
Advances in Computing 2012, 2(4): 54-59
DOI: 10.5923/j.ac.20120204.02

Using Maekawa’s Algorithm to Perform Distributed
Mutual Exclusion in Quorums

Ousmane Thiare1,*, Papa Alioune Fall2

1Department of Computer science, Gaston Berger University, BP 234 Saint-Louis, Senegal
2Department of Applied Physics, Gaston Berger University, BP 234 Saint-Louis, Senegal

papa-alioune.fall@ugb.edu.sn

Abstract In d istributedsystems,cooperatingprocessesshareboth local and remotersources. Chance isveryhighthatmulti-
pleprocessesmakesimultaneous requests to the same resource. If the resourcerequires mutually exclusive access (critical
section - CS), thensomeregulation isneeded to access it for ensuring synchronizedaccess of the resources thatonly one process
could use the resource at a given time. Th is is the distributed mutual exclusion problem. The problem of coordinating the
execution of critical sections by eachprocessissolved by providing mutually exclusive access to the CS. Mutual exclusion
ensures that concurrent processes make a serialized access to shared resources.Quorum-based algorithms offer the advantage
of protocol symmetry, spreading effort and responsibility uniformly across the distributed systems. In thispaper, we have
proposed a permission baseddistributedmutual exclusion algorithmwhichis an improvement of Maekawa’s algorithm. The number
of messages required by the improvisedalgorithmis in the range 3Mto 5Mper critical section invocation whereMis the number of
intersection nodes1 in the system. A reduction in number of message by restricting the communication of anynodewith the
intersection nodes of the quorums, withoutany modification of the basic structure of the algorithm.

Keywords Mutual Exclusion, Communication, Quorum

1. Introduction
Distributed mutual exclusion problem arise when con-

current access to protected resource (termed as Critical
Section (CS)) by several sites is involved. In d istributed
mutual exclusion, the requirement is to serialize the access
to CS in the absence of shared memory, which further com-
plicates the problem.

Mutual exclusion (MUTEX) is a fundamental problem in
distributed systems, where a g roup of hosts intermittently
require entering the Critical Section in o rder to exclusively
perform some critical operations, e.g. accessing the shared
resource. A solution to the MUTEX problem must satisfy
the following three correctness properties:
• Mutual Exclusion (safety): At most one host can be in

the CS at any time;
• Deadlock Free (liveness): If any host is waiting for the

CS, then in a fin ite time some host enters the CS;
• Starvation Free (fairness): If a host is waiting fo r the

CS, then in a fin ite time the host enters the CS.
Many MUTEX algorithms have been proposed for tradi-

tional distributed systems[2] which can be categorized into
two classes: token-based algorithms and permission-based

* Corresponding author:
ousmane.thiare@ugb.edu.sn (Ousmane Thiare)
Published online at http://journal.sapub.org/ac
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

algorithm. In token-based algorithms, a token is passed
among all the hosts. A host is allowed to enter the CS only
if it possesses the token. In a permission-based algorithms,
the host requesting for the CS must first obtain the permis-
sions from other hosts by exchanging messages.

Distributed mutual exclusion algorithms can be classified
as token-based and non-token-based as suggested by[2], or
as token-based and permission-based as suggested by[3]. In
this paper, we proposed a permission based distributed
mutual exclusion algorithm, which is an improvement of
Maekawa’s algorithm[1].

In Suzuki-Kasami’s broadcast[14], when a node wants to
enter the crit ical section, it broadcasts a message to all other
nodes. Whoever holds the token sends the token directly to
the node tat wants to enter the CS. The algorithm requires N
messages for handling each request. The simplest of to-
ken-based algorithms is the Agrawal-Elabbaei’s token ring
approach[13]. In this algorithm, the nodes in the system
form a logical ring. A token always passes around the ring
clockwise or anticlockwise. A node can enter the critical
section if it holds the token. On an average N/2 messages
are required to handle one request in an N nodes system.

Niealsen and Mizuno extended by passing the token di-
rectly to the requesting node instead of through intermediate
node[15]. Naimi-Trehel’s algorithm[16] maintains a dy-
namic logical tree, such that the root of the tree is always
the last node that will get the token among the current re-
questing ones. Chang, Singhal and Liu[17] improved this

55 Advances in Computing 2012, 2(4): 54-59

algorithm, aimed to reduce the number of messages to find
the last requesting host in the logical tree. Mueller[18] also
proposed an extension to Naimi-Trehel’s algorithm, intro-
ducing the concept of priority and the algorithm satisfies the
request with higher priority.

Garcia-Molina and Barbara[4] first introduced the con-
cept of coterie which could be mainly used to devise per-
mission based distributed mutual exclusion algorithms. A
coterie consists of collection of sets of sites in the system
and these sets are called quorums. In general, when a node
wants to execute its CS, it has to obtain permission from
processes of any quorum in the coterie. Maekawa’s algo-
rithm[1] was the first coterie-based algorithm where the
nodes of the system are logically arranged into groups. Any
node intending to execute its CS has to obtain permission
from all the nodes in its respective group and these groups
were created such that any two groups had at least one node
in common (referred to as intersection nodes) which act as
arbitrators. In this paper, we further restrict the communica-
tion of the processes, which want to execute its CS to their
intersection nodes and achieve distributed mutual exclusion
in lesser number of messages.

Maekawa’s algorithm[1] uses cK messages to create mu-
tual exclusion in the distributed system, whereas our pro-
posed algorithm takes cM (M<K) messages per CS invoca-
tion where M, K and c are integers and 3 ≤ c ≤ 5. However,
our proposed algorithm preserves all the advantages of
Maekawa’s algorithm[1] and remains similar to it. The
algorithm proposed in this paper is not fair, the synchroni-
zation delay is 2 and the algorithm is starvation-free.

The problem of resolving conflicting access to resources
also arise in replicated databases, where the emphasis is on
resolving read and write conflicts efficiently. Many meth-
ods[5-8,10,12] have been used to address this issue.

Document structure: The rest of the paper is organized

as follows. Section 2. is designated for related work. Sec-
tion 3. Talk about our distributed system model. Section4.
reviews Maekawa’s algorithm[1]. In section5, we present
our proposed algorithm. Section6. presents the proof of
correctness. In section 6, we present the analysis of the
proposed algorithm. Finally, we conclude in section 8.

2. Related Work
Quorum systems are used to solve many coordination

problems in distributed systems such as mutual exclusion,
data replicat ion, distributed consensus, and commits proto-
cols.

A quorum system is a collection of sets quorums, which
mutually intersect. A replicated database is a distributed
database in which multip le copies of some data items are
stored at multiple servers. One of the advantages of data
replicat ion is to increase data availability so that the system
can remain operational even though some servers have failed.
Another advantage of data replication is to improve per-

formance. With many copies of each data item being avail-
able, a user transaction is more likely to find the data is
needed nearby. However, these benefits are offset by the cost
of maintain ing data consistency.

The load of a quorum system measures the share that
processors have handling request to quorum. Given a prob-
ability distribution on quorum accesses, the load of an ele-
ment is equal to the sum of the access probability of all
quorums it belong to. For a given probability distribution, the
quorum system load is the maximum of the load of all ele-
ments. The load of a quorum system is the min imum over all
access probability distributions.
The availab ility of a quorum system measures the probability
that the system is usable when failu res occur. A quorum
system is availab le given that processors fail accord ing to
some probability distribution. The failure probability of a
quorum system is the probability that the quorum is not
available.
The cost failu re is used to measure the overhead message
complexity due to failures. If a quorum set has some faulty
servers, then it is not usable because it is not guaranteed to
share a correct server with every other quorum. In th is case, a
server attempting to access the quorum with failed servers
must find another quorum with no failed servers. Informally,
the cost of failures is the additional number of servers that
need to be contacted when failure occurs.

Kumar introduced quorum system based on a hierarch ical
construction Maekawa showed that for a fixed integer k , the
maximum possible value of N in which all the properties can
be satisfied is equal to k(k+1)+1, where k is a power prime,
by assuming that any two quorums have only one intersec-
tion. Hence, the theoretical lower bound of the quorum is
approximately equal to √N. Furthermore, he also mentioned
that finding the possible solution for N=k(k+1)+1 is
equivalent to find a finite project ive plane of order k. Nev-
ertheless, not all finite projective planes exist and we only
know how to construct those with power order k=pi where p
is a prime number and i an integer.

For the others values of k , one way to create the sets is
relaxing some of the conditions imposed on the quorums, or
by creating sets for a larger N and the discarding some sets.
In theory, we can solve the optimal quorum problem by
generating all the combinations and see which one satisfies
all properties. However, the time complexity of this exhaus-
tive search algorithm is exponential.

To solve this problem, several methods have been pro-
posed to generate the near-optimal solution.

3. Distributed System Model
The distributed system consists of n distinct servers,

which communicate with each other by message passing
over connected network. The messages take finite but arbi-
trary time to reach at the receiv ing servers. In this paper, we
share in their design to fo llowing assumptions and conditions
for the distributed system environment. All processes in the

 Ousmane THIARE et al.: Using Maekawa’s Algorithm to Perform Distributed Mutual Exclusion in Quorums 56

distributed system are assigned unique identification num-
bers.

3.1. Notion of Quorum

Definition 3.1:A finite pro jective plane is a collect ion of
k2+k+1 points and k2+k+1 lines such that the following
fours axioms hold:

(ⅰ) Every line contains k+1 points.
(ⅱ) Every point lies on k+1 lines.
(ⅲ) Any two distinct lines intersect in exactly one point.
(ⅳ) Any two distinct points lie exactly one line.

Figure 1. The finite projective plane of order 2 (Fano plane)

From the Figure 1., we can determine the fo llowing sets
of 7 lines. Any two lines intersect in one point, and any two
points lie one line.

S1={1, 2, 3}, S2={2, 5, 7}, S3={3, 4, 7}, S4={4, 1, 5}
S5={5, 3, 6}, S6={6, 2, 4}, S7={7, 1, 6}.
Definition 3.2:A quorum systems Q over a set S, is a set

of subsets of S such that any two distinct subsets intersect.
Definition 3.3:Give a set S={1, 2, 3, …, n} representing

the servers of network, find n=S subsets Si⊆S such that
the following properties are satisfied:

(ⅰ) Intersection property: Si ∩ Sj≠∅
(ⅱ) Min imality: Si ⊄ Sj, i≠ j
(ⅲ) Equal size:Si=k+1
(ⅳ) Equal effort: every server i appears in (k+1) Sj
The subsets Sis are called quorum. Quorum that satisfy

the minimality, the mutual intersection and non-emptiness
properties from a coterie. The equal size and equal effort
properties define the additional notion of symmetry in the
coterie. Equal size quorum ensures that each server or client
sends the same number of message to request the shared
resource. The equal effort property requires that each server
be included in the same number o f quorums, ensuring that
all sites expend the same effort in enforcing distributed
mutual exclusion.

The selection of Sis is not unique. There exists a number
of ways to select a set Si that satisfies the above properties.
The problem of finding a set of Q is that satisfies these
conditions are equivalent to finding a finite projective plane
of N points. It is known that there exists a finite pro jective
plane of order k if k is a power of a prime number p. This
fin ite projective p lane has (k+1) lines and k points per line.

4. Maekawa’s Algorithm
In this section, we present the computational model for

the proposed algorithm and a review of Maekawa’s algo-
rithm.

4.1. The Computational Model

In this paper, we assume that a distributed system, which
is common to Maekawa’s algorithm and to the proposed
algorithm, consists of N sites {1, 2, 3, …, j, …, N}. A dis-
tributed system is asynchronous, i.e., there is no common
global clock. Informat ion exchanged between processes is
done by asynchronous message passing. Each communica-
tion channel is FIFO and each message sent is delivered
within finite t ime, but there is no upper bound on message
delivery time. We assume that the system is error free.

The different type of messages used is REQUEST,
LOCKED, INQUIRY, FAILED, RELINQUISH and RE-
LEASE. Timestamps (TS) at any site i (where 1≤ i ≤ N), TSi
are ordered by (Li, i), containing the Lamport’s logical
clock[10] value Li and the site id i.

An ordering, “<” on timestamps is defined as:
TSi<TSjiff (Li <Lj) o r (Li=Lj and i < j).

4.2. The Algorithm

In Maekawa’s algorithm, a site does not request permis-
sion from all the sites, but only from a subset of sites. The
sites of the system are div ided into groups called quorums
(Si,,1≤ i ≤ N). The quorums are constructed such as to sat-
isfy the following conditions:

(ⅰ) ∀i, ∀j, Si ∩ Sj≠∅, i ≠ j, 1≤i,j≤N
(ⅱ) ∀i, node i ∈Sj, 1≤ i ≤N
(ⅲ) ∀i, Si=K, 1≤ i ≤ N
(ⅳ) ∀j, node j is with in KSis, 1≤i,j≤N
Condition (i) (non null intersection property) is a neces-

sary condition for the Si’s so that mutual exclusion requests
can be resolved. Condition (ii) reduces the number of mes-
sages to be sent and received by a node. Condition (iii)
means that each node needs to send and receive the same
number of messages to obtain mutual exclusion (equal
work). Finally condition (iv) signifies that each node is
equally responsible for mutual exclusion (equal responsibil-
ity).
For example, the finite projective plane of order 2 seen in
Section 3. workswell in the case of Maekawa's
algorithmwith the properties of quorums definedabove.

Maekawa establishes the following relationship between
N and K: N=K(K-1)+1. Hence K can be found approxi-
mated to √N.

For any node i, who intends to execute its CS, the algo-
rithm works as follows.

Entry section:Process i multicasts the REQUEST to all
the nodes in its Si including itself. The intersection nodes
can send the REQUEST messages to any one of the districts
to which theybelong. When a process j receives the RE-
QUEST message, it sends LOCKED message to site i if it
has not yet sent it to any other site from the time it received

57 Advances in Computing 2012, 2(4): 54-59

RELEASE message. Or else it queues the REQUEST.
CS execution: Process i executes its CS after receiving

LOCKED message from all the nodes of its Si.
Exit section: After executing its CS, site i sends RE-

LEASE message to all nodes of its Si which restores node’s
right to send LOCKED message to any other pending re-
quests in the queue.

This basic algorithm is prone to deadlock which is han-
dled as follow: Assume that a site j has LOCKED message
to some site k and it later receives a REQUEST message
from any other site i (i≠ k). Then, node j sends FAILED
message to site i if TSk<TSi, otherwise it sends INQUIRY
message to site k . When such a process k receives INQUIRY
message, it sends RELINQUISH message to site j if site k
has received FAILED message from at least one site in Sk,
and has not received new LOCKED message from it(after
receipt of FAILED message).

5. The Proposed Algorithm
Our proposed algorithm presents an improvement to the

Maekawa’s distributed mutual exclusion algorithm. From
Maekawa’s algorithm[1] it is clear that the role of the arbi-
trator is to resolve the conflicting requests to enter CS.
Every node has the responsibility to become an arbit rator to
handle the conflicting requests coming from the quorum to
which it belongs. Nodes that belong to more than one quo-
rum (referred to as intersection nodes), act as inter-quorum
arbitrators, resolving conflict ing requests arising from
nodes of different quorums. Because of the role played by
these intra and inter-quorum arb itrator, the mutual exclusion
condition is maintained throughout the entire network.

Intersection nodes can also act as intra-quorum arb itra-
tors since they are also the members of the quorum. Here
we see that, since the intersection nodes can act as both
inter-quorum and intra-quorum arb itrators, and since every
quorum should have at least one intersection node, all con-
flicting requests can be resolved by communicating with
intersection nodes of the system. This way, we can achieve
per CS invocation with respect to Maekawa’s algorithm[1],
as all the messages required to communicate with
non-intersection nodes can be eliminated.

Hence our proposition is: Maekawa’s d istributed mutual
exclusion algorithm can perform better (in terms of number
of messages required) by restricting the entire algorithm
related communication to be carried out with only the in-
tersection node in the quorum.

In Maekawa’s algorithm[1], all nodes in the quorum are
intersection nodes (from condition (iv) for construction of
quorums which is outlined in section 4.) and hence all
nodes work as inter-quorum arbitrators. To ensure that
number of nodes in the quorum, we propose to liberalize the
conditions for construction of quorums in Maekawa’s algo-
rithm[1].

The quorums in our algorithm are constructed using the
following conditions:

(i) ∀i, ∀j, Si ∩ Sj≠∅, i ≠ j, 1≤i,j≤ y, where y is the num-
ber of quorums, y ≤ N

(ii) Node i belongs to at least one of the quorums
(iii) The number of nodes in the quorum needs to be

equal.
Here, we presented the conditions in the same way as

done by Maekawa’s algorithm in the previous section so
that the reader may note the difference. Condit ions (i) and
(ii) are required to ensure correctness of the algorithm. In
Maekawa’s algorithm[1], it was required to have k number
of nodes in the entire quorum to ensure that all nodes per-
form an equal amount of work for each CS invocation,
which is a desirable feature o f a truly d istributed system.
The system using our algorithm would be a
pseudo-distributed system as the non-intersection nodes do
not participate in CS invocation of other nodes and hence
condition (iii) follows.

The basic working of the algorithm and the required
types of messages need not to be modified. Th is improvisa-
tion would shift the responsibility to maintain the mutual
exclusion condition to the intersection nodes.

6. Proof of Correctness
6.1. Mutual Exclusion

Mutual exclusion is achieved when no pair of processes is
ever simultaneously in its crit ical section. For any pair of
processes, one must leave its CS before the other may enter.

Theorem 6.1: The proposed algorithm ensures the mutual
exclusion property.

Proof: By contradiction. Let us assume that, any two
nodes i and j are executing the CS simultaneously. Let Si and
Sj be the quorums of i and j respectively. Let Si’ and Sj’ be
sets of intersection nodes of Si and Sj respectively. Let k be a
node that belongs to the intersection of Si and Sj.

Consider the case when Si=Sj (i.e. i and j belongs to the
same quorums), then, we choose k from Si’. Since Si=Sj, we
have Si’=Sj’. Thus k belong to Sj’, hence k belongs to both Si’
and Sj’. If Si≠Sj, since k belongs to both Si and Sj, k is an
intersection node, k belongs to both Si’ and Sj’.

Since i is executing the CS, i has captured the LOCKED
message from the entire node belonging to Si’ including k .
Since j is also executing the CS, j also should have captured
the LOCKED messages from all the nodes belonging to Sj’
including k . Thus k has been locked by 2 requests simulta-
neously. However, according to the algorithm only one
request can lock a node at a time. Thus maximum of only one
process can execute the CS at any time.

This proof holds well when i and j belong to same quorum
as well as different quorums. Thus, we see that the proposed
improvement does not affect the correctness of the algo-
rithm.

6.2. Deadlock and Starvation

The system of nodes is said to be deadlocked when no

 Ousmane THIARE et al.: Using Maekawa’s Algorithm to Perform Distributed Mutual Exclusion in Quorums 58

process is in its CS and no requesting process can ever
proceed to its CS.

Starvation occurs when one process must wait indefinitely
to enter its CS even though other processes are entering and
exit ing their own critical section.

Theorem 6.2: The proposed algorithm is deadlock and
starvation free.

Proof: Since no two requests carry same timestamp (pri-
ority), total ordering is achieved among requests. If the total
ordering condition is followed strictly “circu lar wait” con-
dition is not satisfied, and hence deadlock cannot oc-
curs[11].

If an arbitrator (here an intersection node) finds out that it
has actually violated the total ordering condition by sending
LOCKED message to a request with higher priority when
there is a request with lower priority waiting in the request
queue, it sends an INQUIRY message to the recipient of the
LOCKED message. Then if the recipient node has already
started executing the CS, it will not reply. If the recipient
node has not yet entered the CS and if it receives a FAILED
message from at least one of the intersection process, then it
would send the RELINQUISH message to the arbitrator and
release the lock on that node. Then the arbitrator can get
locked to the request with lesser timestamp. Here the “No
pre-emption” condition is not satisfied. Thus, in any case a
deadlock situation cannot occur in the system.

Since no modification has been done to the way the time-
stamp of a node is used or updated, even the improvised
algorithm is starvation free, similar to the original
Maekawa’s algorithm[1].

7. Performance Analysis
Let M be the number of intersection nodes in the quorum.

In the best case where there is no relinquishment happening,
we have M REQUEST messages being sent by the requesting
node for every CS invocation. The node receives M
LOCKED messages. After executing its CS, node sends M
RELEASE messages. Thus 3M number of message is re-
quired. In the worst case, where every LOCKED message is
relinquished, we have additional k number of INQUIRY and
RELINQUISH messages each. Thus 5M (3M+2M) number
of messages is required. Hence, the number of messages
required for every CS execution after modification is cM,
where 3≤ c≤5.

The value of M depends on the way the have the nodes
have been distributed into various quorums. When M=1,
then the system is similar to a centralized system. When M
= N, for all the nodes, then the algorithms performs similar
to that of Ricart-Agrawala’s algorithm[12]. WhenM=√N,
the algorithm performs similar to original Maekawa’s algo-
rithm. Also, it can be noted that, in any case, the number of
intersection processes in a quorum is lesser than or equal to
the number of messages required by the original algorithm.
The system can be designated is such a way that M <√N for
all the quorums of the system, in which case the improvised

algorithm would require lesser number of messages than the
original Maekawa’s algorithm.

8. Conclusions
In this paper, we have proposed a permission-based dis-

tributed mutual exclusion algorithm, which is an improve-
ment of Maekawa’s algorithm. The proposed algorithm is a
modification of Maekawa’s distributed mutual exclusion
algorithm and signification reduction in the number of
messages is being achieved by restricting the communication
of any node of the quorums. The proposed algorithm does
not introduce any additional overheads over the existing
Maekawa’s algorithm, which requires 3K to 5Knumbers of
messages per CS invocation, where K is the number of nodes
in the quorum (M < K).

REFERENCES
[1] M. Maekawa, “A √Nalgorithm for mutual exclusion in de-

centralized systems”, ACM Transactions in Computer Sys-
tems, vol. 3., no. 2., pp. 145-159, 1985.

[2] M. Singhal, “A taxonomy of distributed mutual exclusion”,
Journal of Parallel and Distributed Computing, vol. 18., pp.
145-159, 1993.

[3] M. Raynal, “ A simple taxonomy for distributed mutual
exclusion algorithms”, ACM Operating Systems Review, vol.
23., no. 2., pp. 47-51, 1991.

[4] H. Garcia-Molina, D. Barbara, “How to assign votes in a
distributed system”, Journal for the Association for Compu-
ting Machinery”, vol. 32., no. 4, pp. 841-860, 1985.

[5] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, G. Alonso,
“Understanding replication in databases and distributed sy-
tems” ICDCS Proceedings, pp. 464-474, 2000.

[6] V.S. Ananthanarayana, K. Vidyasankar, “Dynamic primary
copy with piggy-backing mechanism for replicated UDDI
registry”, ICDIT, LNCS, vol. 4317, Springer, pp. 389-402,
2006.

[7] A.R. Bharath Kumar, B.U Pradhan, V.S. Ananthanarayana,
“An efficient Lazy dynamic primary copy algorithm for rep-
licated UDDI registry”, Proceedings of ICCNS, pp. 161-166,
2008.

[8] B.U. Pradhan, A.R. Bharath Kumar, V.S. Ananthanarayana,
“An efficient eager dynamic primary copy algorithm for dis-
tributed databases”, ICDCN, LNCS, 2009.

[9] B.U. Pradhan, A.R. Bharath Kumar, V.S. Ananthanarayana,
“A tree based dynamic primary copy algorithm for distributed
databases” proceedings of ICIP, pp. 564-571, 2008.

[10] L. Lamport, “Time, clock and the ordering of events in a
distributed system”, Communications of the ACM, pp.
558-565, 1978.

[11] E.G. Cuffman, J.M. Elphick, A. Shoshani, “System dead-
locks”, ACM Computing Surveys, pp. 66-78, 1971.

59 Advances in Computing 2012, 2(4): 54-59

[12] G.Ricart, “An optimal algorithm for mutual exclusion in
computer networks”, Communications of the ACM, vol. 24.,
no. 1, pp. 9-17, 1981.

[13] D. Agrawal, A. Elabbaei, “An efficient fault-tolerant solution
for distributed mutual exclusion”, ACM Transactions on
Computer Systems, vol. 9, no. 1, pp. 1-20, 1991.

[14] I. Suzuki, T. Kasami, “A distributed mutual exclusion”, ACM
Transactions on Computer Systems, vol. 3, no. 4, pp. 344-349,
1985.

[15] M. Naimi, M. Trehel, A. Arnold, “A log(N) distributed
mutual exclusion algorithm based on path reversal”, Journal
of Parallel and Distributed Computing, vol. 34, no. 1, pp. 1-13,

1996.

[16] I. Chang, M. Singhal, M.T. Liu, “An improved log(N) mutual
exclusion algorithm for distributed systems”, Proc. of the
International Conference on Parallel and Distributed
Processing, pp. 295-302, 1990.

[17] F. Mueller, “Prioritized token-based mutual exclusion for
distributed systems”, Proc. of the 12th Symposium of Parallel
and Distributed Processing, pp. 791-795, 1998.

[18] F. Kawsar, H.S. Shariful, M.A. Razzaque, M.A. Mottalib,
“An efficient token based algorithm for mutual exclusion in
distributed system, Journal of Engineering and technology,
vol. 2, no. 2, pp. 39-44, 2003.

	1. Introduction
	2. Related Work
	3. Distributed System Model
	3.1. Notion of Quorum

	4. Maekawa’s Algorithm
	4.1. The Computational Model
	4.2. The Algorithm

	5. The Proposed Algorithm
	6. Proof of Correctness
	6.1. Mutual Exclusion
	6.2. Deadlock and Starvation

	7. Performance Analysis
	8. Conclusions

