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Abstract  Due to the increasing complexity o f embedded systems, new design methodologies have to be adopted, since 
traditional techniques are no longer efficient. Model-based engineering enables the designer to confront these concerns 
using the architecture description of the system as the main axis during the design cycle. Defining the architecture of the 
system before its implementation enables the analysis of constraints imposed on the system from the beginning of the 
design cycle until the final implementation. AADL has been proposed for designing and analyzing SW and HW 
architectures for real-t ime mission-critical embedded systems. Although the Behavioural Annex improves its simulation 
semantics, AADL is a language for analyzing architectures and not for simulating them. AADS is an AADL simulation tool 
that supports the performance analysis of the AADL specification throughout the refinement process from the init ial system 
architecture until the complete, detailed application and execution platform are developed. In this way, AADS enables the 
verification of the in itial timing constraints during the complete design process. AADS supports the performance analysis 
of the AADL specification, enriched with behaviour specifications. AADS-T is Ravenscar Computational Model (RCM) 
compliant as part of the TASTE toolset and has been used to assist in co-design. 
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1. Introduction 

Nowadays, embedded systems must support the 
deployment of heterogeneous applications within 
heterogeneous architectures. In most cases, the execution 
platform is not fixed and must be designed and optimized in 
conjunction with the application SW. Therefore, early 
estimation of the system performance on the executive 
platform, under real-time constraints, is desirable. This 
analysis requires a unified model of the application and the 
architecture, and effective means to define the mapping of 
application functions onto architecture resources and 
services. 

Architecture Analysis and Design  Language (AADL) 
[1-3] p rov ides  such  a modelling  framework. It  was 
developed as a standard of the Society of Automot ive 
Engineers (SAE) to enable the descript ion of task and 
communicat ion arch itectu res fo r real-t ime, embedded, 
fault-tolerant, secure, safety-crit ical, SW-intensive systems. 
However, AADL does not  support the express ion of 
behaviour in detail. At most, it is possible to specify the  
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non-determin istic behaviour of a thread as a set of 
subprogram calls, and application behaviour relies main ly 
on source code written in source languages. The 
behavioural annex[4] has introduced high-level composition 
concepts and a richer state representation than the standard 
AADL mode automata[48]. The behaviour is specified 
using extended automata that may trigger a transition by an 
event, a Boolean expression, etc. A transition may trigger 
one or more actions such as assignment of values to 
variables, sending data, events, etc. The annex main ly 
declares states and transitions with guards and an action 
part. Guards and actions can access ports and data 
subcomponents declared in the AADL component to which 
they are attached. 

The Automated proof-based System and Software 
Engineering for Real-Time systems (ASSERT) project[5] 
resulted in a new development process for distributed 
embedded real-time software, and a set of methods and 
tools supporting the process. The process is based on 
separation of concerns, automatic code generation and 
property preservation. An important feature of the ASSERT 
process is the adherence of the concurrency model to the 
RCM[6], a restricted tasking model that enables static 
response time analysis of real-time systems. The model 
restricts the concurrency model to a static set of periodic 
and sporadic threads communicated by means of a static set 
of shared data objects, protected by mutual exclusion 
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synchronization. There are two variants of the ASSERT 
software process: Hard Real-Time Unified Modeling 
Language (HRT-UML) and AADL tracks. The ASSERT 
Set of Tools fo r Engineering (TASTE)[7] toolset is an  open 
source toolset supporting the latter. 

The LEON2[8] processor was designed by the European 
Space Agency (ESA) as a 32-bit synthesizable processor 
core based on the SPARC V8 arch itecture. The core is 
highly configurable, and particularly suitable for 
System-on-Chip (SOC) designs. 

There is a commonly recognized need for new 
development frameworks that enable designers to perform 
efficient exp loration of design alternatives and analyze 
system properties throughout the design cycle. Some system 
properties can be obtained by static analysis. Many other 
properties can only be obtained through simulation. In any 
case, system simulation is needed for performance analysis 
under real execution condit ions. System simulation and 
performance analysis can validate the correct dimensioning 
of the system and detect locks, missed deadlines and other 
potential problems  raised by the complex interaction among 
components that can be found in a real system. The earlier 
all these problems are detected, the lower the cost of 
correcting them[9]. 

Evolutionary prototyping is now becoming a 
well-accepted development approach in Model-Driven 
Engineering (MDE)[10]. The design flow is based on a 
central model that is refined unless it is satisfactory. 
Programs can be generated from this model and constitute 
intermediate versions of the product. The last refined model 
corresponds to the final system. A prototyping-based design 
process is beneficial for the earliest possible verificat ion of 
the impact of deployment decisions, or the use of a 
particular HW/SW component in the system. 

This document deals with AADS[12] an AADL 
simulation and performance analysis framework, including 
a behavioural annex compatible with the RCM. The tool 
can support prototype-based design allowing the functional 
and non-functional (execution times, power consumption, 
etc.) verification of the system while it is being refined until 
the final implementation. Based on SystemC, the 
framework supports the seamless integration of HW 
component and an easy optimization of the executive 
platform. SystemC has become a relevant standard language 
for modeling and simulat ion of HW/SW embedded 
systems[11]. 

HW/SW partit ioning is a  phase of co-design in  which the 
partition of the specification  into two  parts is achieved. One 
part will be implemented in HW and the other part will be 
implemented in SW. HW/SW partition ing is the process of 
deciding, fo r each  subsystem, whether the required 
functionality is more advantageously implemented in HW 
or SW  to achieve a part ition that will give us the required 
performance with in the overall system requirements (in  
size, weight, power, cost, etc.). Partit ioning into HW and 
SW affects overall system cost and performance[45]. There 
are two part itioning approaches: Starting first with all the 

functionality in SW and moving parts, which are 
time-crit ical and cannot be allocated to SW, into HW (this 
is known as SW centric part itioning) o r starting first with all 
the functionality in HW and moving parts into the SW 
implementation (this is known as HW centric partitioning). 
AADS extracts the necessary information for the SCoPE 
tool to perform a simulat ion at system level from the AADL 
models. The simulat ion and performance analysis results 
will guide the system designer through the selection of the 
most adequate partition solution (see Figure 1). 

The contents of the paper are as follows. The following 
two sections make a summary  of AADL and SCoPE 
respectively. The next section rev iews the related work. In 
the next two sections, AADS and AADS-T are described, 
with a brief description about performing the simulat ion on 
a LEON2 processor. Next , we exp lain  the Case Study: How 
AADS-T has been used in the ESTEC 22810/09/NL/JK 
HW-SW CODESIGN project[46] to assist in HW/SW 
partitioning. Then we state the conclusions and finally, we 
include acknowledgements and referenced documents. 

 
Figure 1.  AADS and SCoPE in the HW/SW co-design process 

2. AADL 
The SAE AADL standard provides formal modelling 

concepts for the description and analysis of application 
system architecture in terms of the distinct components and 
their interactions. The AADL includes software, hardware, 
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and system component abstractions to specify and analyze 
real-t ime embedded systems, complex systems of systems, 
and specialized performance capability systems, and to map 
software onto computational hardware elements. The 
AADL is especially effective for model-based analysis and 
specification of complex real-time embedded systems. 

In AADL, a component is characterized by its identity (a 
unique name and runtime essence), possible interfaces with 
other components, distinguishing properties (critical 
characteristics of a component within its architectural 
context), and subcomponents and their interactions. In 
addition to interfaces and internal structural elements, other 
abstractions can be defined for a component and system 
architecture. For example, abstract flows of in formation or 
control can be identified, associated with specific 
components and interconnections, and analyzed. These 
additional elements can be included through core AADL 
language capabilit ies (e.g. defining new component 
properties) or the specification of a supplemental annex 
language. 

The component abstractions of the AADL are separated 
into three categories: Applicat ion software, execution 
platform (hardware) and composite. Application software 
can be a thread (act ive component that can execute 
concurrently and be organized into thread groups), thread 
group (component abstraction for logically organizing 
thread, data, and thread group components within a  
process), process (protected address space whose 
boundaries are enforced  at runtime), data (data types and 
static data in source text ) and subprogram (concepts such as 
call-return and calls-on methods, modelled using a 
subprogram component that represents a callable piece of 
source code). Execution p latform (hardware) can be a 
processor (schedules and executes threads), memory (stores 
code and data), device (represents sensors, actuators, or 
other components that interface with the external 
environment) and bus (interconnects processors, memory, 
and devices). Composite can be a system (design elements 
that enable the integration of other components into distinct 
units within the architecture). System components are 
composites that can consist of other systems as well as of 
software or hardware components. 

The AADL standard includes runtime semantics for 
mechanis ms of exchange and control of data, including 
message passing, event passing, synchronized access to 
shared components, thread scheduling protocols, timing 
requirements and remote procedure calls. In addit ion, 
dynamic reconfiguration of runtime arch itectures can be 
specified using operational modes and mode transitions. 

The AADL can be used to model and analyze systems 
already in use and design and integrate new systems. The 
AADL can be used in the analysis of partially defined 
architectural patterns (with limited architectural detail) as 
well as in fu ll-scale analysis of a complete system model 
extracted from the source code (with completely quantified 
system property values). 

AADL supports the early prediction and analysis of 

critical system qualit ies, such as performance, 
schedulability, and reliab ility. For example, in specifying 
and analyzing schedulability, AADL-supported thread 
components include the pre-declared  execution property 
options of periodic, aperiodic (event-driven), background 
(dispatched once and executed until complet ion), and 
sporadic (paced by an upper rate bound) events. These 
thread characteristics are defined as part of the thread 
declaration and can be readily analyzed. 

Within the core language, property sets can be declared 
that include new properties for components and other 
modelling elements (e.g. ports and connections). By 
utilizing the extension capabilities of the language, 
additional models and properties can  also be included. For 
example, a  reliability  annex can  be used that defines 
reliability models and properties of components facilitating 
a Markov or fault  tree analysis of the arch itecture. This 
analysis would assess architecture’s compliance with 
specific reliability requirements. 

Collectively, these AADL propert ies and extensions can 
be used to incorporate new and focused analyses at the 
architectural design level. These analyses facilitate trade off 
assessments among alternative design options early in a 
development or upgrade process. 

 
Figure 2.  AADL graphical notation 

AADL components interact exclusively through defined 
interfaces. A component interface consists of directional 
flow through data ports for un-queued state data, event data 
ports for queued message data, event ports for 
asynchronous events, synchronous subprogram calls and 
explicit access to data components. 

Interactions among components are specified explicitly. 
For example, data communication among components is 
specified through connection declarations. These can be 
mid-frame (immediate) communication o r phase-delayed 
(delayed) communication. The semantics of these 
connections assures deterministic transfer of data streams. 
Deterministic transfer means that a thread always receives 
data with the same time delay; if the receiv ing thread is 
over- or under-sampling the data stream, it always does so 
at a constant rate. 

Application components have properties that specify 
timing requirements such as period, worst-case execution 
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time, deadlines, space requirements, arrival rates, and 
characteristics of data and event streams. In addition, 
properties identify source (code and data that implement the 
application component being modelled in the AADL) and 
constraints (for binding threads to processors, source code, 
and data onto memory). The constraints can limit binding to 
specific processor or memory types (e.g., to a processor 
with DSP support) as well as prevent co-location of 
application components to support fault tolerance. 

3. SCoPE 
The SCoPE[24] tool provides the technology to perform 

MPSoC HW/SW co-simulation with Network on Chip 
(NoC). It enables the exploration of the design space to 
choose the right processors and HW/SW partit ion for 
embedded systems. It also allows the simulation of different 
nodes connected through a NoC in order to analyse the 
behaviour of large systems. Commonly, these tools are 
based on slow ISSs. The differentiat ing feature o f this 
technique is that SCoPE obtains the performance 
estimations at source code level. This level o f abstraction 
enables the simulat ion time to be reduced significantly 
while maintaining good accuracy. 

SCoPE is a C++ library that without modification 
extends standard language SystemC to perform 
co-simulation. On the one hand, it simulates C/C++ 
software code based on two different operating system 
interfaces (POSIX and MicroC/OS). On the other hand, it 
co-simulates these pieces of code with hardware described 
in SystemC. 

An engineer with this tool can simulate specific software 
over a custom platform and obtain estimat ions of: number 
of thread and context switches, running time and use of 
CPU, instructions executed and cache misses, energy and 
power (of core and instruction cache). 

This library  models the detailed behaviour of the RTOS 
including concurrency (among tasks in  the same processor), 
parallelism (among tasks in different processors), 
scheduling and synchronization. Although the SystemC 
kernel executes processes following a non pre-emptive 
scheduling policy without priorities, SCoPE models 
pre-emption under different scheduling policies based on 
priorities. 

SCoPE integrates a POSIX-based API that enables the 
execution of a large number of software applications that 
follows this standard. POSIX is the main operating system 
interface nowadays, but it  is not the only one. Thus, SCoPE 
has been improved to support extensions for other types of 
interfaces. An example is the integration with the 
MicroC/OS interface. This is a demonstration of the 
scalability of the tool, in terms of software support. 

The design of embedded systems requires not only 
software handling but also hardware communication. For 
this reason SCoPE includes a set of more than a hundred 
driver facilities to implement this communicat ion. One of 

the most extensively used operating systems in this sector is 
Linux, so these driver facilit ies are based on the Linux 
kernel version 2.6. Furthermore, SCoPE is able to simulate 
the loading of kernel modules and the handling of hardware 
interruptions and their corresponding scheduling. 

SystemC is the language used for the modelling of the 
hardware platform due to the easiness of implementation 
(C++ extension) and its simulation kernel. For the purpose 
of simulating different platforms SCoPE incorporates some 
generic hardware modules: A bus based on TLM2 used for 
the communicat ion with peripherals and the trans mission of 
hardware interruptions, a DMA for copying large amounts 
of data, simple memory fo r the simulation of cache and 
DMA traffic, a hardware interface for simple custom 
hardware connection, a network interface that works as a 
net card for the NoC and an external network simulator to 
implement the NoC connected to SCoPE.  

System simulation comprises Multi-computation and 
Modular structure. Multi-computation: One of the 
advantages of this tool is the possibility of interconnection 
among independent nodes and simulating the interaction 
among them. Modular structure: Each RTOS component is 
an independent object that does not share any data with the 
others. Furthermore, each process is isolated from the rest 
of the system, thus a process with global variables can be 
replicated in many nodes without data collision problems. 
That is, each process has a separate memory space.  

 
Figure 3.  Block diagram of SCoPE 

4. Related Work 
Simulation and performance analysis of AADL models 

represent an important stage in MDE. Different approaches 
address this issue. 

ADeS is one of the most powerful simulation tools yet it 
requires the environment in which the system evolves[15] 
to be taken into account. 

Another way to  tackle the problem is translating AADL 
to another language. Cheddar[16] is a  set of Ada packages 
that enables the design of a new scheduler and direct 
interpretation using the Cheddar environment. The Furness 
toolset[17] translates models into the real-t ime process 
algebra ACSR to explore the state space looking for 
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violations of timing requirements. M. Yassin Chkouri et al. 
propose in[18] a translation from AADL models to BIP 
models to enable simulation. Ocarina[10] is a  tool suite that 
uses code generation facilities in Ada and C to analyze the 
AADL model. ADAPT[19] translates an AADL 
architectural model into a dependability evaluation model in 
the form of a Generalized Stochastic Petri Net (GSPN). T. 
Abdoul et al.[20] p roduce an IF timed automata model 
which is the entry point of the validation process, 
processing it with the IFx framework. E. Jahier et al.[21] 
translate the architecture into a non-deterministic 
synchronous model to which the SW components in Scade 
or Lustre can be integrated, to simulate it with  Lurette. 
Annex D of the AADL standard gives guidelines to 
translate AADL SW components into source code (C, Ada). 

S. Gui et al.[22] use the linear hybrid automata in the 
design phase statically to abstract the semantics of the SW 
components of AADL exp licitly. 

M. Brun et al.[23] translate to OIL configuration code 
and to C code which is compatible with the OSEK/VDX 
RTOS. 

Several authors have considered the behavioural annex in  
their research on AADL. Some of their papers were written 
in the in itial stage of the behavioural annex so they were 
intended to evaluate, promote and disseminate it. P. Dissaux 
et al.[29] present a proposal for a behavioural annex to the 
AADL standard. They explain how to implement the 
behavioural annex with the Stood tool, a graphical AADL 
editor that can import and export AADL textual 
specifications. R. Bed in et al.[30] evaluate the behavioural 
annex through a flight software design in the Arch iDyn 
project. This requires new synchronization primit ives for 
AADL runtime and support using edition and analysis tools 
for the behavioural annex. J. P. Bodeveix et al.[31] propose 
an AADL behavioural annex and a technique to perform 
compositional real-t ime verification of AADL models 
through the use of a method which translates environmental 
constraints into behaviour. 

Other papers, such as the latter one, include the 
behavioural annex in their verification process of AADL 
models. B. Berthomieu et al. describe in[32] a formal 
verification tool chain for AADL with its behavioural annex 
available in the Topcased environment. They translate the 
AADL model to Fiacre and verify the behaviour with a 
Time Petri Net Analyzer (Tina). 

C. Ponsard et al. exp lore in[33] the interplay of 
requirements and architecture in a model-based perspective 
by defining a mapping and a constructive process taking 
into account specifics of embedded systems, especially the 
importance of non functional requirements. To generate the 
behavioural part of a system they first generate a fin ite state 
mach ine and then an AADL mode-transition. 

A way to approach AADL and its behavioural annex is 
translation to another language. To allow simulation M. 
Yassin Chkouri et al. propose in[34] a translation from 
AADL models to BIP models. They take into account 
behaviour specifications allowing state variables, 

initialization, states and transitions sections to be defined 
and translating them into BIP. DUALLY[35] is an 
automated framework that allows arch itectural language 
interoperability through automated model transformation 
techniques. I. Malavolta et al. analyze the feasibility of 
integrating AADL and OSATE in  DUALLY. They map 
AADL behavioural annex sections of states, composite 
states and transitions. 

Several authors have considered ASSERT and the RCM 
in their research. Some of their papers deal with the 
ASSERT Virtual Machine (VM), the execution platform on 
which ASSERT applications run, based on the RCM. J. A. 
de la Puente et al.[36] and J. Zamorano et al.[37] are good 
examples of this. 

M. Bordin et al.[38] propose some guidelines to generate 
RCM-compliant Ada code from HRT-UML. S. Mazzini et 
al.[39] exp lain a MDE methodology for the development of 
high-integrity real-time systems. However using UML does 
not enable a low-level description of the system. Moreover, 
the different views of the system use different formalis ms, 
so one must modify all v iews on each change of the system 
to get a coherent model, hindering rapid prototyping. 

J. Kwon et  al.[40] propose Ravenscar-Java, a 
high-integrity profile  for real-t ime Java. However we think 
that Java is not a good high-integrity programming 
language due to its object-oriented programming features, 
its automatic garbage collection, and the proposed 
limitat ions to the extension of real-time multi-thread ing that 
cause confusion. 

Ocarina[10] is a tool suite that uses code generation 
facilit ies in Ada and C to analyze AADL models. The code 
generated is compatible with the RCM. 

In[50] M.B. Abdelhalim, S.E.-D. Habib develop a new 
high-level hardware/software partitioning methodology. In[51] 
K. Lampka et al. present a compositional and hybrid 
approach for the performance analysis of d istributed 
real-t ime systems. 

After analyzing the related work, it appears that no 
approach uses SystemC, which is a recognized standard for 
modelling HW/SW platforms, with its great potential for 
integration of processors, buses, memories and specific 
platform HW. The aforementioned solutions cannot model 
the HW platform so they do not permit HW/SW co-design. 
Apart from[23] none of the approaches models AADL over 
a RTOS. Our solution makes HW/SW co-design easier 
because of the use of SystemC. 

SCoPE is a C++ library that extends standard language 
SystemC[25] without modifying it. It simulates C/C++ SW 
code based on two different operating system interfaces 
(POSIX[26-27] and MicroC/OS). Moreover, it co-simulates 
these pieces of code with HW described in SystemC. 
SCoPE generates a file  with this SystemC description of the 
model. SCoPE has proven to be an efficient tool for design 
space exploration[49]. 

AADS supports AADL simulat ion in SystemC, thus 
allowing the modelling of the HW platfo rm and permitting 
HW/SW co-design. The AADL model is based on POSIX, 
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so it supports many different RTOS. 
In previous work[42-44] we have talked about AADS, 

nevertheless, in this paper we show the complete 
methodology with a complex industrial case study. 

5. AADS 
AADS is an AADL simulation tool written in Java, 

which was developed as a plug-in[13] of Eclipse[14]. 
AADS enables the modelling of a subset of AADL for 
purposes of implementation and simulat ion. The starting 
point of the simulator is a functional AADL specification 
without detailed code. For each component, the 
corresponding timing constraints are defined. Th is init ial 
AADL specificat ion supports the verification of the g lobal 
performance constraints of the system based on the specific 
timing constraints of the different components. The AADL 
model is parsed using AADS and a model suitable for 
simulation with  SCoPE is produced, in order to check 
whether the AADL constraints are fulfilled. As the design 
process advances and, on the one hand, the actual 
functionality is attached to the SW components using the 
corresponding source code and, on the other, the 
functionality is mapped onto specific platform resources, a 
more accurate performance estimat ion is achieved. These 
refined properties will be added to the AADL model and a 
new model is generated by AADS. By  comparing the init ial 
timing constraints with these refined, t iming estimat ions, it 
is possible to verify the non functional correctness of the 
design process at any refinement step. 

AADL enables the specificat ion of both the architecture 
and functionality of an embedded real-time system. AADS 
translates both to SystemC (see Figure 4). It parses the 
AADL model so the functionality is translated to an 
equivalent POSIX model and the architecture is represented 
in XML[28]. The equivalent POSIX model and the 
architecture can be implemented easily as an embedded 
system. 

The functionality  of an  embedded real-time system is 
translated as follows: 

Threads. An AADL thread is a concurrent schedulable 
unit of sequential execution through source code and 
multip le threads represent concurrent execution paths. A 
POSIX thread is an execution thread in a program and an 
application can have mult iple execution threads running 
concurrently. An AADL thread translates seamlessly into a 
POSIX thread. 

In POSIX, a thread attribute object must be defined and 
initialized with the default value for all of the indiv idual 
attributes used by a given implementation. AADS 
determines how the other scheduling attributes of the 
created thread are to be set, that is that the scheduling policy 
and associated attributes are to be set to the corresponding 
values. Thus AADS can now call the POSIX function to 
create a new thread with the specified attributes. The 
specified routine is then launched as a starting routine. 

 
Figure 4.  Translation, refinement and implementation with AADS 

Periodic threads. A thread is periodic if repeated 
dispatches occur during a specific time interval. An AADL 
periodic thread has its Dispatch_Protocol property set to 
Period ic and its Period property set, for example, to 20 ms.  

These two properties are translated putting the source 
code of the POSIX thread into an infinite loop. At the 
beginning of the loop the current time is obtained. At the 
end of the loop the current thread is suspended until either 
the time value of the clock reaches the absolute time 
specified (the current time plus the period), or a signal is 
delivered to the calling thread and its action is to invoke a 
signal-catching function, or the thread is terminated. By 
doing this it waits to repeat the loop for exactly the time 
specified in the Period property. 

Port connections translate into message queues, signals 
and global variables: 

Message queues. An AADL event data port models 
message communicat ion with queuing of messages at the 
recipient. Message arrival may cause dispatch of the 
recipient and allow the recipient to process one or more 
messages. POSIX message queues allow threads to 
exchange data in the form of messages. Messages placed in 
the queue are stored until the recip ient retrieves them. An 
AADL event data port connection between threads 
translates into a POSIX message queue between threads. 

The attributes of the message queue must be set. The 
value of the maximum number of messages is taken from 
the AADL property Queue_Size of the destination port if it 
exists. The AADL property Queue_Processing_Protocol is 
set to FIFO as corresponds to a message queue. The 
message queue is created to both send and receive messages 
in non-blocking mode. The thread corresponding to the 
AADL source/destination thread of the event data port 
connection should add/receive a message of the specified 
length to/from the message queue specified with the priority 
indicated. 

Signals. An AADL event port acts as an interface for the 
communicat ion of events raised by subprograms, threads, 
etc. that may be queued. An example of use of an event port 
includes alarm communications that may be queued at the 
recipient, where the recipient may  process the queue 
content. A signal is a  limited  form of inter-thread 
communicat ion used in POSIX-compliant operating 
systems. Essentially, it is an asynchronous notification sent 
to a thread in order to notify it of an event that occurred. 
When a signal is sent to a thread, the operating system 
interrupts the thread's normal flow of execution. If the 
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thread has previously registered a signal handler, that 
routine is executed. Otherwise, the default signal handler is 
executed. An AADL event port connection between threads 
translates into the sending of POSIX signals between 
threads. 

The signals used are the user-definable real-time signals. 
The structure type of an object used to represent sets of 
signals must be used with the POSIX functions that 
initialize and empty a signal set, add a signal to a signal set 
and examine and change blocked signals before creating the 
thread. The source/destination POSIX thread that 
corresponds to the AADL source/destination thread of the 
event port connection sends/waits for the signal (zero 
timeout for no blocking if there is no signal received). 

Global variables 
An AADL data port acts as an interface for typed state 

data transmission among components without queuing. 
Data ports are represented by typed variables in  source text. 
A global variable is a  variab le that is accessible in every 
scope. Global variables are used extensively to pass 
informat ion between sections of code that do not share a 
caller/called relat ion such as concurrent threads. An AADL 
data port connection between threads translates into a global 
variable between threads. 

The data type of this global variable is derived from the 
type of ports connected. The source/destination thread that 
corresponds to the AADL source/destination thread of the 
data port connection, can write/read a value in/from that 
global variab le. 

The AADL properties are translated as followed: 
Scheduling_Policy and Priority of threads. An AADL 

property set called UC with two properties 
POSIX_Scheduling_Policy and Priority has been defined. 
The first is an enumeration of the values SCHED_FIFO, 
SCHED_RR, SCHED_SPORADIC and SCHED_OTHER, 
and the second is an integer from 0 to  32. The first is 
obviously used to set the scheduling policy of the treads. 
The second is used with the appropriate minimum value for 
the scheduling policy specified to set the scheduling 
parameter attributes of the threads. 

Compute_Execution_Time (min, max). The min imum 
time causes a call to a function that consumes that 
processing time to assure that at least that time is consumed. 
This function is adjusted at the beginning of the application 
to assure that the exact time is consumed. Thus the 
minimum execution t ime is the time established by this 
property for this thread. 

The maximum time requires the creation of a t imer that is 
set with this time until the next exp iration of the timer. 
Therefore, the timer exp ires in a maximum time 
nanoseconds from when the call is made. When this timer 
expires, one of the last real-time signals is sent and a 
function called. This function lowers the priority of the 
thread and waits for a while before restoring the initial 
priority of the thread using the same method. When the 
priority of the thread is low, the scheduler avoids executing 
the thread and other threads can be processed. Thus we 

assure that the maximum execution time is the one of this 
property for this thread.  

Names. Property Activate_Entrypoint of a thread is the 
name of the C++ function that contains the source code of 
that thread. Thus, this is the name of the function executed 
as a starting routine when creating the thread. Source_Text 
of a thread is the name of the C++ file containing the source 
code of that thread. 

Initialize / Finalize_Entrypoint. The name of the 
routine called at the start/end of the start routine of the 
corresponding thread is derived from this property. 

Initialize / Finalize_Execution_Time (min, max). The 
minimum time causes the call to a function that consumes 
that processing time to assure that at least that time is 
consumed. It  checks the maximum t ime, to see if this 
amount of time has elapsed and return if it has been. 

The issues related to the subprograms are the fo llowing: 
Subprogram. An AADL subprogram component 

abstraction represents sequentially executable source text, a 
callab le component, with or without parameters, that 
operates on data or provides server functions to components 
that call it. A routine is a portion of code within a larger 
program, which  performs a specific task and is relat ively 
independent of the remaining code. An AADL subprogram 
translates into a routine. 

Subprogram calls. In AADL there are two types of 
subprogram calls: Call sequences and remote calls. The 
local call from a thread or from another subprogram within 
the same thread to a subprogram is made in AADL through 
the sub-clause call and is translated into direct calls from 
the thread start routine or from the routine respectively. 

The remote client-server call from a subprogram in a 
thread to another subprogram in another thread is made 
through the sub-clause call and the property 
Actual_Subprogram_Call. This remote call translates into a 
call from one routine to another. 

Subprogram parameters. A parameter represents call 
and return data values or references to data passed into and 
out of a subprogram, so it can be by value or by reference. 
In AADL the data values are in or out parameters and 
references are requires data access. Connections must be 
established between the ports of the thread (or the 
subprogram) and the ports of the subprogram. The data type 
of the AADL out parameter, if any, determines the data type 
of the routine; if there is no out parameter the type is void. 
Thus, the AADL parameters translate into parameters of the 
subprogram by value or reference. The translation permits 
data exchange among subprograms. 

AADL data are managed as follows: 
Data type. The AADL data abstraction represents static 

data and data types. Data component declarations are used 
to represent: application data types, the substructure of data 
types via data subcomponents within data implementation 
declarations and data instances. In general, a data type 
defines a set of values and the allowable operations on those 
values. Simple independent AADL data gives rise to a data 
type. These data types will be used later to define the type 
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of a global variable, a message, etc. The name of the data 
type can be inferred from the name of the AADL data. This 
translation takes into account the property 
Source_Data_Size. In the case of data types, it specifies the 
maximum size required to hold a value of an instance of the 
data type. 

Simple Data. A simple AADL data subcomponent of a 
thread or a process gives rise to a simple global variable. 
The name and type can be inferred from the name and the 
AADL data type. 

Composite Data. Composite AADL data are data that 
have one or more subprograms as features and/or one or 
more datum as subcomponents. These data generate a C++ 
class of data with its methods and/or member data. The 
name of the class can be inferred from the name of the 
AADL data. The names and types of the methods and 
members can be inferred from the AADL subprograms and 
data. The composite data subcomponents of a thread or a 
process give rise to a global variable whose type is that 
class. The name can be inferred from the name of the 
AADL data. 

The AADL behavioural annex improves the specification 
of a component’s behaviour. AADS parses the AADL 
model so the annex behaviour_specification sections are 
translated to an equivalent POSIX model. 

The behavioural annex describes a transition system (an 
extended automaton) using optional sections: 

State variables. The state variables section declares 
typed identifiers. Types are data classifiers o f the AADL 
model. AADS t ranslates these state variables declaring 
variables with their corresponding type in the C++ source 
code of the thread or subprogram itself. 

Initialization. The state variables must be init ialized in  
the initializat ion section using a sequence of assignments. 
AADS translates this initialization by init ializing the 
variables with their corresponding value where they were 
declared. 

States 
The states section declares automaton states which can be 

qualified as in itial, complete, return, urgent or composite. 
AADS uses this section to know which states have been 
defined. 

Transitions 
The transitions section defines system transitions from a 

source state to a destination state. The transition can be 
guarded with events or Boolean conditions. An action part 
can be attached to the transition. It can perform subprogram 
calls, message sending or assignments. AADS translates the 
transitions section into switch and case statements to transit 
from one state to another. It starts in the in itial state and 
moves to the next state when the guard of the transition is 
true. Thus the guard of the transition translated by AADS 
acts as a condition to execute the sentence/s of the state and 
to change the state. This sentence/s is the action of the 
transition translated by AADS. If there is no guard there is 
no condition to check. The guard can be an expression as 
simple as on i < 5, so AADS will translate it d irect ly. 

Depending on the content of the guard and the action of 
the transition, AADS t ranslates them into the corresponding 
sentences of source code: 

Sending /  receiving messages . Messages are sent / 
received through event or event data ports. If p is an input 
port: p? de-queues an event port variable, p?x de-queues a 
datum on an event data port in the variable x. If p is an 
output port: p! calls Raise_Event on an event port, p!d 
writes data d in the event data port and calls Raise_Event. 

In the first case the guard of a transition is p1?x (where 
p1 is an in event data port) and the action of that transition 
is p2!(x+1) (where p2 is an out event data port). AADS 
translates this case, checking whether a variable arrives at 
the POSIX message queue associated with port p1. Then the 
variable is  sent through the POSIX message queue 
associated with port p2, in this case after adding 1 to it . 

In the second case the guard of a transition is p1? (p1 is 
an in event port) and the action of that transition is p2! (p2 
is an out event port). AADS translates this case, checking 
whether the corresponding POSIX signal associated with 
port p1 has been received. Then the corresponding POSIX 
signal associated with port p2 is sent. 

Subprograms. A behaviour expressed by the annex can 
be attached to a subprogram implementation. The behaviour 
can refer to the subprogram parameters and to variables. 
The automaton specifying the subprogram implementation 
has one or more return states indicating the return to the 
caller. While the AADL control flows define the call 
sequences produced by a subprogram, the annex enables the 
expression of dependencies between the control flows and 
state variables or parameters. A subprogram specification 
can express other calls or notification of events. 

In the first case the guard of a transition is p1? (p1 is an 
in event port) and the action of that transition is subp! (subp 
is a subprogram). AADS t ranslates this case checking 
whether the corresponding POSIX signal associated with 
port p1 has been received. If the signal has been received 
then the corresponding previously defined subprogram is 
called. 

Parameters can be passed to called subprograms. The 
action of that transition could be subp!(5->x,2->y) where x 
and y are two in parameters of the subprogram subp. Then 
AADS translates it into a call to the subprogram with those 
two parameters as subp(5,2). 

Using the AADL behavioural annex, it is possible to 
indicate in the action of a transition that the out parameter 
of a subprogram is the in parameter modified in some way. 
It could be po!(pi+1), where po is the out parameter and pi 
the in parameter. AADS translates this case, creating the 
source code in the subprogram that sums one to the in 
parameter and assigns the result to the out parameter. 

In the last case the guard of a transition is on pi (pi is an 
in parameter of a subprogram) and the action of that 
transition is a call to a standard function such as std::cout!. 
To translate this transition AADS generates the C++ source 
code that checks whether the in parameter is true and, if it  is, 
calls the standard function cout. 
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Control structures. Control structures support 
conditional execution o f alternative act ions (if, else, end if), 
conditional repetition of actions (while), and applicat ion of 
actions over all elements of a data component array, port 
queue content, or integer range (for). The For structure 
represents an ordered iteration over all elements. Within  for 
structures the element can be referenced by 
element_variable_identifier, which acts as a local variab le 
with the name scope of for structure. 

In the case that the action of a transition contains a 
conditional structure of the type: if (logical value  
expression) behaviour_actions[else behaviour_actions] end 
if, AADS translates it producing the source code with the 
analogous if else structure in C++, adapting the differences 
between them. 

The same can be said about for and while structures of 
the type: for (element variable identifier in values) 
{behaviour_actions} and while (logical value expression) 
{behaviour_actions}. AADS translates them producing the 
source code with the analogous for and while structure in 
C++, adapting the differences between them. 

Arrays. To declare collections of data which are 
considered to be ordered the notion of mult iplicity is used. 
AADS translates multip licity into a C++ array of data. The 
type of the array is the same in both AADL and C++. 

The HW arch itecture is structured through the XML file  
generated by AADS. It is used as part of the configuration 
parameters of SCoPE and is divided into: HW_Platform, 
SW_Platform and Application. 

HW_Platform. Any AADL implementation of a 
processor, memory, bus or device must be specified  with its 
category and name in the HW_Components subsection of 
HW_Platform. The AADL property Assign_Byte_Time is 
used to set the frequency parameter in the XML file . For 
memories we use the properties Read_Time and 
Write_Time. These properties have their values in time 
units (ns, ms and so on) and must be transformed into MHz. 
To know the mem_size of a memory, both Word_Count and 
Word_Size AADL properties are required. Finally the 
mem_type of a memory is derived from Memory_Protocol 
in the AADL model. If the component is a processor, 
proc_type must be specified. 

The HW_Architecture and Computing_groups 
subsections of HW_Platform are next in the XML file. To 
know the start_addr of a memory we take the AADL 
property Base_Address. The component and name are 
inferred from the AADL model. HW components are 
grouped by buses as they are connected to them in AADL 
through the connections bus access and the features 
required bus access. 

SW_Platform. This section has two subsections: 
SW_Components and SW_Architecture. This section takes 
into account the buses that are defined to make the 
equivalent nodes. In this section the operating systems are 
specified. 

Application. This section has two subsections: 
Functionality and Allocation. Filling the Functionality 

section is straightforward from the AADL model using the 
property of a thread Activate_Entrypoint for the function 
and Source_Text  fo r the file. The name is the same as the 
one of the thread. For the Allocation section we need to 
know the property of a thread Actual_Processor_Binding, 
and find out which bus the processor is bound to and then 
find out which node that bus corresponds to. The AADL 
name of the thread is used for the name and the component. 

6. AADS-T 
AADS-T is a version of AADS that admits AADL 

models that include the AADL Behavioural Annex and 
generates a source code compatible with the Ravenscar 
Computational Model. 

The real-time behaviour specification of ASSERT 
models is based on the RCM, a model of concurrency for 
high-integrity systems that enables formal analysis of the 
temporal properties of a system using response-time 
analysis techniques. The model includes a static set of 
concurrent threads of execution, communicat ing by means 
of shared protected data with mutually exclusive read and 
write access, and a restricted form of condit ional 
synchronization. The model is simple enough to be 
implemented by a simple, s mall-size real-t ime kernel, thus 
easing the way to the eventual cert ification o f real-time 
systems based on it. 

Twelve p roperties must be fulfilled to be RCM-compliant; 
the source code generated by AADS-T obeys all of them. 
These properties are stated in an internal document of the 
project titled R1-4 Evaluation of Compliance with the 
ASSERT Process, written by J. A. de la Puente and J. 
Zamorano. 

Basic elements. There are two main elements in the 
RCM: Threads and protected objects (PO). A  thread is the 
basic unit of execution, which  can be executed concurrently 
with other threads on a single processor. POs are an 
abstraction of shared data, synchronization, and interrupt 
handling. 

There are a static number of threads and POs. Therefore, 
threads and POs can only be created at system init ialization 
time. 

RCM 1 A real-t ime system consists of: A static set of N 
threads, { }, i  1..N; and a static set of M POs, 

{ }, i  1..M. The set  may be empty (M = 0), 
in which case the system is said to have only independent 
threads. 

In the source code generated by AADS-T all the threads 
and POs are created calling pthread_create and as objects 
of the corresponding classes respectively at system 
initialization time. 

Properties of threads. A thread is a concurrent unit of 
execution with the following properties: 

RCM 2 Threads are non-terminating. They exh ibit an  
endless repetitive behaviour, alternating between the 
following states (see Figure 5): Suspended (a suspended 
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thread is not eligible for execution) and Ready (a ready task 
can be executed when the processor is allocated to it). 

 
Figure 5.  States of RCM threads 

RCM 3 Threads have a single activation point. An 
activation point is a  point in the executable code of a thread 
at which its state changes from Suspended to Ready. When 
activated, a thread becomes ready and then executes a piece 
of sequential code (thread activity), after which it becomes 
suspended awaiting the next activation. 

Threads of the source code generated by AADS-T use 
while(true) to be non-terminating. They are suspended after 
executing the sequential code in a clock_nanosleep and 
when sleeping time has passed they become ready at their 
single activation point. 

RCM 4 The activ ity of a thread is a  sequence of code 
with a bounded and known worst-case execution time 
(WCET). The W CET of thread  is . 

AADS-T utilizes the AADL property 
Compute_Execution_Time to know the WCET of a thread. 
The source code generated checks that this WCET is not 
exceeded. 

This property implies that a thread does not execute any 
operation that could result in its becoming suspended other 
than the suspension immediately before the activation point, 
and nether do the threads created by AADS-T. 

RCM 5 A thread can be activated only by one of the 
following two kinds of events. One is by a timing event 
which is issued periodically by the environment. In this case 
the thread is said to be periodic or time-driven with 

period . 
The other is a  synchronization event issued when the 

barrier of a synchronization PO is opened (see RCM 8 
below). In this case, the thread is said to be sporadic. 
The synchronization event must have a minimum 
inter-arrival t ime associated to it, i.e. a  minimum elapsed 
time interval between two consecutive occurrences of the 
event, . 

AADS-T uses the AADL properties Period and 
Device_Dispatch_Protocol to know the period and the type 
of a thread respectively. It  accepts only periodic and 
sporadic threads and not aperiodic or background threads. 
The difference between the codes generated is that a 
sporadic thread waits for an event from an event or 
eventdata port connection after invoking a synchronization 
operation in the activation point. In both cases 
clock_nanosleep waits a time . 

Properties of protected objects. A PO is an object 
which encapsulates a set of data and a set of associated 
operations (protected operations). The value of the data 
makes up the state of the object. The state can only be read 
or changed by invoking one of the operations of the PO. If 

 is a PO: .S denotes its state, .S S, where S is an 
appropriate data domain; .  denotes the -th 
operation of . Notice that a PO must have at least one 
operation; otherwise its state is inaccessible. The notation 

 will be used to denote that  invokes one or 
more operations of . Similarly, .  means that 

 calls the operation . . 
AADS-T generates an object of the corresponding class 

which is a PO in the source code for each AADL data, 
event and eventdata port connection. Classes generated by 
AADS-T have the appropriate data members to achieve the 
communicat ion of data and/or events between threads. Each 
class has a constructor and member functions read and write 
to initialize and access data members. 

POs have the following properties: 
RCM 6 Only one thread can be executing an operation of 

a given PO at any given time, i.e. protected operations are 
mutually exclusive. Consequently, if a  thread invokes a 
protected operation at a time when another thread is already 
executing an operation of the same object, it has to wait. 
When the protected operation that was being executed is 
completed, the wait ing thread is allowed to execute the 
operation it had invoked. Notice that a thread that is waiting 
to begin a protected operation is not considered to be 
suspended. In consequence, a thread activity can invoke 
protected operations without violating RCM 4. 

Each class produced by AADS-T defines a mutex that is 
locked when a member function is called and unlocked 
when it ends, ensuring compliance with mutual exclusion. 

RCM 7 All protected operations have a bounded and 
known WCET. The WCET of the protected operation .

 is . Again, this property implies that no operations 
that could result in a thread being suspended can be invoked 
from a protected operation. 

AADS-T uses the ad hoc defined AADL properties 
PO_read_WCET and PO_write_WCET fo r each port 
connection to know the WCET of each member function. 
The source code generated checks if these WCETs are 
exceeded. Moreover, no member function calls any 
suspending operation. 

RCM 8 A PO can have at most one synchronization 
operation that has an associated barrier, which is a Boolean 
variable that is part of the object state. When the value of 
the barrier is true, the barrier is said to be open, and 
otherwise it is said to be closed. 

The behaviour associated with synchronized operations is 
as follows: When a thread invokes a synchronization 
operation, if the barrier is open the execution proceeds as 
with an  ordinary  protected operation; but if the barrier is 
closed, the thread is suspended. At most one thread can be 

i t i C

i t

i T

i t

i T

i T

q q q Î
q kP k

q

qt ® t
q qt ® P

t q P

iq

kP kiC ,



 American Journal of Computer Architecture 2012, 1(2): 21-36 31 
 

 

suspended at a barrier at any given time. A thread that is 
suspended at a barrier is resumed whenever the barrier 
becomes true (as the result of the execution of another 
protected operation by some other thread). 

Invoking a synchronization operation is a potentially  
suspending operation, and thus cannot be done within  a 
thread activity; this can only be used to implement the 
activation events of sporadic threads. 

In the source code produced by AADS-T only  the objects 
corresponding to event and eventdata port connections have 
a synchronization member function because a sporadic 
thread is dispatched by an event as stated above. Only 
sporadic threads invoke the synchronization. The barrier is 
initialized as false in the constructor, then set to true in the 
write member function, then checked to see whether it  is 
false in the synchronization to suspend the thread on a 
nanosleep, and finally set to false after resuming it. 

Scheduling. The RCM is associated with an  instance of 
the fixed-priority pre-emptive scheduling (FPPS) method, 
together with the immediate ceiling p riority inheritance 
protocol (ICPP). The scheduling model is defined by the 
following properties: 

RCM 9 Each thread  has a basic priority, P
, where  is the set of the integer numbers. The 

basic priority of a thread is fixed, i.e. it is never changed. 
AADS-T uses the ad hoc AADL property Priority to 

create a thread at system initialization time with 
sched_priority at that priority, which is never changed. 

RCM 10 Each PO  has a ceiling priority  which  
is the maximum of the basic priorit ies of all the threads 
invoking any of its operations: =max . As 
basic priorities of all threads are fixed, so too are the ceiling 
priorities of all POs. 

RCM 11 At every instant of time, each thread has an 
active prio rity. The act ive priority of a thread  is the 
maximum of the basic priority of the thread and the ceiling 
priority of all POs that contain an operation that is currently 
being executed by the thread. Therefore, whenever a thread 
invokes a protected operation, it immediately inherits the 
ceiling prio rity of the enclosing PO. 

In the source code generated by AADS-T the function 
pthread_mutexattr_setprotocol is used with the value 
PTHREAD_PRIO_PROTECT and the function 
pthread_mutexattr_setprioceiling with the maximum of the 
priorities of the two threads communicating through a port 
connection. This is done when initializing the mutex of the 
object corresponding to that connection at system 
initialization time guaranteeing the fulfillment of RCM 10 
and RCM 11. 

RCM 12 Ready threads are conceptually grouped into 
ready queues. There is a ready queue for each priority level 
in P. Threads are added to and removed from priority 
queues according to the following rules: When a suspended 
thread becomes ready, it is added at the tail of the priority 

queue for its active priority. When the processor is idle, the 
thread which is at the head of the non-empty ready queue 
with the highest priority is dispatched for execution and 
removed from the queue. Whenever there is a non-empty 
ready queue with a higher priority than the priority of the 
currently running thread, the thread is pre-empted from the 
processor and it is added at the head of the ready queue for 
its active priority. Not ice that according to the prev ious rule, 
the thread at the head of the ready queue that caused the 
pre-emption is dispatched for execution immediately 
afterwards. 

AADS-T admits only SCHED_FIFO for the ad hoc 
AADL property POSIX_Scheduling_Policy of a thread, to 
set so sched_policy in the source code. 

The above model specifies a concurrent system with a 
predictable, analyzable temporal behaviour. Since the 
execution time of threads is bounded (RCM 4, RCM 7) and 
the scheduling method is FPPS with ICPP, well-known 
response-time analysis techniques can be applied to 
statically guarantee that the system satisfies its temporal 
requirements. 

7. Experimental Results 
7.1. Case Study 

The proposed method implemented in AADS-T was 
tested assisting in the HW/SW part itioning of the case study 
shown in Figure 6. It is a space application of digital image 
processing that consists of different components: HW 
Controller, Image Processing, Image Filter, Control, 
Start-up, Housekeeping, Monitoring, Image Processing 
Management, Event Generat ion, Connection test and Stub 
Simulating Ground. HW Controller is in charge of receiving 
images (bitmap  images) from the Camera Simulator as well 
as sending the filtered images back to Ground. Image 
Processing receives the image from HW Controller pixel by 
pixel, including the padding when it is needed, forwarding 
them to Image Filter to process them. Image Processing also 
receives the pixels already filtered  by Image Filter which 
are subsequently sent to the HW Controller component. 
Image Filter is in charge of filtering the pixels received 
according to the filter selected. Control manages the Image 
Application Software based on OBSW commands in order 
to store image statistics, to configure image filtering 
function and to control the image processing status. Start-up 
simulates the initialization routine and starts the next 
OBSW functionalit ies. Housekeeping periodically reports 
the number of images correctly filtered. Monitoring checks 
the status of the Image Processing Application Software and 
if the status is set to erroneous, an event is sent to Stub 
Simulating Ground through Event Generation. Image 
Processing Management selects the filter to be applied and 
starts/stops the application. Event Generation simulates the 
OBSW event reporting service to inform ground about all 
asynchronous events occurring on-board. Connection test 
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lets operators test the OBSW application presence and state. 
Stub Simulating  Ground requests the OBSW to perform the 
alive-test by sending the corresponding telecommand. 

Figure 7 is the AADL graphical notation of the Case 
study with the memories (two  DRAMs, one fo r the FPGA 
and another for the LEON2), processors (FPGA and 
LEON2), buses (RS232, FPGA memory bus, and LEON2 

memory bus), threads, event ports and eventdata ports 
generated with OSATE v1.5.8. 

AADL provides many benefits for HW/SW co-design. It 
contains constructs for modeling both HW and SW 
components. This language supports early and repeated 
analyses of system architecture with respect to 
performance-critical properties through an extendable 
notation, a tool framework and precisely defined semantics. 

 
Figure 6.  Case study functional description 

 
Figure 7.  AADL graphical notation of the Case study 
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AADS ext racts from the AADL models the necessary 
informat ion for the SCoPE tool to perform a simulat ion at 
system level. The simulation results will guide the system 
designer through the selection of the most adequate 
partition solution. 

7.2. LEON2 Modelling in SCoPE 

SCoPE has been modified to include the LEON2 
processor at 50 Mhz, 15.4 MIPS and 30.64 nJ of energy 
consumed per instruction in its processors.xml 
configuration file . It was necessary to specify the data and 
instruction cache sizes too. A size of 8192, a size o f line of 8 
and an associativity of 1, considering an instruction size of 
4 (32 bits), was considered for both. Another configuration 
file  of SCoPE, meminst.xml, was modified to include the 
operation codes of the LEON2. 

The GNU cross-compiler for LEON2 used is the GNAT 
for the LEON 2.1.0 C compiler so the source code produced 
by AADS-T has to comply with certain characteristics. The 
options POSIX_THREADS, POSIX_THREAD_PRIORITY_
SCHEDULING, POSIX_THREAD_PRIO_PROTECT, LEO
N_2 and POSIX_TIMERS have to be activated. The 
function clock_nanosleep must be explicitly declared. 

7.3. Architectural Design 

The partitioning process is performed fo llowing a SW 
centric approach. Firstly, it is assumed that all system 
functions are SW components. If this assumption is not 
fulfilled  due to the vio lation of the design criteria, new 
partitions are proposed in order to accommodate system 
functions to other platform resources. In this case, different 
allocations of system functions to platform resources are 
possible. The decision about which parts are mapped to HW 
is based on the analysis of which implementation best meets 
the design criteria (derived from the requirement  analysis 
results) in terms of performance and functional behavior. 
The informat ion about how a component will be 
implemented (HW or SW) is added as an AADL property, 
Actual_Processor_Binding. The part itioning is generated by 
the ASSERT Model Transformat ion (AMT) tool developed 
by GMV. 

In the context of a SW centric approach, initially all 
system functions will be mapped onto the same  
processing node, whose implementation is a LEON2 
microprocessor. We considered a situation where it  is 
necessary to re-allocate system functions from SW to HW 
(i.e . mapping from processing elements whose 
technological implementation is a microprocessor to other 
processing elements such as DSP, PLD, FPGA, etc): The 
system performance might indicate that the CPU exceeds 
the maximum performance limits imposed in the 
requirements. 

HW/SW models were generated in AADL by AMT and 
in SystemC with AADS-T/SCoPE, to perform the HW/SW 
partitioning. The system-level performance tool 
(AADS-T/SCoPE) was used to analyze the system 

performance and non-functional requirements such as use 
of CPU, timing  or energy consumption for a g iven HW/SW 
partition. After system performance analysis, some HW/SW 
partitions were proposed and evaluated.  

The files produced by AADS-T were compiled with 
SCoPE to simulate the model and the results obtained were 
used to compare the different partitions. The simulation 
executed the source code of the threads and the protected 
objects enabled communicat ion among the threads. 

In the following table we can see the comparison 
between the sixteen magnitudes evaluated by SCoPE in the 
average of the simulations carried out with fifty-six 
evaluated partitions, and the one which allocates the 
components Control and Image_processing to HW. In 
nearly all the magnitudes the selected partition obtains the 
best performance results. 

Table 1.  Comparison between simulations' metrics of the selected 
partition and the average of the others 

 Control & 
I P i   

 

Average of other 
i i  
 Total User time 0.424528 s 2.2550830 s 

Total Kernel 
 

0.00550586 s 0.0314650 s 
Number of 

h d i h  
20172 34717 

Running time 382438640 ns 2026357221 ns 
Use of CPU 0.382439 % 2.0263575 % 
Instructions 

d 
6016438 34230189 

Instruction cache 
i  

849919 4646324 
Core Energy 1.84344e+08 nJ 1.04881E+09 nJ 
Core Power 1.84344 mW 10.48813 mW 

Instruction cache 
 

7.97346E+08 nJ 4.35719E+09 nJ 
Instruction cache 

 
7.97346 mW 44.20486 mW 

Bus access time 47595464 ns 260191004 ns 
Idle time 99559965896 ns 97703658860 ns 

Number of 
i  

12550 11119 
Instruction miss 

 
10116 51850 

Bus Load 27197408 bytes 148680573 bytes 

In the following figure we can see one magnitude (Use of 
CPU from a total of sixteen magnitudes evaluated by 
SCoPE) of the simulat ions carried out with SCoPE with the 
fifty-seven evaluated partitions. Among all the partit ions, 
one obtains the best performance results and so it is selected; 
the one that allocates to HW the components Control and 
Image Processing because they consume most of the 
resources. In the figure first we can see the partitions that 
allocate one component to HW, then we can see the 
partitions that allocate two or more components to HW. 
Allocating only one component to HW was not enough to 
fulfil the init ial constraint as we will see below, so more 
than one component had to be allocated to HW. However 
we had to take into account that allocating to HW  is more 
expensive than allocating to SW so we could not allocate all 
the components to HW. We had to maintain a trade-off 
between the cost of allocating all the components to HW 
and the use of CPU caused by allocating the components to 
SW. 
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Figure 8.  Use of CPU (%) of the partit ions 

In order to check how the perfo rmance analysis results 
vary depending on the WCET, the AADL model was 
manually modified setting very strict WCET (close to the 
deadlines). In this case study the deadlines of the threads 
were 20 % of the periods. So the WCET were 20 % of the 
values from the interval o f 40 ms to 100 s which were the 

minimum and the maximum periods respectively for the 
different threads. Regarding only the Use of CPU, the init ial 
partition which considers that all components were 
allocated to SW consumed 1.90599 % with the initial 
WCET values. However with the WCET close to the 
deadlines, the Use of CPU had a significant increase up to 
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97.6006 %. The selected partition that allocates the 
components Control and Image Processing to HW, 
consumed 0.382439 % with the in itial W CET values. With 
the WCET close to the deadlines, the Use of CPU was only 
14.32543 %. As the components which consume most of 
the resources had been moved to HW, the processor 
provided a completely different result. When all 
components were mapped to SW, the usage of CPU was 
97.6 %. As CPU load requires a workload margin, this 
scheme is not valid. Therefore, partitioning is required. 

The in itial constrain imposed on the system was a Use of 
CPU less than 75 % in the worst case. This worst case is 
when the WCET of the threads were close to the deadlines. 
In this case the only HW/SW partition that complies with 
the initial constraint is selected, namely the one that 
allocates the components Control and Image Processing to 
HW. 

Allocating the components Control and Image Processing 
to HW leads to a significant reduction in use of CPU due to 
the improvement in  the communications between the two 
components. This shows that performance analysis enables 
the discovery of situations that would be difficult to expose 
without such a powerful tool. 

8. Conclusions 
This document describes the simulation of AADL 

compatible with RCM using the AADS simulation tool. 
AADS supports the refinement of AADL models, including 
the Behavioural Annex, through performance analysis done 
with SCoPE, after translating those models. 

The generation of the RCM-compliant SystemC model 
from the AADL specification is not straightforward. 
Nevertheless, the SystemC model generated by AADS is 
able to capture the fundamental dynamic p roperties of the 
initial system specification. In this way, AADS supports 
design space exploration  by refinement o f the AADL 
functionality and its implementation on an optimized 
platform. 

The system-level performance tool (AADS-T/SCoPE) is 
used to analyze the system performance and non-functional 
requirements such as use of CPU, timing o r energy 
consumption for a given HW/SW partit ion. AADS-T aids 
the performance of the HW/SW partitioning of a system by 
analyzing HW/SW models. 

Future work includes incorporation of AADS features 
that appear in V2.0 of the AADL standard. 
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