
Advances in Computing 2014, 4(1): 1-5 
DOI: 10.5923/j.ac.20140401.01 

 

An Overview of the Message Passing Programming 
Method in Parallel Computing 

Mehrdad Hashemi1,*, Shabnam Ahari2 

1Department of applied mathematics and cybernetics, Baku State University, Baku, Azerbaijan  
2Department of computer engineering, Islamic Azad university, Ahar, Iran 

 

Abstract  This paper determines the computational strength of the shared memory abstraction (a register) emulated over a 
message passing system and compares it with fundamental message passing abstractions like consensus and various forms of 
reliable broadcast. Here we analyze some aspects of shared memory architecture and message passing programming method. 
In this article at first we explain the structure of message-passing and then present the classification of that and shared 
memory architecture. Different types of this structure are discussed during the research and after that the subdivisions of the 
famous type is explored briefly. In the last section superiorities of message passing programming method are mentioned.  
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1. Introduction 
Parallel machines provide a wonderful opportunity for 

applications with large computational requirements. 
Effective use of these machines, though, requires a keen 
understanding of how they work. A major source of speedup 
is the parallelizing of operations. Parallel operations can be 
either within-processor, such as with pipelining or having 
several ALUs within a processor, or between processor, in 
which many processors work on different parts of a problem 
in parallel. Our focus here is on between-processor 
operations. Execution speed is the reason that comes to most 
people's minds when the subject of parallel processing comes 
up. But in many applications, an equally important 
consideration is memory capacity. Parallel processing 
application often tend to use huge amounts of memory, and 
in many cases the amount of memory needed is more than 
can _t on one machine. If we have many machines working 
together, especially in the message-passing settings 
described below, we can accommodate the large memory 
needs. Here many CPUs share the same physical memory. 
This kind of architecture is sometimes called MIMD, 
standing for Multiple Instruction (different CPUs are 
working independently, and thus typically are executing 
different instructions at any given instant), Multiple Data 
(different CPUs are generally accessing different memory 
locations at any given time)[1]. Until recently, shared- 
memory systems cost hundreds of thousands of dollars and 
were accordable only by large companies, such as in the  
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insurance and banking industries, the high-end machines are 
indeed still quite expensive, but now dual-core machines, in 
which two CPUs share a commonplace at home. Numerous 
programming languages and libraries have been developed 
for explicit parallel programming. These differ in their view 
of the address space that they make available to the 
programmer, the degree of synchronization imposed on 
concurrent activities, and the multiplicity of programs. The 
message-passing programming paradigm is one of the oldest 
and most widely used approaches for programming parallel 
computers. Its roots can be traced back in the early days of 
parallel processing and its wide-spread adoption can be 
attributed to the fact that it imposes minimal requirements on 
the underlying hardware[2-4]. We first describe some of the 
basic concepts of the message-passing programming 
paradigm and then explore various message-passing 
programming techniques using the standard and widely-used 
Message Passing Interface. There are two key attributes that 
characterize the message-passing programming paradigm. 
The first is that it assumes a partitioned address space and the 
second is that it supports only explicit parallelization. Here 
we have a number of independent CPUs, each with its own 
independent memory. The various processors communicate 
with each other via networks of some kind. Large 
shared-memory multiprocessor systems are still very 
expensive. A major alternative today is networks of 
workstations (NOWs)[5]. Let’s investigate an example 
contained vector-matrix multiplication: Suppose we wish to 
multiply an (n*1) vector X by a (n*n) matrix A, putting the 
product in an (n*1) vector Y, and we have p processors to 
share the work. In all the forms of parallelism, each node 
would be assigned some of the rows of A, and would 
multiply X by them, thus forming part of Y. Note that in 
typical applications, the matrix A would be very large, say 
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thousands of rows and thousands of columns. Otherwise the 
computation could be done quite satisfactorily in a sequential, 
i.e. nonparallel manner, making parallel processing 
unnecessary. In implementing the matrix-vector multiply 
example in the shared-memory paradigm, the arrays for A, X 
and Y would be held in common by all nodes. Computation 
of the matrix-vector product AX would then involve the 
nodes somehow deciding which nodes will handle which 
rows of A. Each node would then multiply its assigned rows 
of A times X, and place the result directly in the proper 
section of Y. Today, programming on shared-memory 
multiprocessors is typically done via threading. A thread is 
similar to a process in an operating system (OS), but with 
much less overhead. Threaded applications have become 
quite popular in even uni processor systems, and Unix, 
Windows, Python, Java and Perl all support threaded 
programming. Important note: Effective use of threads 
requires a basic understanding of how processes take turns 
executing[6]. The logical view of a machine supporting the 
message-passing paradigm consists of p processes, each with 
its own exclusive address space. Instances of such a view 
come naturally from clustered workstations and non-shared 
address space multi computers. There are two immediate 
implications of a partitioned address space. First, each data 
element must belong to one of the partitions of the space; 
hence, data must be explicitly partitioned and placed. This 
adds complexity to programming, but encourages locality of 
access that is critical for achieving high performance on 
non-UMA architecture, since a processor can access its local 
data much faster than non-local data on such architectures. 
The second implication is that all interactions (read-only or 
read/write) require cooperation of two processes – the 
process that has the data and the process that wants to access 
the data. In particular, for dynamic and/or unstructured 
interactions the complexity of the code written for this type 
of paradigm can be very high for this reason. However, a 
primary advantage of explicit two-way interactions is that 
the programmer is fully aware of all the costs of non-local 
interactions, and is more likely to think about algorithms 
(and mappings) that minimize interactions. Another major 
advantage of this type of programming paradigm is that it 
can be efficiently implemented on a wide variety of 
architectures. The message-passing programming paradigm 
requires that the parallelism is coded explicitly by the 
programmer. That is, the programmer is responsible for 
analyzing the underlying serial algorithm/application and 
identifying ways by which he or she can decompose the 
computations and extract concurrency. As a result, 
programming using the message-passing paradigm tends to 
be hard and intellectually demanding. However, on the other 
hand, properly written message passing programs can often 
achieve very high performance and scale to a very large 
number of processes. 

2. Structure of Message-Passing 
Message-passing programs are often written using the 

asynchronous or loosely synchronous paradigms. In the 
asynchronous paradigm, all concurrent tasks execute 
asynchronously. This makes it possible to implement any 
parallel algorithm. However, such programs can be harder to 
reason about, and can have nondeterministic behavior due to 
race conditions. Loosely synchronous programs are a good 
compromise between these two extremes. In such programs, 
tasks or subsets of tasks synchronize to perform interactions. 
However, between these interactions, tasks execute 
completely asynchronously. Since the interaction happens 
synchronously, it is still quite easy to reason about the 
program. Many of the known parallel algorithms can be 
naturally implemented using loosely synchronous programs. 
In its most general form, the message-passing paradigm 
supports execution of a different program on each of the p 
processes. This provides the ultimate flexibility in parallel 
programming, but makes the job of writing parallel programs 
effectively unscalable. For this reason, most message - 
passing programs are written using the single program 
multiple data (SPMD) approach. In SPMD programs the 
code executed by different processes is identical except for a 
small number of processes (e.g., the "root" process). This 
does not mean that the processes work in lock-step. In an 
extreme case, even in an SPMD program, each process could 
execute a different code (the program contains a large case 
statement with code for each process). But except for this 
degenerate case, most processes execute the same code. 
SPMD programs can be loosely synchronous or completely 
asynchronous[7]. 

3. Classification of Shared Memory and 
Message Passing 

Any computer, whether sequential or parallel, operates by 
executing instructions on data. A stream of instructions (the 
algorithm) tells the computer what to do at each step. A 
stream of data (the input to the algorithm) is affected by these 
instructions. Depending on whether there is one or several of 
these streams, we can distinguish among four classes of 
computers: Single Instruction stream, Single Data stream 
(SISD), Multiple Instruction stream, Single Data stream 
(MISD), Single Instruction stream, Multiple Data stream 
(SIMD), Multiple Instruction stream, Multiple Data stream 
(MIMD)[8]. We now don’t want to examine each of these 
classes in some detail. But it is necessary investigate the 
details of shared memory structure that is the base of 
message passing programming method. In third class, a 
parallel computer consists of N identical processors, as 
shown in Fig.1. Each of the N processors possesses its own 
local memory where it can store both programs and data. All 
processors operate under the control of a single instruction 
stream issued by a central control unit. Equivalently, the N 
processors may be assumed to hold identical copies of a 
single program, each processor's copy being stored in its 
local memory. There are N data streams, one per processor. 
The processors operate synchronously: At each step, all 
processors execute the same instruction, each on a different 
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datum. The instruction could be a simple one (such as adding 
or comparing two numbers) or a complex one (such as 
merging two lists of numbers). Similarly, the datum may be 
simple (one number) or complex (several numbers). 
Sometimes, it may be necessary to have only a subset of the 
processors which execute an instruction. This information 
can be encoded in the instruction itself, thereby telling a 
processor whether it should be active (and execute the 
instruction) or inactive (and wait for the next instruction). 
There is a mechanism, such as a global clock, that ensures 
lock-step operation. Thus processors that are inactive during 
an instruction or those that complete execution of the 
instruction before others may stay idle until the next 
instruction is issued. The time interval between two 
instructions may be fixed or may depend on the instruction 
being executed. In most interesting problems that we wish to 
solve on an SIMD computer, it is desirable for the processors 
to be able to communicate among themselves during the 
computation in order to exchange data or intermediate results. 
This can be achieved in two ways, giving rise to two 
subclasses: SIMD computers where communication is 
through a shared memory and those where it is done via an 
interconnection network. An example of a SIMD computer 
shown below in figure 1:  

 
Figure 1.  A SIMD computer 

Shared-Memory (SM) SIMD Computers: This class is 
also known in the literature as the Parallel Random-Access 
Machine (PRAM) model. Here, the N processors share a 
common memory that they use in the same way a group of 
people may use a bulletin board. When two processors wish 
to communicate, they do so through the shared memory. Say 
processor “i” wishes to pass a number to processor “j”. This 
is done in two steps. First, processor “i” writes the number in 
the shared memory at a given location known to processor 
“j”. Then, processor “j” reads the number from that location. 
During the execution of a parallel algorithm, the N 
processors gain access to the shared memory for reading 
input data, for reading or writing intermediate results, and for 
writing final results. The basic model allows all processors to 
gain access to the shared memory simultaneously if the 
memory locations they are trying to read from or write into 

are different. However, the class of shared-memory SIMD 
computers can be further divided into four subclasses, 
according to whether two or more processors can gain access 
to the same memory location simultaneously: 

(i) Exclusive-Read, Exclusive-Write (EREW) SM SIMD 
Computers. Access to memory locations is exclusive. In 
other words, no two processors are allowed simultaneously 
to read from or write into the same memory location. 

(ii) Concurrent-Read, Exclusive-Write (CREW) SM 
SIMD Computers. Multiple processors are allowed to read 
from the same memory location but the right to write is still 
exclusive: No two processors are allowed to write into the 
same location simultaneously. 

(iii) Exclusive-Read, Concurrent-Write (ERCW) SM 
SIMD Computers. Multiple processors are allowed to write 
into the same memory location but read accesses remain 
exclusive. 

(iv) Concurrent-Read, Concurrent-Write (CRCW) SM 
SIMD Computers. Both multiple-read and multiple-write 
privileges are granted. Allowing multiple-read accesses to 
the same address in memory should in principle pose no 
problems (except perhaps some technological ones not to be 
discussed here). Conceptually, each of the several processors 
reading from that location makes a copy of the location's 
contents and stores it in its own local memory. With 
multiple-write accesses, however, difficulties arise. If 
several processors are attempting simultaneously to store 
(potentially different) data at a given address, which of them 
should succeed? In other words, there should be a 
deterministic way of specifying the contents of that address 
after the write operation. Several policies have been 
proposed to resolve such write conflicts, thus further 
subdividing classes (iii) and (iv). Some of these policies are: 

(a) the smallest-numbered processor is allowed to write, 
and access is denied to all other processors; 

(b) all processors are allowed to write provided that the 
quantities they are attempting to store are equal, otherwise 
access is denied to all processors; 

(c) the sum of all quantities that the processors are 
attempting to write is stored[9]. 

Here, there is a very important moment that we should not 
disregard it. A fundamental problem in distributed 
computing is performing N tasks in a distributed system 
consisting of P processors, and despite the presence of 
failures and delays. The abstract problem is called Do-All 
when processors communicate by exchanging messages and 
the tasks are similar in size and independent. Examples of 
such tasks include searching a collection of data, applying a 
function to the elements of a matrix, copying a large array, or 
solving a partial differential equation by applying shifting 
method. This problem has been studied in different settings 
[10, 11], including some notable work in message-passing 
models[12-14], partitionable networks[15-17], and 
shared-memory models[18-21], where the problem is called 
Write-All. Depending on the model of computation, 
algorithmic efficiency is evaluated in terms of time, work, 
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and message complexity. Work is defined as either the total 
number of steps taken by the available processors[22], or the 
total number of tasks performed[23]. Message complexity is 
expressed as the total number of point-to-point messages. 

4. Feasibility of the Shared Memory 
Model  

The SM SIMD computer is a fairly powerful model of 
computation, even in its weakest manifestation, the EREW 
subclass. Indeed, the model allows all available processors to 
gain access to the shared memory simultaneously. It is 
sometimes said that the model is unrealistic and no parallel 
computer based on that model can be built. The argument 
goes as follows. When one processor needs to gain access to 
a datum in memory, some circuitry is needed to create a path 
from that processor to the location in memory holding that 
datum. The cost of such circuitry is usually expressed as the 
number of logical gates required to decode the address 
provided by the processor. If the memory consists of M 
locations, then the cost of the decoding circuitry may be 
expressed as f(M) for some cost function f If N processors 
share that memory as in the SM SIMD model, then the cost 
of the decoding circuitry climbs to N x f(M). For large N and 
M this may lead to prohibitively large and expensive 
decoding circuitry between the processors and the memory. 
There are many ways to mitigate this difficulty. All 
approaches inevitably lead to models weaker than the SM 
SIMD computer. Of course, any algorithm for the latter may 
be simulated on a weaker model at the cost of more space 
and/or computational steps. By contrast, any algorithm for a 
weaker model runs on the SM SIMD machine at no 
additional cost. One way to reduce the cost of the decoding 
circuitry is to divide the shared memory into R blocks, say, 
of MIR locations each. There are N + R two-way lines that 
allow any processor to gain access to any memory block at 
any time. However, no more than one processor can read 
from or write into a block simultaneously. the i-th processor 
wishes to gain access to the j-th memory block, it sends its 
request along the i-th horizontal line to the j-th switch, which 
then routes it down the j-th vertical line to the j-th memory 
block. Each memory block possesses one decoder circuit to 
determine which of the M/R locations is needed. Therefore, 
the total cost of decoding circuitry is R x f(M/R). To this we 
must add of course the cost of the N x R switches. 

5. Conclusions 
This paper presents an introduction to the shared memory 

architecture of parallel computers and especially the method 
of message passing that based on this architecture. Here we 
investigated details of this type and analyzed characteristics 
and superiorities of this method. Shared-memory model and 
the message-passing model are the major aspects of 
distributed computing problem. In the first model, we 
typically assume that the processes are connected through 

reliable communication channels, which do not lose, create 
or alter messages. Processes communicate using send and 
receive primitives, which encapsulate TCP-like 
communication protocols provided in modern networks. But 
the second model abstracts a hardware shared memory made 
of registers. The processes exchange information using read 
and write operations exported by the registers and processors 
communicate by writing and reading to share registers. In the 
message-passing model, n processors are located at the 
nodes of a network and communicate by sending messages 
over communication links. This task is somewhat easier in 
shared-memory systems, where processors enjoy a more 
global view of the system. There are many applied and 
computational problems in every field of sciences such as 
mathematics and engineering which can be resolve by 
parallel algorithms and especially by the techniques 
containing message passing programming methods, of 
course according to their characteristics. Such emulation is 
very appealing because it is usually considered more 
convenient to write distributed programs using a shared 
memory model than using message passing, and many 
algorithms have been devised assuming a hardware shared 
memory[24]. Our approach is to study emulation of 
shared-memory algorithms for performing tasks in 
asynchronous message-passing systems. Our goal is to 
resolve different and actual applied and computational 
problems in various fields to improve their complexity 
compared with their non parallel algorithms. At the next 
researches we want to focus on the applying of parallel 
algorithms and specially using message passing structure for 
the computational problems related optimization of 
mathematical difficulties[25-27]. We will investigate 
applying mentioned parallel algorithm at the field of oil 
extraction problem to save the large amount of time spending 
for solving them[27-29]. 
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