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Abstract  This paper deals with the singularly perturbed boundary value problem for a linear second order differen-
tial-difference equation of the convection-diffusion type with small delay parameter. A fourth order finite difference 
method is developed for solving singularly perturbed differential difference equations. To handle the delay argument, we 
construct a special type of mesh, so that the term containing delay lies on nodal points after discretization. The proposed 
finite difference method works nicely when the delay parameter is smaller or bigger to perturbation parameter. The trunca-
tion error of the finite difference method is calculated. On the basis of truncation error, as well as the results of number of 
computational examples, it is concluded that the present method offers significant advantage for the linear problems.  
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1. Introduction 

A singularly perturbed differential-difference equation is 
an ordinary differential equation in which the highest de-
rivative is multiplied by a small parameter and involving at 
least one delay term. Such problems are found throughout 
the literature on epidemics and population dynamics where 
these small shifts play an important role in the modelling of 
various real life phenomena [1]. Boundary value problems in 
differential-difference equations arise in a very natural way 
in studying variational problems in control theory where the 
problem is complicated by the effect of time delays in signal 
transmission[2]. In the mathematical model for the deter-
mination of the expected first-exit time in the generation of 
action potential in nerve cells by random synaptic inputs in 
dendrites, the shifts are due to the jumps in the potential 
membrane which are very small[3].  

Lange and Miura[4] gave an asymptotic approach in the 
study of a class of boundary value problems for linear second 
order differential-difference equations in which the highest 
order derivative is multiplied by a small parameter. It has 
been shown that the layer behavior can change its character 
and even be destroyed as the shifts increase but remain small. 
In the companion paper[5], similar boundary value problems 
with solutions that exhibit rapid oscillations are studied. An 
extensive numerical  work had been ini t ia ted by  
M. K. Kadalbajoo and K. K. Sharma in their papers[6-8]. In 
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[6], the authors proposed a numerical method for boundary 
value problems for singularly perturbed differential- differ-
ence equations with a negative shift. Here the shifted term is 
approximated by Taylor series and a difference scheme is 
applied. This method works provided the shift is of ( )εo . 
In[7], a numerical method based on the fitted mesh approach 
to approximate the solution of these types of boundary value 
problems is presented. Here the piecewise uniform meshes 
are constructed and fitted to the boundary layer regions to 
adapt singular behaviour of the operator in these narrow 
regions. In[8], the authors proposed a numerical method to 
solve the boundary value problems for singularly perturbed 
delay differential equations, which work nicely in both the 
cases, i.e., the delay argument is bigger as well as smaller 
than the perturbation parameter. To handle the delay argu-
ment, they constructed a special type of mesh so that the term 
containing delay lies on nodal points after discretization. 
In[11], the authors M.K. Kadalbajoo and Devendra Kumar 
presented a numerical method for boundary value problems 
for nonlinear singularly perturbed differential-difference 
equations with small delay. Here Quasilinearization process 
is used to linearize the nonlinear differential equation. After 
applying the quasilinearization process to the nonlinear 
problem, a sequence of linearized problems is obtained. A 
piecewise-uniform mesh is used, which is dense in the 
boundary layer region and coarse in the outer region. In[12], 
the authors Gabil M. Amiraliyev, Erkan Cimen had given a 
numerical method for singularly perturbed boundary value 
problem for a linear second order delay differential equation 
with a large delay in the reaction term. The authors presented 
an exponentially fitted difference scheme on a uniform mesh 
which is accomplished by the method of integral identities 
with the use of exponential basis functions and interpolating 
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quadrature rules with weight and remainder term in integral 
form. In[13], the authors M.K. Kadalbajoo, Devendra Kumar 
presented a numerical method for singularly perturbed 
boundary value problem for a linear second order differen-
tial-difference equation of the convection-diffusion type 
with small delay parameter. Taylor series is used to tackle 
the delay term. The fitted mesh technique is employed to 
generate a piecewise-uniform mesh, condensed in the 
neighbourhood of the boundary layers. B-spline collocation 
method is used with fitted mesh. In[14], the authors M.K. 
Kadalbajoo, V.P. Ramesh presented a hybrid algorithm for 
singularly perturbed second order differential difference 
equation of the convection diffusion type with a small delay. 
The convection term with the delay is expanded in Taylor 
series and numerical schemes on Shishkin mesh are con-
structed. In[15], the authors Jugal Mohapatra, Srinivasan 
Natesan constructed a numerical method for a class of sin-
gularly perturbed differential-difference equations with 
small delay . The numerical method comprises of upwind 
finite difference operator on an adaptive grid, which is 
formed by equi distributing the arc-length monitor function. 

In this paper a fourth order finite difference scheme is 
developed for solving singularly perturbed differen-
tial-difference equations. To handle the delay argument, we 
construct a special type of mesh, so that the term containing 
delay lies on nodal points after discretization. The proposed 
finite difference method works nicely when the delay pa-
rameter is smaller or bigger to perturbation parameter. The 
truncation error of the finite difference scheme is calculated. 
On the basis of truncation error, as well as the results of 
number of computational examples, it is concluded that the 
present method offers significant advantage for the linear 
problems. 

2. Fourth Order Finite Difference  
Method  

To describe the fourth order finite difference method, we 
consider a linear singularly perturbed differential-difference 
equation, which contains only negative shift in the convec-
tion term 

( ) ( ) ( ) ( ) ( ) ( )y x a x y x b x y x f xε δ′′ ′+ − + =     (1) 
on 1x0 << , 1ε0 <<< , subject to the interval and 
boundary conditions  

( ) ( ) 0xδ;xφxy ≤≤−=  
β)1(y =                          (2) 

where )x(f ),x(b ),x(a and )x(φ are known analytic 
functions and, further, that each function is simple enough 
so that analytic differentiation is feasible, β  is a constant 
and )ε(δ is a small shifting parameter. For a function y(x) 
to constitute a smooth solution of (1)-(2) it must be con-
tinuous on [0, 1] and be continuously differentiable on    
(0, 1). For δ=0 the corresponding ordinary differential 
equation has solutions with a layer on the left or on the right 
for a(x)>0 or a(x) <0 on 0≤x≤1, respectively. The layer is 

maintained at the same end for δ sufficiently small i.e., 
)ε(oδ = . The layer behaviour can change its character and 

even be destroyed as the shifts increase, i.e., when 
)ε(Oδ = [4].     

To handle the delay argument, we construct a special type 
of mesh, so that the term containing delay lies on nodal 
points after discretization. We divide the interval [0, 1] in to 
N equal parts by choosing the mesh parameter h=δ/m, where 
m is a positive integer chosen such that Nm1 << .  

Using central difference formulae, the finite difference 
representation of equation (1) may be written at a typical 
mesh point ix , i=0, 1, …, N, as 
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and iiiiiiii y)x(y;f)x(f;b)x(b;a)x(a ====  and δ is 
the standard central difference operator, µ is the averaging 
operator[16]. 

The boundary conditions are 
  ,iiy φ=  for i a non positive integer β=Ny   (5) 

where )x(φφ i i = . 
The left side of equation (3) involves the finite differences 

i
4yδ and mi

3yμδ − . We approximate mi
3yμδ − , i

4yδ correct 

to ( )5hO  and ( )6hO , respectively as follows:    
Differentiating (1) once with respect to x, then using cen-

tral difference formulae, gives a O(h5) approximation for 
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and iiiiiiii y)x(y;f)x(f;b)x(b;a)x(a ′=′′=′′=′′=′  Simi-
larly differentiating (1) twice, then using central difference 
formulae, gives a O(h6 ) approximation for i

4yδ  as fol-
lows: 
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where 



 American Journal of Computational and Applied Mathematics. 2011; 1(1): 5-10 7 
 

 

...μδb
ε15

hμδb
ε3

h

...δb
ε90

hδb
ε12

h...δ
6
1G

5
i

3
3

i

3

6
i

2
4

i

2
6

i

′−′

+−++=
        (10) 

...μδa
ε30

hμδa
ε6

h

...δa
ε45

hδa
ε6

h...μδa
ε4

hH

5
i

3
3

i

3

6
i

2
4

i

2
5

ii

′′−′′

++′−′++=
  (11)  

Substituting (6) and (9) in (3) and simplifying, we get the 
fourth order finite difference scheme as  
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The leading order error terms in equation (12) are given by  
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The error term associated with equation (12) is ( )6hO  and it 

has been observed that the proposed finite difference method 
is of order four.   
Using (5), the difference scheme (12) can be written as  
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The above system of equations is solved by Gauss elimi-
nation method with partial pivoting. In fact, any numerical 
method or analytical method can be used. 

3. Numerical Results 
To demonstrate the applicability of the method we con-

sider three boundary value problems of singularly perturbed 
linear differential difference equations exhibiting boundary 
layer at the left end of the interval[0,1], and two problems 
exhibiting boundary layer at the right end of the under lying 
interval. These examples were discussed in[4,5,8]. Since the 
exact solutions of the problems for different values of δ are 
not known, the maximum absolute errors for the examples 
are calculated using the following double mesh principle[9]  

2
20

max | |N N
N i ii N

e y y
≤ ≤

= −  

The maximum absolute error is tabulated in the form of 
Tables 1-5 for considered examples. The graphs of the solu-
tion of the considered examples for different values of delay 
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parameter are plotted in Fig. 1-11 to examine the effect of 
delay on the boundary layer behaviour of the solution. 
Example 1 [5, p.275]: 0)x(y)δx(y)x(yε =+−′+′′ ,  
subject to the interval and boundary conditions 

0xδ;1)x(y ≤≤−= , 1)1(y = .  
Example 2[8, p.700]: 0)x(y)δx(y25.0)x(yε =−−′+′′  
subject to the interval and boundary conditions 

0xδ;1)x(y ≤≤−= , 1)1(y −= . 
Example 3[8, p.699]: 0)x(y)δx(y25.0)x(yε =−−′+′′   

subject to the interval and boundary conditions 
0xδ;1)x(y ≤≤−= , 0)1(y = . 

Example 4[8, p.707]: 0)x(y)δx(y)x(yε =+−′−′′  
subject to the interval and boundary conditions 

0xδ;1)x(y ≤≤−= , 1)1(y −= . 
Example 5[4, p.257]: 0)x(y)δx(y)x(yε =−−′−′′  
subject to the interval and boundary conditions 

0xδ;1)x(y ≤≤−= , 1)1(y −= . 
 

Table 1.  The maximum absolute errors for example 1with δ=0.03  

ε N=100 N=200 N=300 N=400 N=500 
2–1 8.5448e-007 2.1361e-007 9.4936e-008 5.3409e-008 3.4177e-008 
2–2 5.6349e-006 1.4090e-006 6.2621e-007 3.5226e-007 2.2544e-007 
2–3 9.4237e-006 2.3561e-006 1.0472e-006 5.8905e-007 3.7699e-007 
2–4 5.4815e-005 1.3736e-005 6.1099e-006 3.4362e-006 2.1994e-006 
2–5 1.0725e-004 2.6826e-005 1.1924e-005 6.7074e-006 4.2928e-006 
2–6 0.0717 0.0164 0.0072 0.0040 0.0026 

Table 2.  The maximum absolute errors for example 2 with δ=0.03 

ε N=100 N=200 N=300 N=400 N=500 
2–1 2.0585e-006 5.1461e-007 2.2872e-007 1.2866e-007 8.2338e-008 
2–2 2.0245e-006 5.0614e-007 2.2496e-007 1.2654e-007 8.0985e-008 
2–3 2.7779e-005 6.9410e-006 3.0846e-006 1.7351e-006 1.1104e-006 
2–4 1.0130e-005 2.5332e-006 1.1259e-006 6.3336e-007 4.0510e-007 
2–5 5.5951e-004 1.3966e-004 6.2050e-005 3.4899e-005 2.2335e-005 
2–6 1.7087e-004 4.2754e-005 1.9005e-005 1.0691e-005 6.8424e-006 
2–7 0.0462 0.0116 0.0051 0.0029 0.0019 

Table 3.  The maximum absolute errors for example 3 with δ=0.03 

ε N=100 N=200 N=300 N=400 N=500 
2–1 1.2359e-006 3.0899e-007 1.3733e-007 7.7249e-008 4.9438e-008 
2–2 2.0246e-006 5.0615e-007 2.2496e-007 1.2654e-007 8.0986e-008 
2–3 2.9569e-006 7.3925e-007 3.2856e-007 1.8482e-007 1.1828e-007 
2–4 1.0130e-005 2.5332e-006 1.1259e-006 6.3334e-007 4.0534e-007 
2–5 4.2189e-005 1.0552e-005 4.6902e-006 2.6383e-006 1.6885e-006 
2–6 1.7087e-004 4.2754e-005 1.9005e-005 1.0691e-005 6.8424e-006 
2–7 6.8796e-004 1.7229e-004 7.6599e-005 4.3092e-005 2.7580e-005 

Table 4.  The maximum absolute errors for example 4 with δ=0.03 

ε N=100 N=200 N=300 N=400 N=500 
2–1 1.1690e-006 2.9231e-007 1.2992e-007 7.3081e-008 4.6775e-008 
2–2 2.5483e-006 6.3707e-007 2.8314e-007 1.5927e-007 1.0192e-007 
2–3 1.0292e-005 2.5732e-006 1.1437e-006 6.4333e-007 4.1173e-007 
2–4 5.2798e-005 1.3210e-005 5.8719e-006 3.3031e-006 2.1140e-006 
2–5 1.8566e-004 4.6473e-005 2.0659e-005 1.1621e-005 7.4380e-006 
2–6 5.3884e-004 1.3484e-004 5.9943e-005 3.3721e-005 2.1582e-005 
2–7 0.0014 3.4603e-004 1.5389e-004 8.6588e-005 5.5422e-005 

Table 5.  The maximum absolute errors for example 5 with δ=0.03 

ε N=100 N=200 N=300 N=400 N=500 
2–1 1.5692e-006 3.9229e-007 1.7435e-007 9.8067e-008 6.2765e-008 
2–2 3.3241e-006 8.3084e-007 3.6925e-007 2.0770e-007 1.3292e-007 
2–3 9.7800e-006 2.4452e-006 1.0867e-006 6.1130e-007 3.9123e-007 
2–4 3.3415e-005 8.3551e-006 3.7135e-006 2.0889e-006 1.3369e-006 
2–5 1.0770e-004 2.6936e-005 1.1973e-005 6.7348e-006 4.3103e-006 
2–6 3.2451e-004 8.1217e-005 3.6104e-005 2.0310e-005 1.2999e-005 
2–7 9.1833e-004 2.3014e-004 1.0233e-004 5.7570e-005 3.6848e-005 
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Figure 1.  The numerical solution of example 1 with ε=0.01 and δ=0.007. 

 
Figure 2.  The numerical solution of example 1 with ε=0.01 and δ=0.015. 

 
Figure 3.  The numerical solution of example 1 with ε=0.01 and δ=0.025. 

 
Figure 4.  The numerical solution of example 2 with ε=0.01 for different 
values of δ. 

 
Figure 5.  The numerical solution of example 2 with ε=0.01 for different 
values of δ. 

 
Figure 6.  The numerical solution of example 3 with ε=0.01 for different 
values of δ. 

 
Figure 7.  The numerical solution of example 3 with ε=0.01 for different 
values of δ. 

 
Figure 8.  The numerical solution of example 4 with ε=0.01 for different 
values of δ. 

 
Figure 9.  The numerical solution of example 4 with ε=0.01 for different 
values of δ. 

 
Figure 10.  The numerical solution of example 5 with ε=0.01 for different 
values of δ. 
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Figure 11.  The numerical solution of example 5 with ε=0.01 for different 
values of δ. 

4. Conclusions  
A fourth order finite difference method is developed for 

solving singularly perturbed differential difference equations. 
The proposed finite difference method works nicely when 
the delay parameter is smaller or bigger to perturbation pa-
rameter. The truncation error of the finite difference scheme 
is calculated. It is observed that when the delay parameter is 
smaller than the perturbation parameter, the layer behaviour 
is maintained. As the delay increases, thickness of the layer 
decreases in the case when the solution exhibits layer be-
haviour on the left side while in the case of the right side 
boundary layer, it increases. And for the delay parameter 
greater than the perturbation parameter, it is observed that 
the layer behaviour of the solution is no longer maintained 
and the solution exhibits oscillatory behaviour. Also when 
the delay further increases the oscillations previously con-
fined to the layer region are extended throughout the interval 
[0,1]. From the results, it can be observed that as the grid size 
h decreases, the maximum absolute errors decrease, which 
shows the convergence to the computed solution. On the 
basis of truncation error, as well as the results of number of 
computational examples, it is concluded that the present 
method offers significant advantage for the linear singularly 
perturbed differential difference equations. 
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