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Abstract  The multiple exp-function method is a new approach to obtain multiple wave solutions of nonlinear partial 
differential equations (NLPDEs). By this method one can obtain multi-soliton solutions of NLPDEs. In this paper, using 
computer algebra systems, we apply the multiple exp-function method to construct the exact multiple wave solutions of the 
(2 + 1)- and the (3 + 1)-dimensional breaking soliton equations. By this application, we obtain one-wave, two-wave and 
three-wave solutions for these equations. 
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1. Introduction 
The study of exact solutions of nonlinear partial 

differential equations plays an important role in soliton 
theory and explicit formulas of nonlinear partial differential 
equations play an essential role in the nonlinear science. 
Also, the explicit formulas may provide physical 
information and help us to understand the mechanism of 
related physical models. Recently, many kinds of powerful 
methods have been proposed to find exact solutions of 
nonlinear partial differential equations, e.g., the 
tanh-method[1], the homogeneous balance method[2], 
homotopy analysis method[3-8], the F − expansion method 
[9], three-wave method[10-13], extended homoclinic test 
approach[14-16], the ( )G

G
′

− expansion method[17] and the 

exp-function method[18-23]. 
By these analytic methods, one only can obtain traveling 

wave solutions for NLPDEs. However, it is known that 
there are multiple wave solutions to some NLPDEs, for 
example, multi-soliton solutions to KdV and Toda lattice 
equations[24] or multiple periodic wave solutions to the 
Hirota bilinear equations[25,26]. Recently, Ma and Fan[27] 
explored a key feature of the linear superposition principle 
that linear equations possess, for Hirota bilinear equations, 
while aiming to construct a specific sub-class of N -soliton 
solutions formed by linear combinations of exponential 
traveling waves. They proved that, a linear superposition 
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principle can apply to exponential traveling waves of Hirota 
bilinear equations. Applications made to show that the 
presented linear superposition principle is helpful in 
generating N -wave solutions to soliton equations, 
particularly those in higher dimensions. Also, Ma et al.[28] 
constructed the multiple exp-function method to obtain 
multiple wave solutions, including one-soliton, two-soliton 
and three-soliton type solutions to (3+1)-dimensional YTSF 
equation. One may find another works to find exact 
solutions of soliton equations in[29-31]. 

In this paper, we apply the multiple exp-function method 
to obtain some exact multiple wave solutions for the (2 + 
1)- and (3 + 1)-dimensional breaking soliton equations. 

The (2+1)-dimensional breaking soliton equation is  
4 2 = 0xt xy x xx y xxxyu u u u u u− − −

    
 (1) 

this equation describes the (2+1)-dimensional interaction 
of the Riemann wave propagated along the y -axis with a 
long wave propagated along the x -axis[32]. Wazwaz[33] 
introduced an extension to equation (1) by adding the last 
three terms with y  replaced by z . His work, enables us 
to establish the following (3+1)-dimensional breaking 
soliton equation  

4 ( ) 2 ( )

( ) = 0
xt x xy xz xx y z

xxxy xxxz

u u u u u u u
u u

− + − +

     − +
   (2) 

where = ( , , , ) : x y z tu u x y z t × × × →      

This paper is organized as follows: in the following 
section we have a brief review on multiple exp-function 
method. In Sections 3 and 4 we apply the exp-function 
method on the (2 + 1)-dimensional and the (3 + 
1)-dimensional breaking soliton equations, respectively. In 
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those sections we obtain one-wave, two-wave and 
three-wave solutions for our equations. The paper is 
concluded in Section 4. 

2. Methodology 
Ma et al.[28] illustrated the multiple exp-function method 

in three steps. In summary, their steps are: Defining 
solvable differential equations, transforming nonlinear 
PDEs and solving algebraic systems. The key point of their 
approach is to seek rational solutions in a set of new 
variables defining individual waves. The application of 
multiple exp-function method yields specific one-wave, 
two-wave and three-wave solutions to NLPDEs. To explain 
these fundamental steps in multiple exp-function method, 
consider a PDE in (1 + 1) dimensions as  

( , , , , ) = 0x tF x t u u 

            (3) 
In the first step, we must introduce a sequence of new 

variables = ( , ), = 1, ,i i x t i nη η 

, by solvable partial 
differential equations, for example, the linear PDEs,  

, ,= , = , = 1, , ,i x i i i t i ik i nη η η ωη− 

    (4) 

where , = 1, , ,ik i n

 are the angular wave numbers 
and , = 1, ,i i nω 

, are the wave frequencies. This step is a 
starting point to construct exact solutions of nonlinear 
equations. Solving these linear equations leads to the 
exponential function solutions,  

= , = , = 1, , ,i
i i i i ic e k x t i nξη ξ ω− 

    (5) 

where , = 1, ,ic i n  are arbitrary constants. Any 
function iη  describing a single wave and a multiple wave 
solution will be a combination of all of those single waves. 
In the second step, we proceed by considering rational 
solutions in the new variables , = 1, , :i i nη 

 

1 2
,

, =1 , =01 2

,
, 1 , =0

( , , , )( , ) = , = ,
( , , , )

= ,

n M
i jn

rs ij r s
r s i jn

n N
i j

rs ij r s
r s i j

pu x t p p
q

q q

η η η η η
η η η

η η
=

∑ ∑

∑ ∑



    (6) 

where ,kl ijp  and ,kl ijq  are constants to be determined 
from (3). Then we use the differential relations in (4) to 
express all partial derivatives of u  with x  and t  in 
terms of , = 1, ,i i nη 

. Substituting these obtained 
expressions for partial derivatives into the equation (3) 
generates a rational function equation in the new variables 

, = 1, ,i i nη 
:  

  
1( , , , , ) = 0nG x t η η

           (7) 
Equation (7) is called the transformed equation of the 

original equation (3). This step makes it possible to 
compute solutions to differential equations directly by 
computer algebra systems in the third step. Finally, in the 
third step we set the numerator of the resulting rational 
function 1( , , , , )nG x t η η

 to zero. This yields a system of 

algebraic equations on all variables , ,, , , .i i kl ij kl ijk p pω  By 
solving this system, with the aid of a mathematical software 
such as Maple, we determine polynomials p  and q  and 
the wave exponents , = ,i i nξ 

. After this, the multiple 
wave solution u  is computed and given by  

1 1
1

1 1
1

( , , )( , ) =
( , , )

k x tk x t n n
n

k x tk x t n n
n

p c e c eu x t
q c e c e

ωω

ωω

−−

−−





       (8) 

for more details on these steps; cf.[28].  
In the following sections we apply multiple exp-function 

method on the (2 + 1)- and the (3 + 1)-dimensional breaking 
soliton equations to obtain some multi-wave solutions. It 
must be noted that all obtained solutions are new ones and 
for some special values of parameters in these new 
solutions we can obtain the solutions which have obtained 
by another methods.  

3. One-Wave, Two-Wave and Three- 
Wave Solutions to the (2 + 1) 
-Dimensional Breaking Soliton   
Equation 

In this part, we apply the multiple exp-function method to 
construct the exact multiple wave solutions of the (2 + 1) 
-dimensional breaking soliton equation  

4 2 = 0xt xy x xx y xxxyu u u u u u− − −        (9) 

We generate one-wave, two-wave and three-wave 
solutions of two polynomial functions p  and q  as 
follows: 
Case i: One-wave solutions 

To obtain one-wave solutions, we require the linear 
conditions  

1, 1 1 1, 1 1 1, 1 1= , = , =x y tk l wη η η η η η−      (10) 

where 1 1,k l  and 1w  are constants which will be 
determined. Then we try a pair of polynomials of degree 
one,  

1 0 1 1 1 0 1 1( ) = , ( ) =p a a q b bη η η η+ +      (11) 

where 0 1 0, ,a a b  and 1b  are constants to be determined. 
By the multiple exp-function method and using the 
differential relations in (10), we obtain the following 
solution to the resulting algebraic system with the aid of 
Maple,  

( )1 0 1 0 2
1 1 1 1

0

2
= , =

b a k b
a w k l

b
+

−     (12) 

and 0 1 0, ,a a b  are arbitrary. Thus we can have an 
exponential function solution to (10),  

1 1 1
1 = ek x l y w tη + −              (13) 

which gets the following one-wave solutions  
1 1 1

0 1

1 1 1
0 1

e= ( , , ) = =
e

k x l y w t

k x l y w t
a apu u x y t

q b b

+ −

+ −

+
+

   (14) 

where 0 1,a a  and 0b  are arbitrary constants. It must be 
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noted that, if we set 0 0 1= 0, = 1, = 1a b b  and 1 1=l r , the 
solution (19) of[33] will obtain. 
Case ii: Two-wave solutions 

In this case, we require the linear conditions,  
, , ,= , = , = , = 1,2,i x i i i y i i i t i ik l w iη η η η η η−    

(15) 

where , ,i i ik l w , = 1,2i , are constants and thus the 

solutions 1η  and 2η  are defined by  

= e , = 1,2,k x l y w ti i i
i iη + −         (16) 

where 1c  and 2c  are arbitrary constants. 
We suppose that  

1 2 1 1 2 2 12 1 2 1 2

1 2 1 2 12 1 2

( , ) = 2[ ( ) ],
( , ) = 1

p k k a k k
q a

η η η η η η
η η η η η η

+ + +
+ + +

  (17) 

where 12a  is a constant to be determined. By the multiple 
exp-function method and using the differential relations in 
(15), we obtain the following solution to the resulting 
algebraic system with the aid of Maple,  

2= , = 1,2,i i iw k l i−            (18) 
and  

( )
( )

2
1 2

12 2
1 2

=
k k

a
k k

−

+
             (19) 

Then, we obtain the following two-wave solutions  
1 2

1 2

1 1 2 2 12 1 2 1 2

1 2 12 1 2

( , )= ( , , ) =
( , )

2[ ( ) ]=
1

pu u x y t
q

k k a k k
a

η η
η η

η η η η
η η η η

+ + +
   

+ + +

    (20) 

 
Figure 1.  The two-wave solution 

For = , = 1,2i il r i , solution (20) is as same as solution 
(24) of[33]. 

We obtained a wide class of traveling wave solutions to 
Eq. (9) by setting special values to the arbitrary parameters, 
we can construct formal two-wave solutions. For instance, 

taking 1 2 1 2 1= 1, = 2, = 1, = 1, = 1k k l l c−  and 2 = 1c  in 
(20) reveals solitary waves to Eq. (9). Figure 1 shows the 
plot of solution (20) for these special values of its 
parameters. 
Case iii: Three-wave solutions  

Similarly, to obtain the three-wave solutions for equation 
(9), we require the linear conditions,  

, , ,= , = , = , = 1,2,3,i x i i i y i i i t i ik l w iη η η η η η− (21) 
where , ,i i ik l w , = 1,2,3i , are constants and thus the 

solutions 
1 2,η η  and 

3η  can be defined by  

= e , = 1,2,3,k x l y w ti i i
i iη + −         (22) 

where 1 2,c c and 3c are arbitrary constants.We suppose 
that 

1 2 1 1 2 2 3 3 12 1 2 1 2

13 1 3 1 3 23 2 3 2 3

12 13 23 1 2 3 1 2 3

( , ) = 2[ ( )
( ) ( )

( ) ]

p k k k a k k
a k k a k k
a a a k k k

η η η η η η η
η η η η

η η η

+ + + +
+ + + +
+ + +

  

1 2 1 2 3 12 1 2 13 1 3

23 2 3 12 13 23 1 2 3

( , ) = 1
,

q a a
a a a a

η η η η η η η η η
η η η η η

+ + + + +
+ +

 

where 12 13,a a  and 23a  are constants to be determined. 
By the multiple exp-function method and using the 
differential relations in (21), we obtain the following 
solution to the resulting algebraic system with Maple,  

2= , = 1,2,3,i i iw k l i−            (24) 
and  

( )
( )

2

2= , , = 1,2,3.i j
ij

i j

k k
a i j

k k

−

+

      (25) 

Then, we obtain the following three-wave solutions  
1 2 3

1 2 3

( , , )= ( , , ) =
( , , )

pu u x y t
q

η η η
η η η

         (26) 

where p and q are defined by (23) and , = 1,2,3i iη  

are defined by (22). For = , = 1,2,3i il r i  in (26), we 
meet solution (26) of [32].  

Figure 2 shows the plot of solution (26) for some special 
values of its parameters. 

4. One-Wave, Two-Wave and Three- 
Wave Solutions to the (3 + 1) 
-Dimensional Breaking Soliton   
Equation 

In this section, we will apply the multiple exp-function 
method to construct the exact multiple wave solutions for 
the (3 + 1)-dimensional breaking soliton equation  

4 ( ) 2 ( )

( ) = 0,
xt x xy xz xx y z

xxxy xxxz

u u u u u u u
u u

− + − +

− +
   (27) 

we discuss three cases of two polynomial functions p  and 
q  to generate one-wave, two-wave and three-wave 
solutions as follows: 
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Case i: One-wave solutions 
Again, we require the linear conditions,  

1, 1 1 1, 1 1 1, 1 1 1, 1 1= , = , = , =x y z tk l m wη η η η η η η η−  (28) 
where 

1 1 1 1, , ,k l m w  are constants. We then try a pair of 
polynomials of degree one,  

1 0 1 1 1 0 1 1( ) = , ( ) =p a a q b bη η η η+ +       (29) 
where 

0 1 0, ,a a b  and 
1b  are constants to be determined. 

By the multiple exp-function method and using the 
differential relations in (28), we obtain the following 
solution to the resulting algebraic system with the help of 
Maple,  

( ) ( )1 0 1 0 2
1 1 1 1 1

0

2
= , =

b a k b
a w m l k

b
+

− +    (30) 

where 0 1,a a  and 0b are arbitrary constants. Since we 
can have an exponential function solution to (28),  

1 1 1 1
1 = ek x l y m z w tη + + −              (31) 

By using (31), we obtain the following one-wave 
solutions for equation (27)  

 
Figure 2.  The three-wave solution  

1 1 1 1
0 1

1 1 1 1
0 1

e= ( , , ) = =
e

k x l y m z w t

k x l y m z w t
a apu u x y t

q b b

+ + −

+ + −

+
+

   (32) 

where 0 1,a a  and 0b  are arbitrary constants. For 

0 0 1 1 1= 0 , = 1, = 1 , =a b b l r− and 1 1=m s  our solution 
(32) is the same solution (49) of [33]. 
Case ii: Two-wave solutions 

In this case, we require the linear conditions,  

    , , ,

,

= , = , = ,

= , 1,2.
i x i i i y i i i z i i

i t i i

k l m
w i

η η η η η η

η η− =
      (33) 

where , , , , = 1,2i i i ik l m w i , are constants and thus the 
solutions 

1η  and 
2η  can be defined by  

 = e , = 1,2,k x l y m z w ti i i i
i iη + + −         (34) 

where 1c  and 2c  are arbitrary constants. 
We suppose that  

1 2 1 1 2 2 12 1 2 1 2

1 2 1 2 12 1 2

( , ) = 2[ ( ) ],
( , ) = 1 ,

p k k a k k
q a

η η η η η η
η η η η η η

+ + +
+ + +

  (35) 

 
Figure 3.  The first two-wave solution 

where 12a  is a constant to be determined. By the 
multiple exp-function method and using the differential 
relations in (33), we obtain two solutions to the resulting 
algebraic system with Maple,  

3 2= , = 1,2,i i i iw k k m i− −           (36) 
and  

( )
( )

2
1 2

12 2
1 2

=
k k

a
k k

−

+
                  (37) 

when = , = 1,2i il k i , and  
3 2= , = 1,2,i i i iw k k l i− −         (38) 

and  
( )
( )

2
1 2

12 2
1 2

=
k k

a
k k

−

+
               (39) 

when = , = 1,2,i im k i  we obtain the following 
two-wave solutions  

1 2

1 2

1 1 2 2 12 1 2 1 2

1 2 12 1 2

( , )= ( , , ) =
( , )

2[ ( ) ]=
1

pu u x y t
q

k k a k k
a

η η
η η

η η η η
η η η η

+ + +
+ + +

      (40) 
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Two specific solutions of these two-wave solutions are 
plotted in Figures 3 and 4. 

 
Figure 4.  The second two-wave solution 

Case iii: Three-wave solutions  
To obtain the three-wave solutions for equation (27), we 

require the linear conditions,  
, , ,

,

= , = , = ,

= , = 1,2,3,
i x i i i y i i i z i i

i t i i

k l m
w i

η η η η η η

η η−
     (41) 

where , ,i i ik l w , = 1,2,3i , are constants and thus the 
solutions 

1 2,η η  and 
3η  can be defined by  

= e , = 1,2,3,k x l y m z w ti i i i
i iη + + −       (42) 

where 1 2,c c  and 3c  are arbitrary constants. 
We suppose that  

1 2 1 1 2 2 3 3 12 1 2 1 2

13 1 3 1 3 23 2 3 2 3

12 13 23 1 2 3 1 2 3

1 2 1 2 3 12 1 2 13 1 3

23 2 3 12 13 23 1 2 3

( , ) = 2[ ( )
( ) ( )

( ) ]
( , ) = 1

,

p k k k a k k
a k k a k k
a a a k k k

q a a
a a a a

η η η η η η η
η η η η

η η η
η η η η η η η η η

η η η η η

+ + + +
               + + + +

+ + +
+ + + + +

               + +

(43) 

where 12 13,a a  and 23a  are constants to be determined. 
By the multiple exp-function method and using the 
differential relations in (41), we obtain the following 
solution to the resulting algebraic system with the help of 
Maple,  

3 2= , = 1,2,3,i i i iw k k m i− −       (44) 
and  

( )
( )

2

2= , , = 1,2,3i j
ij

i j

k k
a i j

k k

−

+
       (45) 

when = , = 1,2,3i il k i , and  
3 2= , = 1,2,3,i i i iw k k l i− −        (46) 

and  
( )
( )

2

2= , , = 1,2,3i j
ij

i j

k k
a i j

k k

−

+
      (47) 

when = , = 1,2,3i im k i .Then, we obtain the following 
three-wave solutions for equation (27)  

1 2

1 2

1 1 2 2 12 1 2 1 2

1 2 12 1 2

( , )= ( , , ) =
( , )

2[ ( ) ]=
1

pu u x y t
q

k k a k k
a

η η
η η

η η η η
η η η η

+ + +
+ + +

      (48) 

Two specific solutions of these three-wave solutions are 
plotted in Figures 5 and 6. 

 
Figure 5.  The first three-wave solution 

 
Figure 6.  The second three-wave  

5. Conclusions  
In this paper, we have applied the multiple exp-function 

method to obtain one-wave, two-wave and three-wave 
solutions of the (2 + 1)- and the (3 + 1)-dimensional 
breaking soliton equations. These solutions are new 
solutions for these equations and for some special values of 
parameters in these new solutions we can obtain the 
solutions which have obtained by another methods. The 
multiple exp-function method is oriented towards the ease 
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of use and capability of computer algebra systems and 
provides a straightforward and systematic solution 
procedure that generalizes Hirota's perturbation method. 
The method can be applied on other nonlinear partial 
differential equations which have multi-soliton solutions, 
because the multiple exp-function algorithm is powerful in 
generating exact solutions of nonlinear equations. 
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