
Advances in Computing 2014, 4(1): 1-5
DOI: 10.5923/j.ac.20140401.01

An Overview of the Message Passing Programming
Method in Parallel Computing

Mehrdad Hashemi1,*, Shabnam Ahari2

1Department of applied mathematics and cybernetics, Baku State University, Baku, Azerbaijan
2Department of computer engineering, Islamic Azad university, Ahar, Iran

Abstract This paper determines the computational strength of the shared memory abstraction (a register) emulated over a
message passing system and compares it with fundamental message passing abstractions like consensus and various forms of
reliable broadcast. Here we analyze some aspects of shared memory architecture and message passing programming method.
In this article at first we explain the structure of message-passing and then present the classification of that and shared
memory architecture. Different types of this structure are discussed during the research and after that the subdivisions of the
famous type is explored briefly. In the last section superiorities of message passing programming method are mentioned.

Keywords Parallel, Shared memory, Process, Message passing, Computation

1. Introduction
Parallel machines provide a wonderful opportunity for

applications with large computational requirements.
Effective use of these machines, though, requires a keen
understanding of how they work. A major source of speedup
is the parallelizing of operations. Parallel operations can be
either within-processor, such as with pipelining or having
several ALUs within a processor, or between processor, in
which many processors work on different parts of a problem
in parallel. Our focus here is on between-processor
operations. Execution speed is the reason that comes to most
people's minds when the subject of parallel processing comes
up. But in many applications, an equally important
consideration is memory capacity. Parallel processing
application often tend to use huge amounts of memory, and
in many cases the amount of memory needed is more than
can _t on one machine. If we have many machines working
together, especially in the message-passing settings
described below, we can accommodate the large memory
needs. Here many CPUs share the same physical memory.
This kind of architecture is sometimes called MIMD,
standing for Multiple Instruction (different CPUs are
working independently, and thus typically are executing
different instructions at any given instant), Multiple Data
(different CPUs are generally accessing different memory
locations at any given time)[1]. Until recently, shared-
memory systems cost hundreds of thousands of dollars and
were accordable only by large companies, such as in the

* Corresponding author:
mehan121@yahoo.com (Mehrdad Hashemi)
Published online at http://journal.sapub.org/ac
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved

insurance and banking industries, the high-end machines are
indeed still quite expensive, but now dual-core machines, in
which two CPUs share a commonplace at home. Numerous
programming languages and libraries have been developed
for explicit parallel programming. These differ in their view
of the address space that they make available to the
programmer, the degree of synchronization imposed on
concurrent activities, and the multiplicity of programs. The
message-passing programming paradigm is one of the oldest
and most widely used approaches for programming parallel
computers. Its roots can be traced back in the early days of
parallel processing and its wide-spread adoption can be
attributed to the fact that it imposes minimal requirements on
the underlying hardware[2-4]. We first describe some of the
basic concepts of the message-passing programming
paradigm and then explore various message-passing
programming techniques using the standard and widely-used
Message Passing Interface. There are two key attributes that
characterize the message-passing programming paradigm.
The first is that it assumes a partitioned address space and the
second is that it supports only explicit parallelization. Here
we have a number of independent CPUs, each with its own
independent memory. The various processors communicate
with each other via networks of some kind. Large
shared-memory multiprocessor systems are still very
expensive. A major alternative today is networks of
workstations (NOWs)[5]. Let’s investigate an example
contained vector-matrix multiplication: Suppose we wish to
multiply an (n*1) vector X by a (n*n) matrix A, putting the
product in an (n*1) vector Y, and we have p processors to
share the work. In all the forms of parallelism, each node
would be assigned some of the rows of A, and would
multiply X by them, thus forming part of Y. Note that in
typical applications, the matrix A would be very large, say

2 Mehrdad Hashemi et al.: An Overview of the Message Passing Programming Method in Parallel Computing

thousands of rows and thousands of columns. Otherwise the
computation could be done quite satisfactorily in a sequential,
i.e. nonparallel manner, making parallel processing
unnecessary. In implementing the matrix-vector multiply
example in the shared-memory paradigm, the arrays for A, X
and Y would be held in common by all nodes. Computation
of the matrix-vector product AX would then involve the
nodes somehow deciding which nodes will handle which
rows of A. Each node would then multiply its assigned rows
of A times X, and place the result directly in the proper
section of Y. Today, programming on shared-memory
multiprocessors is typically done via threading. A thread is
similar to a process in an operating system (OS), but with
much less overhead. Threaded applications have become
quite popular in even uni processor systems, and Unix,
Windows, Python, Java and Perl all support threaded
programming. Important note: Effective use of threads
requires a basic understanding of how processes take turns
executing[6]. The logical view of a machine supporting the
message-passing paradigm consists of p processes, each with
its own exclusive address space. Instances of such a view
come naturally from clustered workstations and non-shared
address space multi computers. There are two immediate
implications of a partitioned address space. First, each data
element must belong to one of the partitions of the space;
hence, data must be explicitly partitioned and placed. This
adds complexity to programming, but encourages locality of
access that is critical for achieving high performance on
non-UMA architecture, since a processor can access its local
data much faster than non-local data on such architectures.
The second implication is that all interactions (read-only or
read/write) require cooperation of two processes – the
process that has the data and the process that wants to access
the data. In particular, for dynamic and/or unstructured
interactions the complexity of the code written for this type
of paradigm can be very high for this reason. However, a
primary advantage of explicit two-way interactions is that
the programmer is fully aware of all the costs of non-local
interactions, and is more likely to think about algorithms
(and mappings) that minimize interactions. Another major
advantage of this type of programming paradigm is that it
can be efficiently implemented on a wide variety of
architectures. The message-passing programming paradigm
requires that the parallelism is coded explicitly by the
programmer. That is, the programmer is responsible for
analyzing the underlying serial algorithm/application and
identifying ways by which he or she can decompose the
computations and extract concurrency. As a result,
programming using the message-passing paradigm tends to
be hard and intellectually demanding. However, on the other
hand, properly written message passing programs can often
achieve very high performance and scale to a very large
number of processes.

2. Structure of Message-Passing
Message-passing programs are often written using the

asynchronous or loosely synchronous paradigms. In the
asynchronous paradigm, all concurrent tasks execute
asynchronously. This makes it possible to implement any
parallel algorithm. However, such programs can be harder to
reason about, and can have nondeterministic behavior due to
race conditions. Loosely synchronous programs are a good
compromise between these two extremes. In such programs,
tasks or subsets of tasks synchronize to perform interactions.
However, between these interactions, tasks execute
completely asynchronously. Since the interaction happens
synchronously, it is still quite easy to reason about the
program. Many of the known parallel algorithms can be
naturally implemented using loosely synchronous programs.
In its most general form, the message-passing paradigm
supports execution of a different program on each of the p
processes. This provides the ultimate flexibility in parallel
programming, but makes the job of writing parallel programs
effectively unscalable. For this reason, most message -
passing programs are written using the single program
multiple data (SPMD) approach. In SPMD programs the
code executed by different processes is identical except for a
small number of processes (e.g., the "root" process). This
does not mean that the processes work in lock-step. In an
extreme case, even in an SPMD program, each process could
execute a different code (the program contains a large case
statement with code for each process). But except for this
degenerate case, most processes execute the same code.
SPMD programs can be loosely synchronous or completely
asynchronous[7].

3. Classification of Shared Memory and
Message Passing

Any computer, whether sequential or parallel, operates by
executing instructions on data. A stream of instructions (the
algorithm) tells the computer what to do at each step. A
stream of data (the input to the algorithm) is affected by these
instructions. Depending on whether there is one or several of
these streams, we can distinguish among four classes of
computers: Single Instruction stream, Single Data stream
(SISD), Multiple Instruction stream, Single Data stream
(MISD), Single Instruction stream, Multiple Data stream
(SIMD), Multiple Instruction stream, Multiple Data stream
(MIMD)[8]. We now don’t want to examine each of these
classes in some detail. But it is necessary investigate the
details of shared memory structure that is the base of
message passing programming method. In third class, a
parallel computer consists of N identical processors, as
shown in Fig.1. Each of the N processors possesses its own
local memory where it can store both programs and data. All
processors operate under the control of a single instruction
stream issued by a central control unit. Equivalently, the N
processors may be assumed to hold identical copies of a
single program, each processor's copy being stored in its
local memory. There are N data streams, one per processor.
The processors operate synchronously: At each step, all
processors execute the same instruction, each on a different

 Advances in Computing 2014, 4(1): 1-5 3

datum. The instruction could be a simple one (such as adding
or comparing two numbers) or a complex one (such as
merging two lists of numbers). Similarly, the datum may be
simple (one number) or complex (several numbers).
Sometimes, it may be necessary to have only a subset of the
processors which execute an instruction. This information
can be encoded in the instruction itself, thereby telling a
processor whether it should be active (and execute the
instruction) or inactive (and wait for the next instruction).
There is a mechanism, such as a global clock, that ensures
lock-step operation. Thus processors that are inactive during
an instruction or those that complete execution of the
instruction before others may stay idle until the next
instruction is issued. The time interval between two
instructions may be fixed or may depend on the instruction
being executed. In most interesting problems that we wish to
solve on an SIMD computer, it is desirable for the processors
to be able to communicate among themselves during the
computation in order to exchange data or intermediate results.
This can be achieved in two ways, giving rise to two
subclasses: SIMD computers where communication is
through a shared memory and those where it is done via an
interconnection network. An example of a SIMD computer
shown below in figure 1:

Figure 1. A SIMD computer

Shared-Memory (SM) SIMD Computers: This class is
also known in the literature as the Parallel Random-Access
Machine (PRAM) model. Here, the N processors share a
common memory that they use in the same way a group of
people may use a bulletin board. When two processors wish
to communicate, they do so through the shared memory. Say
processor “i” wishes to pass a number to processor “j”. This
is done in two steps. First, processor “i” writes the number in
the shared memory at a given location known to processor
“j”. Then, processor “j” reads the number from that location.
During the execution of a parallel algorithm, the N
processors gain access to the shared memory for reading
input data, for reading or writing intermediate results, and for
writing final results. The basic model allows all processors to
gain access to the shared memory simultaneously if the
memory locations they are trying to read from or write into

are different. However, the class of shared-memory SIMD
computers can be further divided into four subclasses,
according to whether two or more processors can gain access
to the same memory location simultaneously:

(i) Exclusive-Read, Exclusive-Write (EREW) SM SIMD
Computers. Access to memory locations is exclusive. In
other words, no two processors are allowed simultaneously
to read from or write into the same memory location.

(ii) Concurrent-Read, Exclusive-Write (CREW) SM
SIMD Computers. Multiple processors are allowed to read
from the same memory location but the right to write is still
exclusive: No two processors are allowed to write into the
same location simultaneously.

(iii) Exclusive-Read, Concurrent-Write (ERCW) SM
SIMD Computers. Multiple processors are allowed to write
into the same memory location but read accesses remain
exclusive.

(iv) Concurrent-Read, Concurrent-Write (CRCW) SM
SIMD Computers. Both multiple-read and multiple-write
privileges are granted. Allowing multiple-read accesses to
the same address in memory should in principle pose no
problems (except perhaps some technological ones not to be
discussed here). Conceptually, each of the several processors
reading from that location makes a copy of the location's
contents and stores it in its own local memory. With
multiple-write accesses, however, difficulties arise. If
several processors are attempting simultaneously to store
(potentially different) data at a given address, which of them
should succeed? In other words, there should be a
deterministic way of specifying the contents of that address
after the write operation. Several policies have been
proposed to resolve such write conflicts, thus further
subdividing classes (iii) and (iv). Some of these policies are:

(a) the smallest-numbered processor is allowed to write,
and access is denied to all other processors;

(b) all processors are allowed to write provided that the
quantities they are attempting to store are equal, otherwise
access is denied to all processors;

(c) the sum of all quantities that the processors are
attempting to write is stored[9].

Here, there is a very important moment that we should not
disregard it. A fundamental problem in distributed
computing is performing N tasks in a distributed system
consisting of P processors, and despite the presence of
failures and delays. The abstract problem is called Do-All
when processors communicate by exchanging messages and
the tasks are similar in size and independent. Examples of
such tasks include searching a collection of data, applying a
function to the elements of a matrix, copying a large array, or
solving a partial differential equation by applying shifting
method. This problem has been studied in different settings
[10, 11], including some notable work in message-passing
models[12-14], partitionable networks[15-17], and
shared-memory models[18-21], where the problem is called
Write-All. Depending on the model of computation,
algorithmic efficiency is evaluated in terms of time, work,

4 Mehrdad Hashemi et al.: An Overview of the Message Passing Programming Method in Parallel Computing

and message complexity. Work is defined as either the total
number of steps taken by the available processors[22], or the
total number of tasks performed[23]. Message complexity is
expressed as the total number of point-to-point messages.

4. Feasibility of the Shared Memory
Model

The SM SIMD computer is a fairly powerful model of
computation, even in its weakest manifestation, the EREW
subclass. Indeed, the model allows all available processors to
gain access to the shared memory simultaneously. It is
sometimes said that the model is unrealistic and no parallel
computer based on that model can be built. The argument
goes as follows. When one processor needs to gain access to
a datum in memory, some circuitry is needed to create a path
from that processor to the location in memory holding that
datum. The cost of such circuitry is usually expressed as the
number of logical gates required to decode the address
provided by the processor. If the memory consists of M
locations, then the cost of the decoding circuitry may be
expressed as f(M) for some cost function f If N processors
share that memory as in the SM SIMD model, then the cost
of the decoding circuitry climbs to N x f(M). For large N and
M this may lead to prohibitively large and expensive
decoding circuitry between the processors and the memory.
There are many ways to mitigate this difficulty. All
approaches inevitably lead to models weaker than the SM
SIMD computer. Of course, any algorithm for the latter may
be simulated on a weaker model at the cost of more space
and/or computational steps. By contrast, any algorithm for a
weaker model runs on the SM SIMD machine at no
additional cost. One way to reduce the cost of the decoding
circuitry is to divide the shared memory into R blocks, say,
of MIR locations each. There are N + R two-way lines that
allow any processor to gain access to any memory block at
any time. However, no more than one processor can read
from or write into a block simultaneously. the i-th processor
wishes to gain access to the j-th memory block, it sends its
request along the i-th horizontal line to the j-th switch, which
then routes it down the j-th vertical line to the j-th memory
block. Each memory block possesses one decoder circuit to
determine which of the M/R locations is needed. Therefore,
the total cost of decoding circuitry is R x f(M/R). To this we
must add of course the cost of the N x R switches.

5. Conclusions
This paper presents an introduction to the shared memory

architecture of parallel computers and especially the method
of message passing that based on this architecture. Here we
investigated details of this type and analyzed characteristics
and superiorities of this method. Shared-memory model and
the message-passing model are the major aspects of
distributed computing problem. In the first model, we
typically assume that the processes are connected through

reliable communication channels, which do not lose, create
or alter messages. Processes communicate using send and
receive primitives, which encapsulate TCP-like
communication protocols provided in modern networks. But
the second model abstracts a hardware shared memory made
of registers. The processes exchange information using read
and write operations exported by the registers and processors
communicate by writing and reading to share registers. In the
message-passing model, n processors are located at the
nodes of a network and communicate by sending messages
over communication links. This task is somewhat easier in
shared-memory systems, where processors enjoy a more
global view of the system. There are many applied and
computational problems in every field of sciences such as
mathematics and engineering which can be resolve by
parallel algorithms and especially by the techniques
containing message passing programming methods, of
course according to their characteristics. Such emulation is
very appealing because it is usually considered more
convenient to write distributed programs using a shared
memory model than using message passing, and many
algorithms have been devised assuming a hardware shared
memory[24]. Our approach is to study emulation of
shared-memory algorithms for performing tasks in
asynchronous message-passing systems. Our goal is to
resolve different and actual applied and computational
problems in various fields to improve their complexity
compared with their non parallel algorithms. At the next
researches we want to focus on the applying of parallel
algorithms and specially using message passing structure for
the computational problems related optimization of
mathematical difficulties[25-27]. We will investigate
applying mentioned parallel algorithm at the field of oil
extraction problem to save the large amount of time spending
for solving them[27-29].

ACKNOWLEDGEMENTS
We are heartily thankful to our supervisor, prof. F. Aliev

and whose encouragement, guidance and support from the
initial to the final level enabled us to develop an
understanding of the subject. Special appreciation to our
parents for supporting us in different levels of life and
education. Many thanks to Baku State University and deeply
specially to Islamic Azad University of Ahar branch for
inseparable supports.

REFERENCES
[1] J. R. Smith, (1993) “The Design and Analysis of Parallel

Algorithms”, Oxford University Press,.

[2] Selim. G. AKL, (1989) “The Design and Analysis of Parallel
Algorithms”, Queen’s University, Kingston, Canada.

[3] M. Hashemi, (2012), “Programming by Message-Passing

 Advances in Computing 2014, 4(1): 1-5 5

Method In Multi Computer Systems”, The Annual Scientific
Conference of the Faculty of Applied Mathematics and
Cybernetics; Baku State University, Baku, Azerbaijan, pp.
49_52.

[4] J. Cockett & C. Pastro, (2009), “The Logic of Message-
Passing”, Science of Computer Programming, V. 74, pp.
498_533.

[5] B. Mohr, (2006) “Introduction to Parallel Computing,
Computational Nano Science, NIC Series”, Vol. 31, pp.
491-505.

[6] N. Matloff, (2003) “Programming on Parallel Machines;
appendix A”, University of California.

[7] A. Grama & A. Gupta & G. Karypis & V. Kumar, (2003)
“Introduction to Parallel Computing, Second Edition” ,
Addison Wesley.

[8] B. P. Lester, (2006) “The Art of Parallel Programming;
Second Edition”, 1stWorldPublisher, USA.

[9] Selim. G. AKL, (1989) “The Design and Analysis of Parallel
Algorithms”, Queen’s University, Kingston, Canada.

[10] C. Georgiou & A. Shvartsman, (2008) “Do-All Computing in
Distributed Systems: Cooperation in the Presence of
Adversity”, Springer.

[11] P. C. Kanellakis & A. A. Shvartsman, (1997) “Fault-Tolerant
Parallel Computation” , Kluwer Academic Publishers.

[12] R. De Prisco & A. Mayer & M. Yung, (1994) “Time-optimal
message-efficient work performance in the presents of faults”,
in: Proceedings of the 13th Symposium on Distributed
Computing, pp. 161_172.

[13] C. Dwork & J. Halpern & O. Waarts, (1998) “Performing
work efficiency in presence of faults”, SIAM Journal on
Computing, Vol. 5, No. 27, pp. 1457_1491.

[14] Z. Galil & A. Mayer & M. Yung, (1995) “Resolving message
complexity of Byzantine agreement and beyond”, in:
Proceedings of the 36th IEEE Symposium on Foundation of
Computer Science, pp. 724_733.

[15] S. Dolev & R. Segala & A. Shvartsman, (2006) “Dynamic
load balancing with group communication”, Theoretical
Computer Science 369 (1_3), pp. 348_360.

[16] Ch. Georgiou & A. Russell & A. Shvartsman, (2005)
“Work-competitive scheduling force operative computing
with dynamic groups”, SIAM Journal on Computing, Vol. 4,
No. 34, pp. 848_862.

[17] G. G. Malewicz & A. Russell & A. A. Shvartsman, (2006)

“Distributed scheduling for disconnected cooperation”,
Distributed Computing, Vol. 6, No. 18, pp. 409_420.

[18] R. Anderson & H. Woll, (1997) “Algorithms for the certified
Write-All problem” SIAM Journal of Computing, Vol. 5, No.
26, pp. 1277_1283.

[19] Z. Kedem & K. Palem & A. Raghunathan & P. Spirakis,
(1991) “Combing tentative and definite executions for
dependable parallel computing”, in:Proceedings of the 23rd
Symposium on Theory of Computing, pp. 381_390.

[20] Z. M. Kedem & K. V. Palem & P. G. Spirakis, (1990)
“Efficient robust parallel computations” (Extended Abstract),
in: Proceedings of the Twenty Second Annual ACM,
Symposium on Theory of Computing, pp. 138_148.

[21] D. Kowalski & A. Shvartsman, (2008) “Writing-all
deterministically and optimally using a nontrivial number of
asynchronous processors”, ACM Transactions on Algorithms,
Vol. 3, No. 4, Article No. 33.

[22] P. Kanellakis & A. Shvartsman, (1997) “Fault-Tolerant
Parallel Computation”, Kluwer Academic Publishers.

[23] C. Dwork & J. Halpern & O. Waarts, (1998) “Performing
work efficiency in presence of faults”, SIAM Journal on
Computing, Vol. 5, No. 27, pp. 1457_1491.

[24] H. Attiya & A. Bar Noy & D. Dolev, (1995) “Sharing
Memory Robustly in Message Passing Systems”, Journal of
the ACM, Vol. 1, No. 42.

[25] F. Aliev & V. Larin. (2009) “About Use of the Bass Relations
For Solution of Matrix Equations”, Appl. Comput. Math. V. 8,
pp. 152_162.

[26] M. Otelbaev & D. Zhusupova & B. Tuleuov. (2013) “On a
Method of Parallel Computation for Solving Linear Algebraic
System With Ill-conditioned Matrix”, TWMS J. Pure Appl.
Math., V. 4, pp. 115_124.

[27] F. Aliev & M. Jamalbayov & S. Nasibov, (2010),
“Mathematical Modeling of the Well-Bed System Under the
Gas Lift Operation”, TWMS J. Pure Appl. Math., V. 1, N. 1,
pp. 5_13.

[28] A. Codas & E. Camponogara, (2012) “Mixed-Integer Linear
Optimization Fot Optimal Gas-Lift Allocation with
Well_Separator Routing”, European Journal of Operational
Research, V. 217, N. 1, pp. 222_231.

[29] E. Camponogara & P. Nakashima, (2006), “Solving A
Gas-Lift Optimization Problrm by Dynamic Problem”,
European Journal of Operational Research, V. 174, N. 2, pp.
1220_1246.

