
American Journal of Computer Architecture 2012, 1(2): 21-36
DOI: 10.5923/j.ajca.20120102.02

Architectural Optimization & Design of Embedded
Systems based on AADL Performance Analysis

Roberto Varona-Gómez1,*, Eugenio Villar1, Ana Isabel Rodríguez2, Francisco Ferrero2, Elena Alaña2

1University of Cantabria, 39005, Santander, Spain
2GMV Aerospace and Defence S.A.U., 28760, Tres Cantos, Spain

Abstract Due to the increasing complexity o f embedded systems, new design methodologies have to be adopted, since
traditional techniques are no longer efficient. Model-based engineering enables the designer to confront these concerns
using the architecture description of the system as the main axis during the design cycle. Defining the architecture of the
system before its implementation enables the analysis of constraints imposed on the system from the beginning of the
design cycle until the final implementation. AADL has been proposed for designing and analyzing SW and HW
architectures for real-t ime mission-critical embedded systems. Although the Behavioural Annex improves its simulation
semantics, AADL is a language for analyzing architectures and not for simulating them. AADS is an AADL simulation tool
that supports the performance analysis of the AADL specification throughout the refinement process from the init ial system
architecture until the complete, detailed application and execution platform are developed. In this way, AADS enables the
verification of the in itial timing constraints during the complete design process. AADS supports the performance analysis
of the AADL specification, enriched with behaviour specifications. AADS-T is Ravenscar Computational Model (RCM)
compliant as part of the TASTE toolset and has been used to assist in co-design.

Keywords AADL, Perfo rmance Analysis, Simulat ion, Ravenscar Computational Mode, HW/SW Co-Design, AADS,
POSIX, SCoPE

1. Introduction

Nowadays, embedded systems must support the
deployment of heterogeneous applications within
heterogeneous architectures. In most cases, the execution
platform is not fixed and must be designed and optimized in
conjunction with the application SW. Therefore, early
estimation of the system performance on the executive
platform, under real-time constraints, is desirable. This
analysis requires a unified model of the application and the
architecture, and effective means to define the mapping of
application functions onto architecture resources and
services.

Architecture Analysis and Design Language (AADL)
[1-3] p rov ides such a modelling framework. It was
developed as a standard of the Society of Automot ive
Engineers (SAE) to enable the descript ion of task and
communicat ion arch itectu res fo r real-t ime, embedded,
fault-tolerant, secure, safety-crit ical, SW-intensive systems.
However, AADL does not support the express ion of
behaviour in detail. At most, it is possible to specify the

* Corresponding author:
roberto@teisa.unican.es (Roberto Varona-Gómez)
Published online at http://journal.sapub.org/ajca
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

non-determin istic behaviour of a thread as a set of
subprogram calls, and application behaviour relies main ly
on source code written in source languages. The
behavioural annex[4] has introduced high-level composition
concepts and a richer state representation than the standard
AADL mode automata[48]. The behaviour is specified
using extended automata that may trigger a transition by an
event, a Boolean expression, etc. A transition may trigger
one or more actions such as assignment of values to
variables, sending data, events, etc. The annex main ly
declares states and transitions with guards and an action
part. Guards and actions can access ports and data
subcomponents declared in the AADL component to which
they are attached.

The Automated proof-based System and Software
Engineering for Real-Time systems (ASSERT) project[5]
resulted in a new development process for distributed
embedded real-time software, and a set of methods and
tools supporting the process. The process is based on
separation of concerns, automatic code generation and
property preservation. An important feature of the ASSERT
process is the adherence of the concurrency model to the
RCM[6], a restricted tasking model that enables static
response time analysis of real-time systems. The model
restricts the concurrency model to a static set of periodic
and sporadic threads communicated by means of a static set
of shared data objects, protected by mutual exclusion

22 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

synchronization. There are two variants of the ASSERT
software process: Hard Real-Time Unified Modeling
Language (HRT-UML) and AADL tracks. The ASSERT
Set of Tools fo r Engineering (TASTE)[7] toolset is an open
source toolset supporting the latter.

The LEON2[8] processor was designed by the European
Space Agency (ESA) as a 32-bit synthesizable processor
core based on the SPARC V8 arch itecture. The core is
highly configurable, and particularly suitable for
System-on-Chip (SOC) designs.

There is a commonly recognized need for new
development frameworks that enable designers to perform
efficient exp loration of design alternatives and analyze
system properties throughout the design cycle. Some system
properties can be obtained by static analysis. Many other
properties can only be obtained through simulation. In any
case, system simulation is needed for performance analysis
under real execution condit ions. System simulation and
performance analysis can validate the correct dimensioning
of the system and detect locks, missed deadlines and other
potential problems raised by the complex interaction among
components that can be found in a real system. The earlier
all these problems are detected, the lower the cost of
correcting them[9].

Evolutionary prototyping is now becoming a
well-accepted development approach in Model-Driven
Engineering (MDE)[10]. The design flow is based on a
central model that is refined unless it is satisfactory.
Programs can be generated from this model and constitute
intermediate versions of the product. The last refined model
corresponds to the final system. A prototyping-based design
process is beneficial for the earliest possible verificat ion of
the impact of deployment decisions, or the use of a
particular HW/SW component in the system.

This document deals with AADS[12] an AADL
simulation and performance analysis framework, including
a behavioural annex compatible with the RCM. The tool
can support prototype-based design allowing the functional
and non-functional (execution times, power consumption,
etc.) verification of the system while it is being refined until
the final implementation. Based on SystemC, the
framework supports the seamless integration of HW
component and an easy optimization of the executive
platform. SystemC has become a relevant standard language
for modeling and simulat ion of HW/SW embedded
systems[11].

HW/SW partit ioning is a phase of co-design in which the
partition of the specification into two parts is achieved. One
part will be implemented in HW and the other part will be
implemented in SW. HW/SW partition ing is the process of
deciding, fo r each subsystem, whether the required
functionality is more advantageously implemented in HW
or SW to achieve a part ition that will give us the required
performance with in the overall system requirements (in
size, weight, power, cost, etc.). Partit ioning into HW and
SW affects overall system cost and performance[45]. There
are two part itioning approaches: Starting first with all the

functionality in SW and moving parts, which are
time-crit ical and cannot be allocated to SW, into HW (this
is known as SW centric part itioning) o r starting first with all
the functionality in HW and moving parts into the SW
implementation (this is known as HW centric partitioning).
AADS extracts the necessary information for the SCoPE
tool to perform a simulat ion at system level from the AADL
models. The simulat ion and performance analysis results
will guide the system designer through the selection of the
most adequate partition solution (see Figure 1).

The contents of the paper are as follows. The following
two sections make a summary of AADL and SCoPE
respectively. The next section rev iews the related work. In
the next two sections, AADS and AADS-T are described,
with a brief description about performing the simulat ion on
a LEON2 processor. Next , we exp lain the Case Study: How
AADS-T has been used in the ESTEC 22810/09/NL/JK
HW-SW CODESIGN project[46] to assist in HW/SW
partitioning. Then we state the conclusions and finally, we
include acknowledgements and referenced documents.

Figure 1. AADS and SCoPE in the HW/SW co-design process

2. AADL
The SAE AADL standard provides formal modelling

concepts for the description and analysis of application
system architecture in terms of the distinct components and
their interactions. The AADL includes software, hardware,

 American Journal of Computer Architecture 2012, 1(2): 21-36 23

and system component abstractions to specify and analyze
real-t ime embedded systems, complex systems of systems,
and specialized performance capability systems, and to map
software onto computational hardware elements. The
AADL is especially effective for model-based analysis and
specification of complex real-time embedded systems.

In AADL, a component is characterized by its identity (a
unique name and runtime essence), possible interfaces with
other components, distinguishing properties (critical
characteristics of a component within its architectural
context), and subcomponents and their interactions. In
addition to interfaces and internal structural elements, other
abstractions can be defined for a component and system
architecture. For example, abstract flows of in formation or
control can be identified, associated with specific
components and interconnections, and analyzed. These
additional elements can be included through core AADL
language capabilit ies (e.g. defining new component
properties) or the specification of a supplemental annex
language.

The component abstractions of the AADL are separated
into three categories: Applicat ion software, execution
platform (hardware) and composite. Application software
can be a thread (act ive component that can execute
concurrently and be organized into thread groups), thread
group (component abstraction for logically organizing
thread, data, and thread group components within a
process), process (protected address space whose
boundaries are enforced at runtime), data (data types and
static data in source text) and subprogram (concepts such as
call-return and calls-on methods, modelled using a
subprogram component that represents a callable piece of
source code). Execution p latform (hardware) can be a
processor (schedules and executes threads), memory (stores
code and data), device (represents sensors, actuators, or
other components that interface with the external
environment) and bus (interconnects processors, memory,
and devices). Composite can be a system (design elements
that enable the integration of other components into distinct
units within the architecture). System components are
composites that can consist of other systems as well as of
software or hardware components.

The AADL standard includes runtime semantics for
mechanis ms of exchange and control of data, including
message passing, event passing, synchronized access to
shared components, thread scheduling protocols, timing
requirements and remote procedure calls. In addit ion,
dynamic reconfiguration of runtime arch itectures can be
specified using operational modes and mode transitions.

The AADL can be used to model and analyze systems
already in use and design and integrate new systems. The
AADL can be used in the analysis of partially defined
architectural patterns (with limited architectural detail) as
well as in fu ll-scale analysis of a complete system model
extracted from the source code (with completely quantified
system property values).

AADL supports the early prediction and analysis of

critical system qualit ies, such as performance,
schedulability, and reliab ility. For example, in specifying
and analyzing schedulability, AADL-supported thread
components include the pre-declared execution property
options of periodic, aperiodic (event-driven), background
(dispatched once and executed until complet ion), and
sporadic (paced by an upper rate bound) events. These
thread characteristics are defined as part of the thread
declaration and can be readily analyzed.

Within the core language, property sets can be declared
that include new properties for components and other
modelling elements (e.g. ports and connections). By
utilizing the extension capabilities of the language,
additional models and properties can also be included. For
example, a reliability annex can be used that defines
reliability models and properties of components facilitating
a Markov or fault tree analysis of the arch itecture. This
analysis would assess architecture’s compliance with
specific reliability requirements.

Collectively, these AADL propert ies and extensions can
be used to incorporate new and focused analyses at the
architectural design level. These analyses facilitate trade off
assessments among alternative design options early in a
development or upgrade process.

Figure 2. AADL graphical notation

AADL components interact exclusively through defined
interfaces. A component interface consists of directional
flow through data ports for un-queued state data, event data
ports for queued message data, event ports for
asynchronous events, synchronous subprogram calls and
explicit access to data components.

Interactions among components are specified explicitly.
For example, data communication among components is
specified through connection declarations. These can be
mid-frame (immediate) communication o r phase-delayed
(delayed) communication. The semantics of these
connections assures deterministic transfer of data streams.
Deterministic transfer means that a thread always receives
data with the same time delay; if the receiv ing thread is
over- or under-sampling the data stream, it always does so
at a constant rate.

Application components have properties that specify
timing requirements such as period, worst-case execution

24 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

time, deadlines, space requirements, arrival rates, and
characteristics of data and event streams. In addition,
properties identify source (code and data that implement the
application component being modelled in the AADL) and
constraints (for binding threads to processors, source code,
and data onto memory). The constraints can limit binding to
specific processor or memory types (e.g., to a processor
with DSP support) as well as prevent co-location of
application components to support fault tolerance.

3. SCoPE
The SCoPE[24] tool provides the technology to perform

MPSoC HW/SW co-simulation with Network on Chip
(NoC). It enables the exploration of the design space to
choose the right processors and HW/SW partit ion for
embedded systems. It also allows the simulation of different
nodes connected through a NoC in order to analyse the
behaviour of large systems. Commonly, these tools are
based on slow ISSs. The differentiat ing feature o f this
technique is that SCoPE obtains the performance
estimations at source code level. This level o f abstraction
enables the simulat ion time to be reduced significantly
while maintaining good accuracy.

SCoPE is a C++ library that without modification
extends standard language SystemC to perform
co-simulation. On the one hand, it simulates C/C++
software code based on two different operating system
interfaces (POSIX and MicroC/OS). On the other hand, it
co-simulates these pieces of code with hardware described
in SystemC.

An engineer with this tool can simulate specific software
over a custom platform and obtain estimat ions of: number
of thread and context switches, running time and use of
CPU, instructions executed and cache misses, energy and
power (of core and instruction cache).

This library models the detailed behaviour of the RTOS
including concurrency (among tasks in the same processor),
parallelism (among tasks in different processors),
scheduling and synchronization. Although the SystemC
kernel executes processes following a non pre-emptive
scheduling policy without priorities, SCoPE models
pre-emption under different scheduling policies based on
priorities.

SCoPE integrates a POSIX-based API that enables the
execution of a large number of software applications that
follows this standard. POSIX is the main operating system
interface nowadays, but it is not the only one. Thus, SCoPE
has been improved to support extensions for other types of
interfaces. An example is the integration with the
MicroC/OS interface. This is a demonstration of the
scalability of the tool, in terms of software support.

The design of embedded systems requires not only
software handling but also hardware communication. For
this reason SCoPE includes a set of more than a hundred
driver facilities to implement this communicat ion. One of

the most extensively used operating systems in this sector is
Linux, so these driver facilit ies are based on the Linux
kernel version 2.6. Furthermore, SCoPE is able to simulate
the loading of kernel modules and the handling of hardware
interruptions and their corresponding scheduling.

SystemC is the language used for the modelling of the
hardware platform due to the easiness of implementation
(C++ extension) and its simulation kernel. For the purpose
of simulating different platforms SCoPE incorporates some
generic hardware modules: A bus based on TLM2 used for
the communicat ion with peripherals and the trans mission of
hardware interruptions, a DMA for copying large amounts
of data, simple memory fo r the simulation of cache and
DMA traffic, a hardware interface for simple custom
hardware connection, a network interface that works as a
net card for the NoC and an external network simulator to
implement the NoC connected to SCoPE.

System simulation comprises Multi-computation and
Modular structure. Multi-computation: One of the
advantages of this tool is the possibility of interconnection
among independent nodes and simulating the interaction
among them. Modular structure: Each RTOS component is
an independent object that does not share any data with the
others. Furthermore, each process is isolated from the rest
of the system, thus a process with global variables can be
replicated in many nodes without data collision problems.
That is, each process has a separate memory space.

Figure 3. Block diagram of SCoPE

4. Related Work
Simulation and performance analysis of AADL models

represent an important stage in MDE. Different approaches
address this issue.

ADeS is one of the most powerful simulation tools yet it
requires the environment in which the system evolves[15]
to be taken into account.

Another way to tackle the problem is translating AADL
to another language. Cheddar[16] is a set of Ada packages
that enables the design of a new scheduler and direct
interpretation using the Cheddar environment. The Furness
toolset[17] translates models into the real-t ime process
algebra ACSR to explore the state space looking for

 American Journal of Computer Architecture 2012, 1(2): 21-36 25

violations of timing requirements. M. Yassin Chkouri et al.
propose in[18] a translation from AADL models to BIP
models to enable simulation. Ocarina[10] is a tool suite that
uses code generation facilities in Ada and C to analyze the
AADL model. ADAPT[19] translates an AADL
architectural model into a dependability evaluation model in
the form of a Generalized Stochastic Petri Net (GSPN). T.
Abdoul et al.[20] p roduce an IF timed automata model
which is the entry point of the validation process,
processing it with the IFx framework. E. Jahier et al.[21]
translate the architecture into a non-deterministic
synchronous model to which the SW components in Scade
or Lustre can be integrated, to simulate it with Lurette.
Annex D of the AADL standard gives guidelines to
translate AADL SW components into source code (C, Ada).

S. Gui et al.[22] use the linear hybrid automata in the
design phase statically to abstract the semantics of the SW
components of AADL exp licitly.

M. Brun et al.[23] translate to OIL configuration code
and to C code which is compatible with the OSEK/VDX
RTOS.

Several authors have considered the behavioural annex in
their research on AADL. Some of their papers were written
in the in itial stage of the behavioural annex so they were
intended to evaluate, promote and disseminate it. P. Dissaux
et al.[29] present a proposal for a behavioural annex to the
AADL standard. They explain how to implement the
behavioural annex with the Stood tool, a graphical AADL
editor that can import and export AADL textual
specifications. R. Bed in et al.[30] evaluate the behavioural
annex through a flight software design in the Arch iDyn
project. This requires new synchronization primit ives for
AADL runtime and support using edition and analysis tools
for the behavioural annex. J. P. Bodeveix et al.[31] propose
an AADL behavioural annex and a technique to perform
compositional real-t ime verification of AADL models
through the use of a method which translates environmental
constraints into behaviour.

Other papers, such as the latter one, include the
behavioural annex in their verification process of AADL
models. B. Berthomieu et al. describe in[32] a formal
verification tool chain for AADL with its behavioural annex
available in the Topcased environment. They translate the
AADL model to Fiacre and verify the behaviour with a
Time Petri Net Analyzer (Tina).

C. Ponsard et al. exp lore in[33] the interplay of
requirements and architecture in a model-based perspective
by defining a mapping and a constructive process taking
into account specifics of embedded systems, especially the
importance of non functional requirements. To generate the
behavioural part of a system they first generate a fin ite state
mach ine and then an AADL mode-transition.

A way to approach AADL and its behavioural annex is
translation to another language. To allow simulation M.
Yassin Chkouri et al. propose in[34] a translation from
AADL models to BIP models. They take into account
behaviour specifications allowing state variables,

initialization, states and transitions sections to be defined
and translating them into BIP. DUALLY[35] is an
automated framework that allows arch itectural language
interoperability through automated model transformation
techniques. I. Malavolta et al. analyze the feasibility of
integrating AADL and OSATE in DUALLY. They map
AADL behavioural annex sections of states, composite
states and transitions.

Several authors have considered ASSERT and the RCM
in their research. Some of their papers deal with the
ASSERT Virtual Machine (VM), the execution platform on
which ASSERT applications run, based on the RCM. J. A.
de la Puente et al.[36] and J. Zamorano et al.[37] are good
examples of this.

M. Bordin et al.[38] propose some guidelines to generate
RCM-compliant Ada code from HRT-UML. S. Mazzini et
al.[39] exp lain a MDE methodology for the development of
high-integrity real-time systems. However using UML does
not enable a low-level description of the system. Moreover,
the different views of the system use different formalis ms,
so one must modify all v iews on each change of the system
to get a coherent model, hindering rapid prototyping.

J. Kwon et al.[40] propose Ravenscar-Java, a
high-integrity profile for real-t ime Java. However we think
that Java is not a good high-integrity programming
language due to its object-oriented programming features,
its automatic garbage collection, and the proposed
limitat ions to the extension of real-time multi-thread ing that
cause confusion.

Ocarina[10] is a tool suite that uses code generation
facilit ies in Ada and C to analyze AADL models. The code
generated is compatible with the RCM.

In[50] M.B. Abdelhalim, S.E.-D. Habib develop a new
high-level hardware/software partitioning methodology. In[51]
K. Lampka et al. present a compositional and hybrid
approach for the performance analysis of d istributed
real-t ime systems.

After analyzing the related work, it appears that no
approach uses SystemC, which is a recognized standard for
modelling HW/SW platforms, with its great potential for
integration of processors, buses, memories and specific
platform HW. The aforementioned solutions cannot model
the HW platform so they do not permit HW/SW co-design.
Apart from[23] none of the approaches models AADL over
a RTOS. Our solution makes HW/SW co-design easier
because of the use of SystemC.

SCoPE is a C++ library that extends standard language
SystemC[25] without modifying it. It simulates C/C++ SW
code based on two different operating system interfaces
(POSIX[26-27] and MicroC/OS). Moreover, it co-simulates
these pieces of code with HW described in SystemC.
SCoPE generates a file with this SystemC description of the
model. SCoPE has proven to be an efficient tool for design
space exploration[49].

AADS supports AADL simulat ion in SystemC, thus
allowing the modelling of the HW platfo rm and permitting
HW/SW co-design. The AADL model is based on POSIX,

26 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

so it supports many different RTOS.
In previous work[42-44] we have talked about AADS,

nevertheless, in this paper we show the complete
methodology with a complex industrial case study.

5. AADS
AADS is an AADL simulation tool written in Java,

which was developed as a plug-in[13] of Eclipse[14].
AADS enables the modelling of a subset of AADL for
purposes of implementation and simulat ion. The starting
point of the simulator is a functional AADL specification
without detailed code. For each component, the
corresponding timing constraints are defined. Th is init ial
AADL specificat ion supports the verification of the g lobal
performance constraints of the system based on the specific
timing constraints of the different components. The AADL
model is parsed using AADS and a model suitable for
simulation with SCoPE is produced, in order to check
whether the AADL constraints are fulfilled. As the design
process advances and, on the one hand, the actual
functionality is attached to the SW components using the
corresponding source code and, on the other, the
functionality is mapped onto specific platform resources, a
more accurate performance estimat ion is achieved. These
refined properties will be added to the AADL model and a
new model is generated by AADS. By comparing the init ial
timing constraints with these refined, t iming estimat ions, it
is possible to verify the non functional correctness of the
design process at any refinement step.

AADL enables the specificat ion of both the architecture
and functionality of an embedded real-time system. AADS
translates both to SystemC (see Figure 4). It parses the
AADL model so the functionality is translated to an
equivalent POSIX model and the architecture is represented
in XML[28]. The equivalent POSIX model and the
architecture can be implemented easily as an embedded
system.

The functionality of an embedded real-time system is
translated as follows:

Threads. An AADL thread is a concurrent schedulable
unit of sequential execution through source code and
multip le threads represent concurrent execution paths. A
POSIX thread is an execution thread in a program and an
application can have mult iple execution threads running
concurrently. An AADL thread translates seamlessly into a
POSIX thread.

In POSIX, a thread attribute object must be defined and
initialized with the default value for all of the indiv idual
attributes used by a given implementation. AADS
determines how the other scheduling attributes of the
created thread are to be set, that is that the scheduling policy
and associated attributes are to be set to the corresponding
values. Thus AADS can now call the POSIX function to
create a new thread with the specified attributes. The
specified routine is then launched as a starting routine.

Figure 4. Translation, refinement and implementation with AADS

Periodic threads. A thread is periodic if repeated
dispatches occur during a specific time interval. An AADL
periodic thread has its Dispatch_Protocol property set to
Period ic and its Period property set, for example, to 20 ms.

These two properties are translated putting the source
code of the POSIX thread into an infinite loop. At the
beginning of the loop the current time is obtained. At the
end of the loop the current thread is suspended until either
the time value of the clock reaches the absolute time
specified (the current time plus the period), or a signal is
delivered to the calling thread and its action is to invoke a
signal-catching function, or the thread is terminated. By
doing this it waits to repeat the loop for exactly the time
specified in the Period property.

Port connections translate into message queues, signals
and global variables:

Message queues. An AADL event data port models
message communicat ion with queuing of messages at the
recipient. Message arrival may cause dispatch of the
recipient and allow the recipient to process one or more
messages. POSIX message queues allow threads to
exchange data in the form of messages. Messages placed in
the queue are stored until the recip ient retrieves them. An
AADL event data port connection between threads
translates into a POSIX message queue between threads.

The attributes of the message queue must be set. The
value of the maximum number of messages is taken from
the AADL property Queue_Size of the destination port if it
exists. The AADL property Queue_Processing_Protocol is
set to FIFO as corresponds to a message queue. The
message queue is created to both send and receive messages
in non-blocking mode. The thread corresponding to the
AADL source/destination thread of the event data port
connection should add/receive a message of the specified
length to/from the message queue specified with the priority
indicated.

Signals. An AADL event port acts as an interface for the
communicat ion of events raised by subprograms, threads,
etc. that may be queued. An example of use of an event port
includes alarm communications that may be queued at the
recipient, where the recipient may process the queue
content. A signal is a limited form of inter-thread
communicat ion used in POSIX-compliant operating
systems. Essentially, it is an asynchronous notification sent
to a thread in order to notify it of an event that occurred.
When a signal is sent to a thread, the operating system
interrupts the thread's normal flow of execution. If the

 American Journal of Computer Architecture 2012, 1(2): 21-36 27

thread has previously registered a signal handler, that
routine is executed. Otherwise, the default signal handler is
executed. An AADL event port connection between threads
translates into the sending of POSIX signals between
threads.

The signals used are the user-definable real-time signals.
The structure type of an object used to represent sets of
signals must be used with the POSIX functions that
initialize and empty a signal set, add a signal to a signal set
and examine and change blocked signals before creating the
thread. The source/destination POSIX thread that
corresponds to the AADL source/destination thread of the
event port connection sends/waits for the signal (zero
timeout for no blocking if there is no signal received).

Global variables
An AADL data port acts as an interface for typed state

data transmission among components without queuing.
Data ports are represented by typed variables in source text.
A global variable is a variab le that is accessible in every
scope. Global variables are used extensively to pass
informat ion between sections of code that do not share a
caller/called relat ion such as concurrent threads. An AADL
data port connection between threads translates into a global
variable between threads.

The data type of this global variable is derived from the
type of ports connected. The source/destination thread that
corresponds to the AADL source/destination thread of the
data port connection, can write/read a value in/from that
global variab le.

The AADL properties are translated as followed:
Scheduling_Policy and Priority of threads. An AADL

property set called UC with two properties
POSIX_Scheduling_Policy and Priority has been defined.
The first is an enumeration of the values SCHED_FIFO,
SCHED_RR, SCHED_SPORADIC and SCHED_OTHER,
and the second is an integer from 0 to 32. The first is
obviously used to set the scheduling policy of the treads.
The second is used with the appropriate minimum value for
the scheduling policy specified to set the scheduling
parameter attributes of the threads.

Compute_Execution_Time (min, max). The min imum
time causes a call to a function that consumes that
processing time to assure that at least that time is consumed.
This function is adjusted at the beginning of the application
to assure that the exact time is consumed. Thus the
minimum execution t ime is the time established by this
property for this thread.

The maximum time requires the creation of a t imer that is
set with this time until the next exp iration of the timer.
Therefore, the timer exp ires in a maximum time
nanoseconds from when the call is made. When this timer
expires, one of the last real-time signals is sent and a
function called. This function lowers the priority of the
thread and waits for a while before restoring the initial
priority of the thread using the same method. When the
priority of the thread is low, the scheduler avoids executing
the thread and other threads can be processed. Thus we

assure that the maximum execution time is the one of this
property for this thread.

Names. Property Activate_Entrypoint of a thread is the
name of the C++ function that contains the source code of
that thread. Thus, this is the name of the function executed
as a starting routine when creating the thread. Source_Text
of a thread is the name of the C++ file containing the source
code of that thread.

Initialize / Finalize_Entrypoint. The name of the
routine called at the start/end of the start routine of the
corresponding thread is derived from this property.

Initialize / Finalize_Execution_Time (min, max). The
minimum time causes the call to a function that consumes
that processing time to assure that at least that time is
consumed. It checks the maximum t ime, to see if this
amount of time has elapsed and return if it has been.

The issues related to the subprograms are the fo llowing:
Subprogram. An AADL subprogram component

abstraction represents sequentially executable source text, a
callab le component, with or without parameters, that
operates on data or provides server functions to components
that call it. A routine is a portion of code within a larger
program, which performs a specific task and is relat ively
independent of the remaining code. An AADL subprogram
translates into a routine.

Subprogram calls. In AADL there are two types of
subprogram calls: Call sequences and remote calls. The
local call from a thread or from another subprogram within
the same thread to a subprogram is made in AADL through
the sub-clause call and is translated into direct calls from
the thread start routine or from the routine respectively.

The remote client-server call from a subprogram in a
thread to another subprogram in another thread is made
through the sub-clause call and the property
Actual_Subprogram_Call. This remote call translates into a
call from one routine to another.

Subprogram parameters. A parameter represents call
and return data values or references to data passed into and
out of a subprogram, so it can be by value or by reference.
In AADL the data values are in or out parameters and
references are requires data access. Connections must be
established between the ports of the thread (or the
subprogram) and the ports of the subprogram. The data type
of the AADL out parameter, if any, determines the data type
of the routine; if there is no out parameter the type is void.
Thus, the AADL parameters translate into parameters of the
subprogram by value or reference. The translation permits
data exchange among subprograms.

AADL data are managed as follows:
Data type. The AADL data abstraction represents static

data and data types. Data component declarations are used
to represent: application data types, the substructure of data
types via data subcomponents within data implementation
declarations and data instances. In general, a data type
defines a set of values and the allowable operations on those
values. Simple independent AADL data gives rise to a data
type. These data types will be used later to define the type

28 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

of a global variable, a message, etc. The name of the data
type can be inferred from the name of the AADL data. This
translation takes into account the property
Source_Data_Size. In the case of data types, it specifies the
maximum size required to hold a value of an instance of the
data type.

Simple Data. A simple AADL data subcomponent of a
thread or a process gives rise to a simple global variable.
The name and type can be inferred from the name and the
AADL data type.

Composite Data. Composite AADL data are data that
have one or more subprograms as features and/or one or
more datum as subcomponents. These data generate a C++
class of data with its methods and/or member data. The
name of the class can be inferred from the name of the
AADL data. The names and types of the methods and
members can be inferred from the AADL subprograms and
data. The composite data subcomponents of a thread or a
process give rise to a global variable whose type is that
class. The name can be inferred from the name of the
AADL data.

The AADL behavioural annex improves the specification
of a component’s behaviour. AADS parses the AADL
model so the annex behaviour_specification sections are
translated to an equivalent POSIX model.

The behavioural annex describes a transition system (an
extended automaton) using optional sections:

State variables. The state variables section declares
typed identifiers. Types are data classifiers o f the AADL
model. AADS t ranslates these state variables declaring
variables with their corresponding type in the C++ source
code of the thread or subprogram itself.

Initialization. The state variables must be init ialized in
the initializat ion section using a sequence of assignments.
AADS translates this initialization by init ializing the
variables with their corresponding value where they were
declared.

States
The states section declares automaton states which can be

qualified as in itial, complete, return, urgent or composite.
AADS uses this section to know which states have been
defined.

Transitions
The transitions section defines system transitions from a

source state to a destination state. The transition can be
guarded with events or Boolean conditions. An action part
can be attached to the transition. It can perform subprogram
calls, message sending or assignments. AADS translates the
transitions section into switch and case statements to transit
from one state to another. It starts in the in itial state and
moves to the next state when the guard of the transition is
true. Thus the guard of the transition translated by AADS
acts as a condition to execute the sentence/s of the state and
to change the state. This sentence/s is the action of the
transition translated by AADS. If there is no guard there is
no condition to check. The guard can be an expression as
simple as on i < 5, so AADS will translate it d irect ly.

Depending on the content of the guard and the action of
the transition, AADS t ranslates them into the corresponding
sentences of source code:

Sending / receiving messages . Messages are sent /
received through event or event data ports. If p is an input
port: p? de-queues an event port variable, p?x de-queues a
datum on an event data port in the variable x. If p is an
output port: p! calls Raise_Event on an event port, p!d
writes data d in the event data port and calls Raise_Event.

In the first case the guard of a transition is p1?x (where
p1 is an in event data port) and the action of that transition
is p2!(x+1) (where p2 is an out event data port). AADS
translates this case, checking whether a variable arrives at
the POSIX message queue associated with port p1. Then the
variable is sent through the POSIX message queue
associated with port p2, in this case after adding 1 to it .

In the second case the guard of a transition is p1? (p1 is
an in event port) and the action of that transition is p2! (p2
is an out event port). AADS translates this case, checking
whether the corresponding POSIX signal associated with
port p1 has been received. Then the corresponding POSIX
signal associated with port p2 is sent.

Subprograms. A behaviour expressed by the annex can
be attached to a subprogram implementation. The behaviour
can refer to the subprogram parameters and to variables.
The automaton specifying the subprogram implementation
has one or more return states indicating the return to the
caller. While the AADL control flows define the call
sequences produced by a subprogram, the annex enables the
expression of dependencies between the control flows and
state variables or parameters. A subprogram specification
can express other calls or notification of events.

In the first case the guard of a transition is p1? (p1 is an
in event port) and the action of that transition is subp! (subp
is a subprogram). AADS t ranslates this case checking
whether the corresponding POSIX signal associated with
port p1 has been received. If the signal has been received
then the corresponding previously defined subprogram is
called.

Parameters can be passed to called subprograms. The
action of that transition could be subp!(5->x,2->y) where x
and y are two in parameters of the subprogram subp. Then
AADS translates it into a call to the subprogram with those
two parameters as subp(5,2).

Using the AADL behavioural annex, it is possible to
indicate in the action of a transition that the out parameter
of a subprogram is the in parameter modified in some way.
It could be po!(pi+1), where po is the out parameter and pi
the in parameter. AADS translates this case, creating the
source code in the subprogram that sums one to the in
parameter and assigns the result to the out parameter.

In the last case the guard of a transition is on pi (pi is an
in parameter of a subprogram) and the action of that
transition is a call to a standard function such as std::cout!.
To translate this transition AADS generates the C++ source
code that checks whether the in parameter is true and, if it is,
calls the standard function cout.

 American Journal of Computer Architecture 2012, 1(2): 21-36 29

Control structures. Control structures support
conditional execution o f alternative act ions (if, else, end if),
conditional repetition of actions (while), and applicat ion of
actions over all elements of a data component array, port
queue content, or integer range (for). The For structure
represents an ordered iteration over all elements. Within for
structures the element can be referenced by
element_variable_identifier, which acts as a local variab le
with the name scope of for structure.

In the case that the action of a transition contains a
conditional structure of the type: if (logical value
expression) behaviour_actions[else behaviour_actions] end
if, AADS translates it producing the source code with the
analogous if else structure in C++, adapting the differences
between them.

The same can be said about for and while structures of
the type: for (element variable identifier in values)
{behaviour_actions} and while (logical value expression)
{behaviour_actions}. AADS translates them producing the
source code with the analogous for and while structure in
C++, adapting the differences between them.

Arrays. To declare collections of data which are
considered to be ordered the notion of mult iplicity is used.
AADS translates multip licity into a C++ array of data. The
type of the array is the same in both AADL and C++.

The HW arch itecture is structured through the XML file
generated by AADS. It is used as part of the configuration
parameters of SCoPE and is divided into: HW_Platform,
SW_Platform and Application.

HW_Platform. Any AADL implementation of a
processor, memory, bus or device must be specified with its
category and name in the HW_Components subsection of
HW_Platform. The AADL property Assign_Byte_Time is
used to set the frequency parameter in the XML file . For
memories we use the properties Read_Time and
Write_Time. These properties have their values in time
units (ns, ms and so on) and must be transformed into MHz.
To know the mem_size of a memory, both Word_Count and
Word_Size AADL properties are required. Finally the
mem_type of a memory is derived from Memory_Protocol
in the AADL model. If the component is a processor,
proc_type must be specified.

The HW_Architecture and Computing_groups
subsections of HW_Platform are next in the XML file. To
know the start_addr of a memory we take the AADL
property Base_Address. The component and name are
inferred from the AADL model. HW components are
grouped by buses as they are connected to them in AADL
through the connections bus access and the features
required bus access.

SW_Platform. This section has two subsections:
SW_Components and SW_Architecture. This section takes
into account the buses that are defined to make the
equivalent nodes. In this section the operating systems are
specified.

Application. This section has two subsections:
Functionality and Allocation. Filling the Functionality

section is straightforward from the AADL model using the
property of a thread Activate_Entrypoint for the function
and Source_Text fo r the file. The name is the same as the
one of the thread. For the Allocation section we need to
know the property of a thread Actual_Processor_Binding,
and find out which bus the processor is bound to and then
find out which node that bus corresponds to. The AADL
name of the thread is used for the name and the component.

6. AADS-T
AADS-T is a version of AADS that admits AADL

models that include the AADL Behavioural Annex and
generates a source code compatible with the Ravenscar
Computational Model.

The real-time behaviour specification of ASSERT
models is based on the RCM, a model of concurrency for
high-integrity systems that enables formal analysis of the
temporal properties of a system using response-time
analysis techniques. The model includes a static set of
concurrent threads of execution, communicat ing by means
of shared protected data with mutually exclusive read and
write access, and a restricted form of condit ional
synchronization. The model is simple enough to be
implemented by a simple, s mall-size real-t ime kernel, thus
easing the way to the eventual cert ification o f real-time
systems based on it.

Twelve p roperties must be fulfilled to be RCM-compliant;
the source code generated by AADS-T obeys all of them.
These properties are stated in an internal document of the
project titled R1-4 Evaluation of Compliance with the
ASSERT Process, written by J. A. de la Puente and J.
Zamorano.

Basic elements. There are two main elements in the
RCM: Threads and protected objects (PO). A thread is the
basic unit of execution, which can be executed concurrently
with other threads on a single processor. POs are an
abstraction of shared data, synchronization, and interrupt
handling.

There are a static number of threads and POs. Therefore,
threads and POs can only be created at system init ialization
time.

RCM 1 A real-t ime system consists of: A static set of N
threads, { }, i 1..N; and a static set of M POs,

{ }, i 1..M. The set may be empty (M = 0),
in which case the system is said to have only independent
threads.

In the source code generated by AADS-T all the threads
and POs are created calling pthread_create and as objects
of the corresponding classes respectively at system
initialization time.

Properties of threads. A thread is a concurrent unit of
execution with the following properties:

RCM 2 Threads are non-terminating. They exh ibit an
endless repetitive behaviour, alternating between the
following states (see Figure 5): Suspended (a suspended

=T i t Î

=O i q Î O

30 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

thread is not eligible for execution) and Ready (a ready task
can be executed when the processor is allocated to it).

Figure 5. States of RCM threads

RCM 3 Threads have a single activation point. An
activation point is a point in the executable code of a thread
at which its state changes from Suspended to Ready. When
activated, a thread becomes ready and then executes a piece
of sequential code (thread activity), after which it becomes
suspended awaiting the next activation.

Threads of the source code generated by AADS-T use
while(true) to be non-terminating. They are suspended after
executing the sequential code in a clock_nanosleep and
when sleeping time has passed they become ready at their
single activation point.

RCM 4 The activ ity of a thread is a sequence of code
with a bounded and known worst-case execution time
(WCET). The W CET of thread is .

AADS-T utilizes the AADL property
Compute_Execution_Time to know the WCET of a thread.
The source code generated checks that this WCET is not
exceeded.

This property implies that a thread does not execute any
operation that could result in its becoming suspended other
than the suspension immediately before the activation point,
and nether do the threads created by AADS-T.

RCM 5 A thread can be activated only by one of the
following two kinds of events. One is by a timing event
which is issued periodically by the environment. In this case
the thread is said to be periodic or time-driven with

period .
The other is a synchronization event issued when the

barrier of a synchronization PO is opened (see RCM 8
below). In this case, the thread is said to be sporadic.
The synchronization event must have a minimum
inter-arrival t ime associated to it, i.e. a minimum elapsed
time interval between two consecutive occurrences of the
event, .

AADS-T uses the AADL properties Period and
Device_Dispatch_Protocol to know the period and the type
of a thread respectively. It accepts only periodic and
sporadic threads and not aperiodic or background threads.
The difference between the codes generated is that a
sporadic thread waits for an event from an event or
eventdata port connection after invoking a synchronization
operation in the activation point. In both cases
clock_nanosleep waits a time .

Properties of protected objects. A PO is an object
which encapsulates a set of data and a set of associated
operations (protected operations). The value of the data
makes up the state of the object. The state can only be read
or changed by invoking one of the operations of the PO. If

 is a PO: .S denotes its state, .S S, where S is an
appropriate data domain; . denotes the -th
operation of . Notice that a PO must have at least one
operation; otherwise its state is inaccessible. The notation

 will be used to denote that invokes one or
more operations of . Similarly, . means that

 calls the operation . .
AADS-T generates an object of the corresponding class

which is a PO in the source code for each AADL data,
event and eventdata port connection. Classes generated by
AADS-T have the appropriate data members to achieve the
communicat ion of data and/or events between threads. Each
class has a constructor and member functions read and write
to initialize and access data members.

POs have the following properties:
RCM 6 Only one thread can be executing an operation of

a given PO at any given time, i.e. protected operations are
mutually exclusive. Consequently, if a thread invokes a
protected operation at a time when another thread is already
executing an operation of the same object, it has to wait.
When the protected operation that was being executed is
completed, the wait ing thread is allowed to execute the
operation it had invoked. Notice that a thread that is waiting
to begin a protected operation is not considered to be
suspended. In consequence, a thread activity can invoke
protected operations without violating RCM 4.

Each class produced by AADS-T defines a mutex that is
locked when a member function is called and unlocked
when it ends, ensuring compliance with mutual exclusion.

RCM 7 All protected operations have a bounded and
known WCET. The WCET of the protected operation .

 is . Again, this property implies that no operations
that could result in a thread being suspended can be invoked
from a protected operation.

AADS-T uses the ad hoc defined AADL properties
PO_read_WCET and PO_write_WCET fo r each port
connection to know the WCET of each member function.
The source code generated checks if these WCETs are
exceeded. Moreover, no member function calls any
suspending operation.

RCM 8 A PO can have at most one synchronization
operation that has an associated barrier, which is a Boolean
variable that is part of the object state. When the value of
the barrier is true, the barrier is said to be open, and
otherwise it is said to be closed.

The behaviour associated with synchronized operations is
as follows: When a thread invokes a synchronization
operation, if the barrier is open the execution proceeds as
with an ordinary protected operation; but if the barrier is
closed, the thread is suspended. At most one thread can be

i t i C

i t

i T

i t

i T

i T

q q q Î
q kP k

q

qt ® t
q qt ® P

t q P

iq

kP kiC ,

 American Journal of Computer Architecture 2012, 1(2): 21-36 31

suspended at a barrier at any given time. A thread that is
suspended at a barrier is resumed whenever the barrier
becomes true (as the result of the execution of another
protected operation by some other thread).

Invoking a synchronization operation is a potentially
suspending operation, and thus cannot be done within a
thread activity; this can only be used to implement the
activation events of sporadic threads.

In the source code produced by AADS-T only the objects
corresponding to event and eventdata port connections have
a synchronization member function because a sporadic
thread is dispatched by an event as stated above. Only
sporadic threads invoke the synchronization. The barrier is
initialized as false in the constructor, then set to true in the
write member function, then checked to see whether it is
false in the synchronization to suspend the thread on a
nanosleep, and finally set to false after resuming it.

Scheduling. The RCM is associated with an instance of
the fixed-priority pre-emptive scheduling (FPPS) method,
together with the immediate ceiling p riority inheritance
protocol (ICPP). The scheduling model is defined by the
following properties:

RCM 9 Each thread has a basic priority, P
, where is the set of the integer numbers. The

basic priority of a thread is fixed, i.e. it is never changed.
AADS-T uses the ad hoc AADL property Priority to

create a thread at system initialization time with
sched_priority at that priority, which is never changed.

RCM 10 Each PO has a ceiling priority which
is the maximum of the basic priorit ies of all the threads
invoking any of its operations: =max . As
basic priorities of all threads are fixed, so too are the ceiling
priorities of all POs.

RCM 11 At every instant of time, each thread has an
active prio rity. The act ive priority of a thread is the
maximum of the basic priority of the thread and the ceiling
priority of all POs that contain an operation that is currently
being executed by the thread. Therefore, whenever a thread
invokes a protected operation, it immediately inherits the
ceiling prio rity of the enclosing PO.

In the source code generated by AADS-T the function
pthread_mutexattr_setprotocol is used with the value
PTHREAD_PRIO_PROTECT and the function
pthread_mutexattr_setprioceiling with the maximum of the
priorities of the two threads communicating through a port
connection. This is done when initializing the mutex of the
object corresponding to that connection at system
initialization time guaranteeing the fulfillment of RCM 10
and RCM 11.

RCM 12 Ready threads are conceptually grouped into
ready queues. There is a ready queue for each priority level
in P. Threads are added to and removed from priority
queues according to the following rules: When a suspended
thread becomes ready, it is added at the tail of the priority

queue for its active priority. When the processor is idle, the
thread which is at the head of the non-empty ready queue
with the highest priority is dispatched for execution and
removed from the queue. Whenever there is a non-empty
ready queue with a higher priority than the priority of the
currently running thread, the thread is pre-empted from the
processor and it is added at the head of the ready queue for
its active priority. Not ice that according to the prev ious rule,
the thread at the head of the ready queue that caused the
pre-emption is dispatched for execution immediately
afterwards.

AADS-T admits only SCHED_FIFO for the ad hoc
AADL property POSIX_Scheduling_Policy of a thread, to
set so sched_policy in the source code.

The above model specifies a concurrent system with a
predictable, analyzable temporal behaviour. Since the
execution time of threads is bounded (RCM 4, RCM 7) and
the scheduling method is FPPS with ICPP, well-known
response-time analysis techniques can be applied to
statically guarantee that the system satisfies its temporal
requirements.

7. Experimental Results
7.1. Case Study

The proposed method implemented in AADS-T was
tested assisting in the HW/SW part itioning of the case study
shown in Figure 6. It is a space application of digital image
processing that consists of different components: HW
Controller, Image Processing, Image Filter, Control,
Start-up, Housekeeping, Monitoring, Image Processing
Management, Event Generat ion, Connection test and Stub
Simulating Ground. HW Controller is in charge of receiving
images (bitmap images) from the Camera Simulator as well
as sending the filtered images back to Ground. Image
Processing receives the image from HW Controller pixel by
pixel, including the padding when it is needed, forwarding
them to Image Filter to process them. Image Processing also
receives the pixels already filtered by Image Filter which
are subsequently sent to the HW Controller component.
Image Filter is in charge of filtering the pixels received
according to the filter selected. Control manages the Image
Application Software based on OBSW commands in order
to store image statistics, to configure image filtering
function and to control the image processing status. Start-up
simulates the initialization routine and starts the next
OBSW functionalit ies. Housekeeping periodically reports
the number of images correctly filtered. Monitoring checks
the status of the Image Processing Application Software and
if the status is set to erroneous, an event is sent to Stub
Simulating Ground through Event Generation. Image
Processing Management selects the filter to be applied and
starts/stops the application. Event Generation simulates the
OBSW event reporting service to inform ground about all
asynchronous events occurring on-board. Connection test

i t ÎiP
ZÌ Z

iq iCP

iCP ijjP qt ®,

32 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

lets operators test the OBSW application presence and state.
Stub Simulating Ground requests the OBSW to perform the
alive-test by sending the corresponding telecommand.

Figure 7 is the AADL graphical notation of the Case
study with the memories (two DRAMs, one fo r the FPGA
and another for the LEON2), processors (FPGA and
LEON2), buses (RS232, FPGA memory bus, and LEON2

memory bus), threads, event ports and eventdata ports
generated with OSATE v1.5.8.

AADL provides many benefits for HW/SW co-design. It
contains constructs for modeling both HW and SW
components. This language supports early and repeated
analyses of system architecture with respect to
performance-critical properties through an extendable
notation, a tool framework and precisely defined semantics.

Figure 6. Case study functional description

Figure 7. AADL graphical notation of the Case study

 American Journal of Computer Architecture 2012, 1(2): 21-36 33

AADS ext racts from the AADL models the necessary
informat ion for the SCoPE tool to perform a simulat ion at
system level. The simulation results will guide the system
designer through the selection of the most adequate
partition solution.

7.2. LEON2 Modelling in SCoPE

SCoPE has been modified to include the LEON2
processor at 50 Mhz, 15.4 MIPS and 30.64 nJ of energy
consumed per instruction in its processors.xml
configuration file . It was necessary to specify the data and
instruction cache sizes too. A size of 8192, a size o f line of 8
and an associativity of 1, considering an instruction size of
4 (32 bits), was considered for both. Another configuration
file of SCoPE, meminst.xml, was modified to include the
operation codes of the LEON2.

The GNU cross-compiler for LEON2 used is the GNAT
for the LEON 2.1.0 C compiler so the source code produced
by AADS-T has to comply with certain characteristics. The
options POSIX_THREADS, POSIX_THREAD_PRIORITY_
SCHEDULING, POSIX_THREAD_PRIO_PROTECT, LEO
N_2 and POSIX_TIMERS have to be activated. The
function clock_nanosleep must be explicitly declared.

7.3. Architectural Design

The partitioning process is performed fo llowing a SW
centric approach. Firstly, it is assumed that all system
functions are SW components. If this assumption is not
fulfilled due to the vio lation of the design criteria, new
partitions are proposed in order to accommodate system
functions to other platform resources. In this case, different
allocations of system functions to platform resources are
possible. The decision about which parts are mapped to HW
is based on the analysis of which implementation best meets
the design criteria (derived from the requirement analysis
results) in terms of performance and functional behavior.
The informat ion about how a component will be
implemented (HW or SW) is added as an AADL property,
Actual_Processor_Binding. The part itioning is generated by
the ASSERT Model Transformat ion (AMT) tool developed
by GMV.

In the context of a SW centric approach, initially all
system functions will be mapped onto the same
processing node, whose implementation is a LEON2
microprocessor. We considered a situation where it is
necessary to re-allocate system functions from SW to HW
(i.e . mapping from processing elements whose
technological implementation is a microprocessor to other
processing elements such as DSP, PLD, FPGA, etc): The
system performance might indicate that the CPU exceeds
the maximum performance limits imposed in the
requirements.

HW/SW models were generated in AADL by AMT and
in SystemC with AADS-T/SCoPE, to perform the HW/SW
partitioning. The system-level performance tool
(AADS-T/SCoPE) was used to analyze the system

performance and non-functional requirements such as use
of CPU, timing or energy consumption for a g iven HW/SW
partition. After system performance analysis, some HW/SW
partitions were proposed and evaluated.

The files produced by AADS-T were compiled with
SCoPE to simulate the model and the results obtained were
used to compare the different partitions. The simulation
executed the source code of the threads and the protected
objects enabled communicat ion among the threads.

In the following table we can see the comparison
between the sixteen magnitudes evaluated by SCoPE in the
average of the simulations carried out with fifty-six
evaluated partitions, and the one which allocates the
components Control and Image_processing to HW. In
nearly all the magnitudes the selected partition obtains the
best performance results.

Table 1. Comparison between simulations' metrics of the selected
partition and the average of the others

 Control &
I P i

Average of other
i i
 Total User time 0.424528 s 2.2550830 s

Total Kernel

0.00550586 s 0.0314650 s
Number of

h d i h
20172 34717

Running time 382438640 ns 2026357221 ns
Use of CPU 0.382439 % 2.0263575 %
Instructions

d
6016438 34230189

Instruction cache
i

849919 4646324
Core Energy 1.84344e+08 nJ 1.04881E+09 nJ
Core Power 1.84344 mW 10.48813 mW

Instruction cache

7.97346E+08 nJ 4.35719E+09 nJ
Instruction cache

7.97346 mW 44.20486 mW

Bus access time 47595464 ns 260191004 ns
Idle time 99559965896 ns 97703658860 ns

Number of
i

12550 11119
Instruction miss

10116 51850

Bus Load 27197408 bytes 148680573 bytes

In the following figure we can see one magnitude (Use of
CPU from a total of sixteen magnitudes evaluated by
SCoPE) of the simulat ions carried out with SCoPE with the
fifty-seven evaluated partitions. Among all the partit ions,
one obtains the best performance results and so it is selected;
the one that allocates to HW the components Control and
Image Processing because they consume most of the
resources. In the figure first we can see the partitions that
allocate one component to HW, then we can see the
partitions that allocate two or more components to HW.
Allocating only one component to HW was not enough to
fulfil the init ial constraint as we will see below, so more
than one component had to be allocated to HW. However
we had to take into account that allocating to HW is more
expensive than allocating to SW so we could not allocate all
the components to HW. We had to maintain a trade-off
between the cost of allocating all the components to HW
and the use of CPU caused by allocating the components to
SW.

34 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

Figure 8. Use of CPU (%) of the partit ions

In order to check how the perfo rmance analysis results
vary depending on the WCET, the AADL model was
manually modified setting very strict WCET (close to the
deadlines). In this case study the deadlines of the threads
were 20 % of the periods. So the WCET were 20 % of the
values from the interval o f 40 ms to 100 s which were the

minimum and the maximum periods respectively for the
different threads. Regarding only the Use of CPU, the init ial
partition which considers that all components were
allocated to SW consumed 1.90599 % with the initial
WCET values. However with the WCET close to the
deadlines, the Use of CPU had a significant increase up to

 American Journal of Computer Architecture 2012, 1(2): 21-36 35

97.6006 %. The selected partition that allocates the
components Control and Image Processing to HW,
consumed 0.382439 % with the in itial W CET values. With
the WCET close to the deadlines, the Use of CPU was only
14.32543 %. As the components which consume most of
the resources had been moved to HW, the processor
provided a completely different result. When all
components were mapped to SW, the usage of CPU was
97.6 %. As CPU load requires a workload margin, this
scheme is not valid. Therefore, partitioning is required.

The in itial constrain imposed on the system was a Use of
CPU less than 75 % in the worst case. This worst case is
when the WCET of the threads were close to the deadlines.
In this case the only HW/SW partition that complies with
the initial constraint is selected, namely the one that
allocates the components Control and Image Processing to
HW.

Allocating the components Control and Image Processing
to HW leads to a significant reduction in use of CPU due to
the improvement in the communications between the two
components. This shows that performance analysis enables
the discovery of situations that would be difficult to expose
without such a powerful tool.

8. Conclusions
This document describes the simulation of AADL

compatible with RCM using the AADS simulation tool.
AADS supports the refinement of AADL models, including
the Behavioural Annex, through performance analysis done
with SCoPE, after translating those models.

The generation of the RCM-compliant SystemC model
from the AADL specification is not straightforward.
Nevertheless, the SystemC model generated by AADS is
able to capture the fundamental dynamic p roperties of the
initial system specification. In this way, AADS supports
design space exploration by refinement o f the AADL
functionality and its implementation on an optimized
platform.

The system-level performance tool (AADS-T/SCoPE) is
used to analyze the system performance and non-functional
requirements such as use of CPU, timing o r energy
consumption for a given HW/SW partit ion. AADS-T aids
the performance of the HW/SW partitioning of a system by
analyzing HW/SW models.

Future work includes incorporation of AADS features
that appear in V2.0 of the AADL standard.

ACKNOWLEDGEMENTS
This work has been developed in the University of

Cantabria and has been partially supported by the Spanish
MICyT through the ITEA 05015 SPICES pro ject[47], the
TEC2008-04107 project, and the ESTEC 22810/09/NL/JK
HW-SW CODESIGN project contracted to GMV
Aerospace and Defence S.A.U.

The authors would like to acknowledge the aid received
in this work from Juan Antonio de la Puente and Juan
Zamorano of UPM, as well as from the colleagues in the
SPICES project and in the Microelectronics Engineering
Group (GIM).

REFERENCES
[1] SAE: AADL. June 2006, document AS5506/1.

www.sae.org/technical/standards/AS5506/1.

[2] P. H. Feiler, D. P. Gluch, J. J. Hudak: The AADL: An
Introduction. CMU. Pittsburgh. (2006).

[3] P. H. Feiler, J. J. Hudak: Developing AADL Models for
Control Systems: Practitioner’s Guide. CMU. 2006.

[4] SAE. Annex Behavior V1.6 AS5506, 2007.

[5] www.assert-project.net 2008 ESA/ESTEC.

[6] A. Burns et al.: The Ravenscar tasking profile for high
integrity RT programs. Ada-Europe’98. Springer-Verlag.

[7] M. Perrotin et al.: The TASTE toolset: Turning human
designed heterogeneous systems into computer built
homogeneous software. ERTS2 2010, Toulouse, France.

[8] LEON2-FT ESA Microelectronics 2009 www.esa.int/TEC/
Microelectronics/SEMUD70CYTE_0.html

[9] A.D. Pimentel et al.: A systematic approach to exploring
embedded system architectures at multiple abstraction levels,
IEEE Transactions on Computers, 2006.

[10] J. Hugues, B. Zalila, L. Pautet, F. Kordon: From the
prototype to the final embedded system using the Ocarina
AADL tool suite. ACM TECS, 2008. NY, USA.

[11] H. Posadas et al.: RTOS modeling in SystemC for real-time
embedded SW simulation: A POSIX model. Design
Automation for Embedded Systems. Springer. 2005.

[12] AADS UC 2011. www.teisa.unican.es/AADS

[13] P. H. Feiler, A. Greenhouse: OSATE Plug-in Development
Guide. CMU. Pittsburgh. (2006).

[14] The Eclipse Foundation 2009. www.eclipse.org

[15] J.-F. Tilman, R. Sezestre, A. Schyn: Simulation of system
architectures with AADL. ERTS2008, Toulouse.

[16] F. Singhoff, A. Plantec: AADL modeling and analysis of
hierarchical schedulers. SIGAda’07, Fairfax, VA, USA.

[17] O. Sokolsky, I. Lee, D. Clark: Schedulability Analysis of
AADL models. IPDPS 2006. Rhodes Island, Greece.

[18] M. Yassin Chkouri, A. Robert, M. Bozga, J. Sifakis:
Translating AADL into BIP – Application of Real-time
Systems. ACESMB 2008. Toulouse, France.

[19] A. E. Rugina et al.: The ADAPT tool: From AADL
architectural models to stochastic Petri Nets through model
transformation. EDCC. 2008. Kaunas, Lithuania.

[20] T. Abdoul, J. Champeau, P. Dhaussy, P. Y. Pillain, J. C.
Roger : AADL execution semantics transformation for
formal verification. ICECCS 2008. Belfast, U. K.

36 Roberto Varona-Gómez et al.: Architectural Optimization & Design of Embedded
 Systems based on AADL Performance Analysis

[21] E. Jahier et al.: Virtual execution of AADL models via a
translation into synchronous programs. EMSOFT’07. 2007.
Salzburg, Austria.

[22] S. Gui et al.: Formal schedulability analysis and simulation
for AADL. ICESS2008. Chengdu, China.

[23] M. Brun, J. Delatour, Y. Trinquet: Code generation from
AADL to a RTOS: an experimentation feedback on the use
of model transformation. ICECCS. 2008. U. K.

[24] SCoPE UC 2011. www.teisa.unican.es/scope

[25] David C. Black, Jack Donovan: SystemC: From the ground
up. Kluwer Academic Publishers. Boston (2004).

[26] M. González: POSIX tiempo real. UC, Santander 2004.

[27] The Open Group: The Single UNIX Specification, V. 2,
1997. www.opengroup.org/onlinepubs/007908799.

[28] W3C: Extensible Markup Language (XML) W3C
Recommendation (2006). www.w3.org/TR/REC-xml/

[29] P. Dissaux, J. P. Bodeveix, M. Filali, P. Gaufillet, F.
Vernadat: AADL behavioural annex. DASIA 2006. Berlin.

[30] R. Bedin, J. P. Bodeveix, M. Filali, J. F. Rolland, D.
Chemouil, D. Thomas: The AADL behavior annex –
experiments and roadmap. ICECCS 2007. New Zealand.

[31] J. P. Bodeveix, M. Filali, M. Rached, D. Chemouil, P.
Gaufillet: Experimenting an AADL behavioural annex and a
verification method. DASIA 2006. Berlin, Germany.

[32] B. Berthomieu, J. P. Bodeveix, C. Chaudet, S. Dal Zilio, M.
Filali, F. Vernadat: Formal Verification of AADL
Specifications in the Topcased Environment. Ada-Europe
2009. Brest, France.

[33] C. Ponsard, M. Delehaye: Towards a model-driven approach
for mapping requirements on AADL architectures. ICECCS
2009. Potsdam, Germany.

[34] M. Yassin Chkouri, A. Robert, M. Bozga, J. Sifakis:
Translating AADL into BIP – Application of Real-time
Systems. ACESMB 2008. Toulouse, France.

[35] I. Malavolta, H. Muccini, P. Pelliccione: Integrating AADL
within a multi-domain modelling framework. ICECCS 2009.
Potsdam, Germany.

[36] J. A. de la Puente et al.: The ASSERT VM: A Predictable
Platform for Real-Time Systems. IFAC08. Korea.

[37] J. Zamorano et al.: The ASSERT VM kernel: Support for
preservation of temporal properties. DASIA 2008. Spain.

[38] M. Bordin et al.: Automated Model-based Generation of
Ravenscar-compliant Source Code. ECRTS05. Spain.

[39] S. Mazzini et al.: An MDE Methodology for the
Development of High-Integrity RT Systems. DATE09. Nice.

[40] J. Kwon et al.: Ravenscar-Java: a High-Integrity Profile for
Real-Time Java. ACM-ISCOPE, 2002. Washington.

[41] SAX: Simple API for XML. (2004). www.saxproject.org

[42] R. Varona Gómez, E. Villar: AADL Simulation and
Performance Analysis in SystemC. ICECCS 2009. Germany.

[43] R. Varona Gómez, E. Villar: AADS+: AADL Simulation
including the Behavioral Annex. ICECCS 2010. Oxford.

[44] R. Varona Gómez, E. Villar, A. Rodríguez: Ravenscar
Computational Model compliant AADL Simulation on
LEON2. ISSE 2011. Orlando.

[45] Hardware/Software Codesign Overview RASSP Education
& Facilitation Program Module 14, RASSP, 1999.

[46] http://hwswcodesign.gmv.com

[47] http://www.spices-itea.org

[48] R. Bedin, J. F. Rolland, M. Filali, J. P. Bodeveix:
Assessment of the AADL Behavioral Annex. FAC2007.
Toulouse.

[49] C. Silvano, W. Fornaciari, E. Villar: Multi-objective Design
Space Exploration of Multiprocessor SoC Architectures.
Springer 2011.

[50] M.B. Abdelhalim, S.E.-D. Habib: An integrated high-level
hardware/software partitioning methodology. Design
Automation for Embedded Systems. Springer 2011.

[51] K. Lampka, S. Perathoner, L. Thiele: Analytic real-time
analysis and timed automata: a hybrid methodology for the
performance analysis of embedded real-time systems.
Design Automation for Embedded Systems. Springer 2010.

	1. Introduction
	2. AADL
	3. SCoPE
	4. Related Work
	5. AADS
	6. AADS-T
	7. Experimental Results
	8. Conclusions
	ACKNOWLEDGEMENTS

