
American Journal of Computer Architecture 2012, 1(3): 51-56
DOI: 10.5923/j.ajca.20120103.02

An Extensive Survey of Context-Aware Middleware
Architectures

Aamna Saeed*, Tabinda Waheed

Department of Computer Science, Military College of Signals, National University of Sciences & Technology, Rawalpindi, Pakistan

Abstract Context-awareness is a vital requirement in building valuable and capable adaptive systems. Context-aware
ubiquitous computing focuses on the use of context of users, devices, environment, etc in order to offer services essential for
a particular person, space and time. This paper provides a survey of context-aware middleware architectures. An overview of
each middleware is provided, along with the description of the main features. Based on the conducted survey, this paper
compares and contrasts the various characteristics of context-aware middleware architectures. We present the analysis of the
middleware arch itectures based on several parameters including fault tolerance, adaptability, interoperability, arch itectural
style, discoverability, location transparency and aspect oriented composition.

Keywords Context-awareness, Fault Tolerance, Location Transparency, Ubiquitous Computing

1. Introduction
Nowadays, personal digital assistants (PDAs) and mobile

phones offer a multipurpose set of services that leads to
emergence of various new applications. Mobility and
context-awareness introduces further challenges. The
applications need to adapt themselves to an altering
environment. The problems could be solved by using an
intermediate software layer that could perform the task
related to mobility and context-awareness. Thus, it helps in
avoiding the rising difficulty of the applicat ions and lets the
developers focus on application-specific tasks[1]. Mobile
systems run in an extremely dynamic environment. Due to
user mobility, execution context keeps on changing
frequently. In order to understand context-aware middleware,
first we are required to understand different types of contexts.
Context can be external to computer systems as location and
proximity or it can be internal context, such as available disk
space[2].

Usually current location of a mobile unit determines its
context which, then, specifies the environment where the
computation related to the mobile unit is performed. The
context also includes device characteristics, user’s actions,
services, and other resources of the system[3].

Context-aware systems cons ist o f various d istributed
components such as sensors, actuators, context information
stores, context in format ion processors, etc. Today , it is
widely accepted that , fo r reducing the complexity o f

* Corresponding author:
aamna.saeed87@gmail.com (Aamna Saeed)
Published online at http://journal.sapub.org/ajca
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

context-aware applicat ions and encouraging their reuse,
additional in frastructural components are desirable. The aim
of the middleware in tradit ional d istributed systems was to
hide heterogeneity and distribution by providing ways of
treating remote resources as if they were local. For static
environment, this may be useful, but in dynamic wireless
environments it is not beneficial. Since applications often
need to base decisions on informat ion about distribution and
the environment, middleware systems for Pervasive
Computing focus on providing suitable abstractions for
dealing with heterogeneity and distribution without hiding
them and in some situations may provide informat ion about
distribution and heterogeneity as context information[4, 2].

Numerous approaches have been presented for build ing
context-aware midd leware architectures. In our research
paper we have presented various context-aware middleware
architectures and their vital characteristics. A detailed
analysis is presented that compares and contrasts various
features of context-aware middleware such as interoperabili
ty, adaptability, location transparency, discoverability,
architectural style, aspect oriented decomposition and fault
tolerance.

2. Related Work
Nowadays extensive research is being carried out on

context-aware systems. Many approaches for addressing the
issue of context-awareness in middleware arch itectures have
been presented. Thus new context-aware arch itecture keeps
on emerg ing.

Gaddah and Kunz[3] have provided a general overview of
the most relevant mobile middleware systems .They
highlighted not only modern solutions but also objectives

52 Aamna Saeed et al.: An Extensive Survey of Context-Aware Middleware Architectures

that still need consideration. The main purpose of the survey
is to help out middleware researchers assess the strength and
weakness of different middleware architectures. The authors
have not given comparison of discussed middleware
architectures.

Kjær[2] presented a survey of a chosen set of context-
aware middleware architectures, and classified their
characteristics and use according to their p roposed taxonomy.
978-1-4244-6875-1/10/$26.00 ©2010 IEEE

Sadjadi[5] presented three orthogonal methods to
categorize adaptive middleware. The author proposed three-
dimensional taxonomy of adaptive middleware. He has not
given comparison of various features of context-aware
middleware architectures.

Mustafiz and Kienzle[6] conducted a survey of specialized
software development methods, frameworks, middleware,
software architectures, and other approaches that assist
developers in producing dependable software. The paper
gives a comparison of discussed methods, frameworks and
middleware architectures based on safety, security,
availability, maintainability and QoS. In this paper the
authors mainly focuses on dependability issues and have not
included other important features like interoperability,
adaptability, context-awareness, location transparency etc.

Baldauf, et al.[7] presented a survey in which they have
illustrated various design principles and context models for
context-aware systems .They have presented different
existing middleware and server-based approaches to ease the
development of context-aware applications. The authors
have provided a good analysis of various context-aware
systems but the comparison is performed on a very limited
set of context- aware systems. Other well known
context-aware middleware architectures like Aura,
CARMEN, CARISMA and various others have not been
incorporated in the survey.

Our survey has been extensively conducted and included
all the well known context-aware middleware arch itectures.
The analysis compares recently proposed middleware
architectures with the existing middleware architectures. The
analysis is based on the vital characteristics of context-aware
middleware including fau lt tolerance, interoperability,
adaptability, architectural style, discoverability, location
transparency and aspect oriented decomposition.

3. Overview Of Context-Aware
Middleware Architectures

This section provides an overview of each context-aware
middleware arch itecture .By examining existing context-
aware systems; we have identified some important features
for comparison which are: are architectural style, location
transparency, Aspect-oriented decomposition, service
discovery, fault tolerance, adaptability and interoperability.

Architectural style of ant middleware architecture is of
primary importance. It defines the way different components
are arranged in middleware. Extensibility and flexib ility of

any middleware are greatly dependent on architectural style.
It also influences the adaptivity mechanis m in middleware.

One of the most important functionality required in
context- aware environment is adaptability. Adaptability
depicts the ability to change the behavior according to
varying environment. It can be static (occurs at start-up or
compile t ime) or dynamic (takes place at run-time)[5].

Service Discovery is a vital requirement in ubiquitous
computing environment. It determines how applications
discover other entities and how they can be discovered by
other entities[8].

Fault tolerance determines the reliability and safety
features of any midd leware arch itecture. Fau lt-tolerant
middleware enables applications to continue operating in the
presence of faults[6].

Another main purpose of midd leware is to provide
interoperability. It makes two various systems to exchange
informat ion and to utilize that exchanged informat ion. In
context-aware environments various mobile devices needs to
communicate but some context-awaremid dleware
architectures do not offers this facility[8].

In aspect oriented decomposition cross cutting concerns
are separated into modules known as aspects. Aspect-orient
ed decomposition allows separation of cross-cutting
concerns at development time, compile time or runtime
Aspects encapsulate non-functional behavior. In real-time
applications, where safety and security concerns are v ital, it
is required to adopt such a context-aware middleware
architecture which supports aspect-oriented decomposition
[5].

Location transparency is a significant feature which
overcomes the requirement for client objects to exactly
identify the location of a server object when interacting and
requesting services offered by the server object[8].

3.1. Aura

Aura is suitable architecture for ubiquitous computing. It
is based on the idea of personal Aura and acts as a proxy for
the user it represents. When the user environment changes,
its Aura provides support to user tasks by adapting to local
resources. Aura provides services for management of tasks,
applications, and context .It supports a mobile users moving
across different environments, by moving the representation
of the task. In Aura architecture Context Observer is
provided for context management .For mobile users Serv ice
providers are created at the user’s new location for the task.
The context observer collects context information, and
reports changes to the Task- and Environment Managers[9,
10].

3.2. Capnet

CAPNET is a context-aware middleware arch itecture used
specially for mobile mult imedia applications. CAPNET is
capable of service discovery, user interface build ing, manag
ement of the local and network resources, asynchronous
messaging, context info rmation management and storage. It

 American Journal of Computer Architecture 2012, 1(3): 51-56 53

provides support for wide range of context information
which includes location, time, and user’s preferences. The
middleware has also the ability to switch traffic from one
network connection to another. It has the ability to locate the
services and software components. The middleware provides
services for creating mult imedia messages when predefined
context is identified. It supports development of complex
context-aware mult imedia applications for mobile devices
[1].

3.3. Carisma

CARISMA handles the adaption of middleware
depending on the requirements of the applicat ions. In
CARISMA profiles exist as meta-data of the middleware for
each application. The profiles comprises of passive and
active parts. In the passive parts, actions the middleware
should take in response to specific context events are
described. The active informat ion specifies relations
between services used by the application and the rules that
should be applied to deliver those services. Different
environmental condit ions can be specified to determine how
a service should be provided to the requested application.
Reflection can be used by the application at any time to
modify the profile kept by the middleware[2].

3.4. Carmen

CARMEN is middleware that aims for context-aware
resource management .It has the capability of supporting the
automatic reconfiguration of wireless Internet services in
accordance with the context alterations. CARMEN has the
ability to manage resources in wireless environment in case
of temporary d isconnects. Proxies are used in CARMEN
which acts as the mobile agents existing in the same
CARMEN environment as the user. For each mobile user
there exists a proxy which provides access to resources
required by the user. When migrat ing across different
environments, the proxy is responsible to make sure that
resources are also accessible in the new environment[11, 2].

3.5. Cooltown

The Cooltown middleware architecture is proposed for
supporting communication between wireless, mobile devices
and a web-enabled environment. The main principle behind
Cooltown is that devices, people, and things have a web-
presence recognized by a URL. Th is URL provides a good
interface to the entity. Users utilize PDAs to interact with the
provided web-services in a web-enabled environment.
Cooltown requires wireless Internet access for users to
communicate with the system. In local device to device
communicat ion URLs are passed among devices[2].

3.6. Cortex

CORTEX is a context -aware middleware arch itecture that
provides support for both pervasive and ad hoc environments.
The middleware architecture consists of a number of
component frameworks (CF).The CORTEX architecture

utilizes reflection and component technology. In CORTEX
efficient mechanisms are provided for context-awareness
and intelligent decision-making. It is a flexib le framework
that enables the use of a number of various service discovery
protocols[12].

3.7. Gaia

Gaia is a middleware architecture which has the ability to
manage resources enclosed in physical spaces. In Gaia
heterogeneity of active spaces are hidden, and they are
presented as a programmable environment, rather than a set
of indiv idual and disconnected diverse devices. Mainly the
focus of Gaia is on the interaction among users and active
spaces .Gaia has the important characteristic of providing
functionality to customize applicat ions in different ways.
“User data and applications can be mapped dynamically to
the resources provided in the current environment.” Users
can move across various active spaces[13].

3.8. MiddleWhere

MiddleWhere is a context-aware midd leware architecture
which makes it possible to combine various location
detection technologies. It aims at providing location
informat ion to the applications obtained from different
location sensing technologies. It offers the functionality of
incorporating extra location technologies dynamically as
they become available. Location Providers provides the
Location informat ion which is stored in a spatial database.
Location is determined by the reasoning engine which uses
the location information derived from different location
providers .Location is provided by a location service which
makes use of the spatial database and the reasoning
engine[14, 2].

3.9. FlexiNet

The FlexiNet is Java middleware architecture. It focuses
on various problems of configurable middleware. Proxies
represent the Interface on remote objects. Binders are
provided for Proxies to make remote access. Each binder has
the ability to create a generic binding among a local proxy
object and the remote object it represents. FlexiNet supports
the concept of multiple name spaces for interfaces to provide
flexib ility. The modularity makes it easier for management
policies to be plugged in[3, 15].

3.10. Nexus

The NEXUS middleware architecture is proposed for all
types of location-aware applications. It comprises of four
layers that work together: the user interface, the sensor
systems, the communication and the data management. The
user interface runs on the mobile device carried by users .The
user interface enables the interaction between location-aware
applications and NEXUS platform. The sensor systems are
required to provide positioning information to the NEXUS
system. The communicat ion unit handles data transfer
among the various components of NEXUS .The data

54 Aamna Saeed et al.: An Extensive Survey of Context-Aware Middleware Architectures

management organizes the data in a distributed environment
and supports sharing of processing between different servers.
Clearly defined interfaces among each of the three layers
guarantee least dependency among the layers[16, 3].

3.11. One.world

One.world middleware arch itecture supports development
of pervasive applications. The primary focus of One.world is
on those applications which automatically adapt to extremely
dynamic computing environments. One.world architecture is
designed for satisfying all core requirements. Additionally it
provides mechanisms for application migration, data storage
and fault tolerance. One.world requires Java Virtual Machine
in order to provide a uniform execution environment across
diverse devices. It is essential that the mobile terminal should
also support Java[8].

3.12. AspectIX

AspectIX is a context-aware middleware that supports
aspect-oriented decomposition. It is based on the distributed
object model. The principal behind AspectIX is to separate
non-functional cross-cutting concerns from functional logic.
J. Aspects encapsulate cross-cutting concerns (i.e., non-
functional behaviour like safety, security etc). AspectIX
supports the concept of dynamic weaving of aspects i.e.
Aspects can be added or removed at run-time. Thus its
architecture is more flexib le to changes[17, 5].

3.13. MobiPADS

MobiPADS architecture is especially designed for
providing support to context-aware processing. It provides
an execution platform. In response to environments of
changing contexts, the platform allows active service
deployment and reconfiguration of the service composition.
The main entity in MobiPADS is Mobilets, which are the
service providers. Mobilets move across different
MobiPADS environments. Each mobilet comprises of a
slave and a master. The slave resides on a server, whereas the
master exists on a mobile device. In order to provide a
particular service each slave and master coordinates with
each other. MobiPADS needs the internal context of mobile
devices to adapt to variations in the computational
environment[2, 18].

3.14. Homeros

The HOMEROS architecture was designed to offer
maximum flexibility, supporting service providers and user
needs. Thus the extensibility of HOMEROS into distributed
and hybrid architecture for good quality services is simpler.
The services include user preference management, expert
system, and multimedia processing. HOMEROS architecture
aims to provide flexib le user interface infrastructure. For
efficient management of huge resources, context, location,
and various services, HOMEROS adopts a hybrid-network
model. It provides high flexib ility to the applications by
using dynamically configurable reflective ORB. It comprises

of three layers, which are core component management layer,
extended component service layer, and system support
layer[10].

3.15. Socam

SOCAM is a middleware which provides support for most
of the tasks concerned with context. The major tasks
included are obtaining context from various sources;
interpreting context; and sharing of context. The major
characteristic of the SOCAM architecture is the provision of
support for context reasoning. In SOCAM each component
is designed as an independent service component. A Serv ice
Locating service provides the facility to locate and access the
components[19].

4. Analysis
In Table I, we have summarized the main features of the

discussed middleware arch itectures. Some middleware
architectures adopt layered approach where different
services are localized in layers with dependency among the
layers. Such architectures support extensibility and
flexib ility to some extent. Other architectures are those in
which modules or components represent the major building
blocks. This kind of middleware is more modifiable and
flexib le as compared to layered arch itecture as in layered
approach dependency exists among layers whereas modules
or components are independent. Also modular architecture
supports reusability like component-based design. NEXUS
has service-oriented architecture which is useful for
web-services. Location transparency is provided in
CARMEN, CORTEX, FlexiNet, MobiPADS, Gaia,
CAPNET, NEXUS, One.world and AspectIX whereas the
rest of the middleware arch itectures in table I do not support
location transparency. The only middleware which provides
infrastructure supporting aspect oriented decomposition is
AspectIX. Aspect oriented middleware focuses on aspects,
which are the modules capturing cross cutting functionalities.
AspectIX is open to aspects that are to be added at run-time.
In applications where cross-cutting concerns (non-functional
requirements like logging, security, safety) need to be woven
into applications at compile or run time aspect-oriented
decomposition is required. Fau lt tolerance is the feature that
directly affects the reliability of the middleware architecture.
As shown in the table I Gaia, Flexinet and One.world support
fault tolerance and are considered to be the most reliab le
middleware architectures. In safety-crit ical systems where
recovery from failure is crucial, middleware architectures
supporting fault tolerance mechanism are useful. More
reliable middleware architectures are appropriate in military
command and control and medical applications. Adaptability
is the capability of middleware to adapt to the varying
environment. Most of context-aware middleware
architectures support adaptability except Cooltown,
middlewhere and SOCAM. Middlewhere and SOCAM both
maintain context informat ion and provides to the

 American Journal of Computer Architecture 2012, 1(3): 51-56 55

applications or mobile agents. In Cooltown context
informat ion is maintained by middleware and application
using the context info rmation adapts them. In real-time
applications like air traffic control system or automat ic car
control system, which are t ime critical and need adaptation
mechanis m to direct the system to safe state in unpredicted
variations, middleware architectures supporting adaptation
are beneficial. Some midd leware arch itectures provide
dynamic adaptability (adapting at run time) as CARMEN,
CAPNET, Flexinet, HOMEROS, MobiPADS and AspectIX.
Aura, CARMEN, MiddleWhere and SOCAM do not aim for
interoperability. Aura is a task oriented middleware and acts
as a proxy when user changes his location. CARMEN
provides proxies and when user moves form one
environment to other, proxies provides access to resources

needed by the mobile user. Gaia uses concepts of operating
system and provides resource management and supports
multi-device, context-sensitive, and mobile applicat ions.
Middlewhere manages and provides location information to
applications. SOCAM middleware has the ability to meet the
needs of context-aware systems regarding limited memory
and CPU resources. MiddleWhere is developed as an
extended Gaia service. It therefore does not hold the
responsibility of service d iscovery. It is integrated with Gaia
which performs the functionality of discovering appropriate
service. Service d iscovery has not yet been included in
CARISMA architecture and research is being conducted on
this issue nowadays. All other middleware architectures
support service discovery, as shown in table I.

Table 1. Evaluation of context-aware middleware architectures

No Middleware Architectural Style Location
Transparency

Aspect Oriented
Decomposition

1 Aura Modular(Task Manager, Environment Manager, Context Observer) No No

2 CARMEN Layered(Metadata Manager, Context Manager, Event Manager,
Discovery,Directory,Monitoring) Yes No

3 CARISMA NA No No

4 Cooltown Modular(Web Presence Manager, Description, Directory, Discovery Modules,
Autobiographer, Observer and Control) No No

5 CORTEX Modular(Publish-Subscribe, Group Communication, Context and QoS
Management) Yes No

6 Gaia
Distributed Object System(Gaia kernel, Gaia Application Framework and
Applications including Space Repository Service, Event Manager Service,

Context File System Context Service, Presence Service)
Yes No

7 MiddleWhere Layered(Provider Interface, Location Service, Reasoning Engine) No No

8 CAPNET Modular(Connectivity Management, Component Management, Service
Discovery, Messaging) Yes No

9 Flexinet Layered(Serial Layer, Name Layer,Rex Layer, Session Layer, UDP Layer) Yes No
10 NEXUS Layered(Discovery Layer, Agent Layer, Service Layer) Yes No
11 One.world NA Yes No
12 ASPECTIX Fragmented and Distributed Yes Yes

13 MobiPADS Modular(Configuration Manager, Service Migration Manager, Service
Directory, Event Register, Channel Service) Yes No

14 HOMEROS Layered(Core Component Management Layer, Extended Component Service
Layer, System Support Layer) No No

15 SOCAM Distributed with Centralized Server, Context Providers, Context Interpreters,
Context database, Service Location Service) No No

No Middleware Fault Tolerance Interoperability Service Discovery Adaptability
1 Aura No No Yes Yes
2 CARMEN No No Yes Yes(Dynamic)
3 CARISMA No Yes No Yes
4 Cooltown No Yes Yes No
5 CORTEX No Yes Yes(Service Discovery CF) Yes
6 Gaia Yes Yes Yes(Context Service Module) Yes
7 MiddleWhere No No No No
8 CAPNET No Yes Yes Yes(Dynamic)
9 Flexinet Yes Yes Yes(Dynamic Discovery) Yes(Dynamic)

10 NEXUS No Yes Yes(Discovery Layer) Yes
11 One.world Yes Yes Yes(Service Migration Manager) Yes
12 ASPECTIX No Yes Yes(Extension of CORBA) Yes(Dynamic)
13 MobiPADS No Yes Yes Yes(Dynamic)

14 HOMEROS No Yes Yes(Component Repository responsible
for Discoverability) Yes(Dynamic)

15 SOCAM No No Yes(Context Reasoning Engine) No

56 Aamna Saeed et al.: An Extensive Survey of Context-Aware Middleware Architectures

When it is desired to efficiently support computational
requirements of mobile users, it is crucial to maximize the
utilization of resources provided. HOMEROS is the middle
ware architecture which capably configures and monitors the
environment to manage the heterogeneity of computing
environments and variability of resources[18, 19].

5. Conclusions and Future Work
In this paper we have analysed and compared different

context-aware middleware architectures. The comparison
and analysis gave an insight into the strengths and
weaknesses of the middleware arch itectures. This survey is
the most extensively conducted survey on context-aware
middleware architectures and provides an in-depth analysis;
comparing the most important characteristics of
context-aware midd leware architectures. We present the
analysis of the middleware architectures based on fault
tolerance, adaptability, interoperability, architectural style,
discoverability, location transparency and aspect oriented
composition.

The comparison provides an excellent base for the
efficient and appropriate use of the described middleware
architectures according to their main features in various
context-aware environments.

It is of interest to categorize these context-aware
middleware systems into taxonomy of context-aware
middleware architectures. Although existing classification
[2] provides a well organized, but it has not included some
context-aware middleware architectures which have been
included and analysed in our paper. Based on the comparison
performed in this paper, future research can focus on
addressing limitations of existing context-aware middleware
architectures and propose new middleware architectures.

REFERENCES
[1] Davidyuk, O., Riekki, J., Rautio, V-M. & Sun, J,

“Context-Aware Middleware for Mobile Multimedia
Applications,” In: Proceedings of the 3th International
Conference on Mobile and Ubiquitous Multimedia
(MUM2004), October 27-29.2004, College Park, Maryland,
USA, pp. 213-220

[2] Kjær, K.E, ”A Survey of Context-Aware Middleware,” In
Proc. Software Engineering 2007, ACTA Press, pp.148-155,
2007.

[3] Gaddah, A. and Kunz, T, “A survey of middleware paradigms
for mobile computing,” Technical Report SCE-03-16,
Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada, July 2003.

[4] K. Henricksen, J. Indulska, T. McFadden, and S.
Balasubramaniam, “Middleware for distributedcontext-awar
e systems,” In International Symposium on Distributed
Objects and Applications (DOA), volume 3760 of Lecture
Notes in Computer Science, pp 846–863. Springer, 2005.

[5] S. M. Sadjadi and P. K. McKinley, “A survey of adaptive
middleware,” Technical Report MSU-CSE-03-35,
Department of Computer Science, Michigan State University,
East Lansing, Michigan, December 2003.

[6] Mustafiz, S., Kienzle, J, “A survey of software development
approaches addressing dependability,” In: Guelfi, N., Reggio,
G., Romanovsky, A. (eds.) FIDJI 2004. LNCS, vol. 3409, pp.
78–90. Springer, Heidelberg (2005)

[7] M. Baldauf ,S. Dustdar and F.Rosenburg “A survey on
context-aware systems,” Int. J. Ad Hoc and Ubiquitous
Computing, Vol. 2, No. 4, 2007

[8] T Salminen, J Riekki, “Lightweight Middleware Architecture
for Mobile Phones, “Proc. 2005 International Conference on
Pervasive Systems and Computing, 2005.

[9] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter
Steenkiste, “Project Aura: Towards Distraction-Free
Pervasive Computing,” IEEE Pervasive Computing,
April-June 2002.

[10] Han, S., Bong, Y. & Youn, H,“A New Middleware
Architecture for Ubiquitous Computing Environment,” In:
Proceedings of the Second IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems
(WSTFEUS’04), May 11-12.2004,Vienna, Austria, pp.
117-121

[11] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli,
“Context- aware middleware for resource management in the
wireless Internet,” IEEE TSE, 29 (12): 1086–1099, 2003.

[12] Sørensen, C.F., Wu, M., Sivaharan, T., Blair, G. S., Okanda,
P., Friday, A., Duran-Limon, H., "A Context-Aware
Middleware for Applications in Mobile Ad Hoc
Environments", Proc’ of the 2nd Workshop on Middleware
for Pervasive and Ad-Hoc Computing (MPAC'2004) at
Middleware 2004, Toronto, Canada, October 2004.

[13] Román, M., C.K. Hess, R. Cerqueira, A. Ranganathan, R.H.
Campbell, and K. Nahrstedt, “Gaia: A Middleware
Infrastructure to Enable Active Spaces,” IEEE Pervasive
Computing 2002,1(4): pp. 74-83.

[14] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. H. Campbell,
and M. D. Mickunas. Middlewhere, “A middleware for
location awareness in ubiquitous computing applications,” In
H.-A. Jacobsen, editor, Middleware, volume 3231 of Lecture
Notes in Computer Science, pages 397–416, Springer, 2004.

[15] Hayton R, Bursell MH, Donaldson D, Herbert A,”Mobile
Java objects,”In International Conference on Distributed
Systems Platforms and Open Distributed Processing
(MIDDLEWARE), The Lake District, UK, 1998.

[16] Kaveh N. and Ghanea-Hercock R.. “NEXUS – Resilient
Intelligent Middleware”, BT Technology Journal, vol. 22,
no. 3, pp. 209-215, July 2004

[17] Hauck F., Becker U., Geier M., "AspectIX: A Middleware for
Aspect- Oriented Programming.” Workshop on Aspect-Orie
nted Programming. ECOOP'98, Bruselas (Bélgica), 1998.

[18] A. T. Chan and S.-N. Chuang.” MobiPADS: A Reflective
Middleware for Context-Aware Mobile Computing,” IEEE
Trans. on Software Engineering, 29(12):1072–1085, 2003

[19] T. Gu, H. K. Pung, and D. Q. Zhang,” A middleware for
building context-aware mobile services,” In Proceedings of
IEEE Vehicular Technology Conference, May 2004.

	1. Introduction
	2. Related Work
	3. Overview Of Context-Aware Middleware Architectures
	3.1. Aura
	3.2. Capnet
	3.3. Carisma
	3.4. Carmen
	3.5. Cooltown
	3.6. Cortex
	3.7. Gaia
	3.8. MiddleWhere
	3.9. FlexiNet
	3.10. Nexus
	3.11. One.world
	3.12. AspectIX
	3.13. MobiPADS
	3.14. Homeros
	3.15. Socam

	4. Analysis
	5. Conclusions and Future Work

