nificant and influent on the value of the objective function. In 
addition, we can say that there is a strong interaction between 
the 𝛽𝛽𝑟𝑟  and 𝛽𝛽𝑠𝑠 . Therefore, in the optimisation phase only 
these three parameters are taken into account. 

 

Figure 12.  Design matrix generated by the 26-2 fractional factorial design 
and the response or case study 1 

 
Figure 13.  Contrasts and contribution obtained 
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Figure 14.  Plot of factor effects 

5. Conclusions 
The approach suggested in this paper is aimed at trying to 

bridge the gap between existing simulation practice and the 
substantial design of experiments methodology now avail-
able as an interactive tool (DOET) for improving the effi-
ciency of simulation experiments. The development of in-
terfaces like the one described in this paper should enable 
such desktop use of simulation to become much more effi-
cient and effective. 

 

REFERENCES 
[1] ReliaSoft Corporation, 2008, Chapter 2: Overview. Available 

from: 
http://www.weibull.com/DOEWeb/experiment_design_and_
analysis_reference.htm#introduction.htm>.  

[2] M. Uy, J.K. Telford,‘‘Optimization by Design of Experiment 
techniques’’, IEEE Aerospace conference, Ppp.1-10, March 
2009.  

[3] Sanchez, S.M. (2005). Work smarter, not harder: guidelines 
for designing simulation experiments. Proceedings of the 
Winter Simulation Conference, pp., 4-7.  

[4] Bouchekara, H., Dahman, G., Nahas, M. (2011). Smart 
Electromagnetic Simulations: Guide Lines for Design of 
Experiments Technique. Progress in Electromagnetics Re-

search B, Vol. 31, 357-379.  

[5] Ravikumar, P. Implementation and design issues in large 
factor experiments. M.S. dissertation, State University of 
New York at Buffalo, United States -- New York. Retrieved 
December 4, 2011, from Dissertations & Theses: Full 
Text.(Publication No. AAT 1456983). 

[6] Altayib K., Ali, A. (2011). Improvement for alignment 
process of automotive assembly plant using simulation and 
design of experiments. International Journal of Experimental 
Design and Process Optimization, vol.2, no.2, pp.145-160.  

[7] García, S., Fernández, A., Luengo, J. Herrera, F. (2010). 
Advanced nonparametric tests for multiple comparisons in 
the design of experiments in computational intelligence and 
data mining: Experimental analysis of power. Information 
Sciences, vol.180, no.10, pp. 2044-2064.   

[8] Kutlea, L., Pavlovića, N., Dorotića, M., Zadroa, I., Kapustića, 
M., Halassy, B. (2010). Robustness testing of live attenuated 
rubella vaccine potency assay using fractional factorial design 
of experiments. Vaccine, vol.28, no.33, 2010, pp.5497-5502.  

[9] Lin, C. New developments in designs for computer experi-
ments and physical experiments. Ph.D. dissertation, Simon 
Fraser University (Canada), Canada. Retrieved December 4, 
2011, from Dissertations & Theses: Full Text.(Publication No. 
AAT NR58490). 

[10] Kleijnen, J. P. C., Sanchez S. M, T.W. Lucas, Cioppa, T. M. 
(2005). State-of-the-Art Review: A User’s Guide to the Brave 
New World of Designing Simulation Experiments. Journal on 
Computing 17(3): 263–289.  

[11] M. Pillet, ‘‘Les Plans d’Expériences par la Méthode TA-
GUCHI’’, Les Editions d’Organisation, ISBN 
2-70-812031-X, 1997. 

[12] Demonsant, J. (1996). Comprendre et Mener des Plans 
d’Expériences. Afnor, ISBN 2-124-75032-1.  

[13] Costa, M. C. (2001). Optimisation De Dispositifs Electro-
magnétiques Dans Un Contexte D’analyse Par La Méthode 
Des Eléments Finis. PhD thesis, National polytechnic insti-
tute of Grenoble. 

[14] Laudensack, C.; Yu, Q.; Gerling, D., "Investigation of dif-
ferent parameters on the performance of switched reluctance 
machines," International Conference on Electrical Machines 
(ICEM), 2010 XIX , vol., no., pp.1-6, 6-8 Sept. 2010. 

[15] Desai, P.C.; Krishnamurthy, M.; Schofield, N.; Emadi, A.; , 
"Switched reluctance machine with higher number of rotor 
poles for high volume low cost manufacturing," 35th Annual 
Conference of Industrial Electronics, 2009. IECON '09. IEEE , 
vol., no., pp.1332-1337, 3-5 Nov. 2009 

 

0 2 4 6 8 10

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

r1 r2 r4 r5 Br Bs

Plot of Effects

R
es

po
ns

e

Factors


