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Abstract  In d istributedsystems,cooperatingprocessesshareboth local and remotersources. Chance isveryhighthatmulti-
pleprocessesmakesimultaneous requests to the same resource. If the resourcerequires mutually exclusive access (critical 
section - CS), thensomeregulation  isneeded to access it for ensuring synchronizedaccess of the resources thatonly one process 
could use the resource at a given time. Th is is the distributed mutual exclusion problem. The problem of coordinating the 
execution of critical sections by eachprocessissolved by providing mutually exclusive access to the CS. Mutual exclusion 
ensures that concurrent processes make a serialized access to shared resources.Quorum-based algorithms offer the advantage 
of protocol symmetry, spreading effort  and responsibility uniformly  across the distributed systems. In thispaper, we have 
proposed a permission baseddistributedmutual exclusion algorithmwhichis an improvement of Maekawa’s algorithm. The number 
of messages required by the improvisedalgorithmis in the range 3Mto 5Mper critical section invocation whereMis the number of 
intersection nodes1 in the system. A reduction in number of message by restricting the communication of anynodewith the 
intersection nodes of the quorums, withoutany modification of the basic structure of the algorithm. 
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1. Introduction 
Distributed mutual exclusion problem arise when con-

current access to protected resource (termed as Critical 
Section (CS)) by several sites is involved. In d istributed 
mutual exclusion, the requirement is to serialize the access 
to CS in the absence of shared memory, which further com-
plicates the problem.  

Mutual exclusion (MUTEX) is a fundamental problem in  
distributed systems, where a g roup of hosts intermittently 
require entering the Critical Section in o rder to exclusively 
perform some critical operations, e.g. accessing the shared 
resource. A solution to the MUTEX problem must satisfy 
the following three correctness properties: 
• Mutual Exclusion (safety): At most one host can be in 

the CS at any time; 
• Deadlock Free (liveness): If any host is waiting for the 

CS, then in a fin ite time some host enters the CS;  
• Starvation Free (fairness): If a host is waiting fo r the 

CS, then in a fin ite time the host enters the CS. 
Many MUTEX algorithms have been proposed for tradi-

tional distributed systems[2] which can be categorized into 
two classes: token-based algorithms and permission-based  
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algorithm. In token-based algorithms, a token is passed 
among all the hosts. A host is allowed to enter the CS only 
if it possesses the token. In a permission-based algorithms, 
the host requesting for the CS must first obtain the permis-
sions from other hosts by exchanging messages. 

Distributed mutual exclusion algorithms can be classified 
as token-based and non-token-based as suggested by[2], or 
as token-based and permission-based as suggested by[3]. In 
this paper, we proposed a permission based distributed 
mutual exclusion algorithm, which is an improvement of 
Maekawa’s algorithm[1]. 

In Suzuki-Kasami’s broadcast[14], when a node wants to 
enter the crit ical section, it broadcasts a message to all other 
nodes. Whoever holds the token sends the token directly to 
the node tat wants to enter the CS. The algorithm requires N 
messages for handling each request. The simplest of to-
ken-based algorithms is the Agrawal-Elabbaei’s token ring 
approach[13]. In this algorithm, the nodes in the system 
form a logical ring. A token always passes around the ring 
clockwise or anticlockwise. A node can enter the critical 
section if it holds the token. On an average N/2 messages 
are required to handle one request in an N nodes system. 

Niealsen and Mizuno extended by passing the token di-
rectly to the requesting node instead of through intermediate 
node[15]. Naimi-Trehel’s algorithm[16] maintains a dy-
namic logical tree, such that the root of the tree is always 
the last node that will get the token among the current re-
questing ones. Chang, Singhal and Liu[17] improved this 
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algorithm, aimed to reduce the number of messages to find 
the last requesting host in the logical tree. Mueller[18] also 
proposed an extension to Naimi-Trehel’s algorithm, intro-
ducing the concept of priority and the algorithm satisfies the 
request with higher priority.  

Garcia-Molina and Barbara[4] first introduced the con-
cept of coterie which could be mainly used to devise per-
mission based distributed mutual exclusion algorithms. A 
coterie consists of collection of sets of sites in the system 
and these sets are called quorums. In general, when a node 
wants to execute its CS, it  has to obtain permission from 
processes of any quorum in the coterie. Maekawa’s algo-
rithm[1] was the first coterie-based algorithm where the 
nodes of the system are logically arranged into groups. Any 
node intending to execute its CS has to obtain permission 
from all the nodes in its respective group and these groups 
were created such that any two groups had at least one node 
in common (referred to as intersection nodes) which act as 
arbitrators. In  this paper, we further restrict the communica-
tion of the processes, which want to execute its CS to their 
intersection nodes and achieve distributed mutual exclusion 
in lesser number of messages. 

Maekawa’s algorithm[1] uses cK messages to create mu-
tual exclusion in the distributed system, whereas our pro-
posed algorithm takes cM (M<K) messages per CS invoca-
tion where M, K  and c  are integers and 3 ≤ c ≤ 5. However, 
our proposed algorithm preserves all the advantages of 
Maekawa’s algorithm[1] and remains similar to it. The 
algorithm proposed in this paper is not fair, the synchroni-
zation delay is 2 and the algorithm is starvation-free. 

The problem of resolving conflicting access to resources 
also arise in replicated databases, where the emphasis is on 
resolving read and write conflicts efficiently. Many meth-
ods[5-8,10,12] have been used to address this issue. 

 
Document structure: The rest of the paper is organized  

as follows. Section 2. is designated for related work. Sec-
tion 3. Talk about our distributed system model. Section4. 
reviews Maekawa’s algorithm[1]. In section5, we present 
our proposed algorithm. Section6. presents the proof of 
correctness. In section 6, we present the analysis of the 
proposed algorithm. Finally, we conclude in section 8. 

2. Related Work 
Quorum systems are used to solve many coordination 

problems in distributed systems such as mutual exclusion, 
data replicat ion, distributed consensus, and commits proto-
cols. 

A quorum system is a collection of sets quorums, which 
mutually intersect. A replicated database is a distributed 
database in which multip le copies of some data items are 
stored at multiple servers. One of the advantages of data 
replicat ion is to increase data availability so that the system 
can remain operational even though some servers have failed. 
Another advantage of data replication is to improve per-

formance. With many copies of each data item being avail-
able, a user transaction is more likely to find the data is 
needed nearby. However, these benefits are offset by the cost 
of maintain ing data consistency. 

The load of a quorum system measures the share that 
processors have handling request to quorum. Given a prob-
ability distribution on quorum accesses, the load of an ele-
ment is equal to the sum of the access probability of all 
quorums it  belong to. For a given probability distribution, the 
quorum system load is the maximum of the load of all ele-
ments. The load of a quorum system is the min imum over all 
access probability distributions. 
The availab ility of a quorum system measures the probability 
that the system is usable when failu res occur. A quorum 
system is availab le given that processors fail accord ing to 
some probability distribution. The failure probability of a 
quorum system is the probability that the quorum is not 
available. 
The cost failu re is used to measure the overhead message 
complexity due to failures. If a quorum set has some faulty 
servers, then it is not usable because it is not guaranteed to 
share a correct server with every  other quorum. In th is case, a 
server attempting to access the quorum with failed servers 
must find another quorum with no failed servers. Informally, 
the cost of failures is the additional number of servers that 
need to be contacted when failure occurs. 

Kumar introduced quorum system based on a hierarch ical 
construction Maekawa showed that for a fixed  integer k , the 
maximum possible value of N in which all the properties can 
be satisfied is equal to k(k+1)+1, where k  is a  power prime, 
by assuming that any two quorums have only one intersec-
tion. Hence, the theoretical lower bound of the quorum is 
approximately  equal to  √N. Furthermore, he also mentioned 
that finding the possible solution for N=k(k+1)+1 is 
equivalent to find a finite project ive plane of order k. Nev-
ertheless, not all finite  projective planes exist and we only 
know how to construct those with power order k=pi where p 
is a prime number and i an integer. 

For the others values of k , one way to create the sets is 
relaxing some of the conditions imposed on the quorums, or 
by creating sets for a larger N  and the discarding some sets. 
In theory, we can solve the optimal quorum problem by 
generating all the combinations and see which one satisfies 
all properties. However, the time complexity  of this exhaus-
tive search algorithm is exponential. 

To solve this problem, several methods have been pro-
posed to generate the near-optimal solution. 

3. Distributed System Model 
The distributed system consists of n distinct servers, 

which communicate with each other by message passing 
over connected network. The messages take finite but arbi-
trary time to reach at the receiv ing servers. In this paper, we 
share in their design to fo llowing assumptions and conditions 
for the distributed system environment. All processes in the 
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distributed system are assigned unique identification num-
bers. 

3.1. Notion of Quorum 

Definition 3.1:A finite pro jective plane is a collect ion of 
k2+k+1 points and k2+k+1 lines such that the following 
fours axioms hold: 

(ⅰ ) Every line contains k+1 points. 
(ⅱ ) Every point lies on k+1 lines. 
(ⅲ ) Any two distinct lines intersect in exactly one point. 
(ⅳ ) Any two distinct points lie exactly one line. 

 
Figure 1.  The finite projective plane of order 2 (Fano plane) 

From the Figure 1., we can determine the fo llowing sets 
of 7 lines. Any two lines intersect in one point, and any two 
points lie one line. 

S1={1, 2, 3}, S2={2, 5, 7}, S3={3, 4, 7}, S4={4, 1, 5} 
S5={5, 3, 6}, S6={6, 2, 4}, S7={7, 1, 6}. 
Definition 3.2:A quorum systems Q over a set S, is a set 

of subsets of S such that any two distinct subsets intersect. 
Definition 3.3:Give a set S={1, 2, 3, …, n} representing 

the servers of network, find n=S subsets Si⊆S such that 
the following properties are satisfied: 

(ⅰ) Intersection property: Si ∩ Sj≠∅ 
(ⅱ) Min imality: Si ⊄ Sj, i≠ j 
(ⅲ) Equal size:Si=k+1 
(ⅳ) Equal effort: every server i appears in (k+1) Sj 
The subsets Sis are called quorum. Quorum that satisfy 

the minimality, the mutual intersection and non-emptiness 
properties from a coterie. The equal size and equal effort 
properties define the additional notion of symmetry in the 
coterie. Equal size quorum ensures that each server or client 
sends the same number of message to request the shared 
resource. The equal effort  property requires that each server 
be included in the same number o f quorums, ensuring that 
all sites expend the same effort in enforcing distributed 
mutual exclusion. 

The selection of Sis is not unique. There exists a number 
of ways to select a set Si that satisfies the above properties. 
The problem of finding a set of Q is that satisfies these 
conditions are equivalent to finding a finite  projective plane 
of N points. It is known that there exists a finite pro jective 
plane of order k  if k  is a power of a prime number p. This 
fin ite projective p lane has (k+1) lines and k  points per line. 

4. Maekawa’s Algorithm 
In this section, we present the computational model for 

the proposed algorithm and a review of Maekawa’s algo-
rithm. 

4.1. The Computational Model  

In this paper, we assume that a distributed system, which 
is common to Maekawa’s algorithm and to the proposed 
algorithm, consists of N sites {1, 2, 3, …, j, …, N}. A dis-
tributed system is asynchronous, i.e., there is no common 
global clock. Informat ion exchanged between processes is 
done by asynchronous message passing. Each communica-
tion channel is FIFO and each message sent is delivered 
within  finite t ime, but there is no upper bound on message 
delivery time. We assume that the system is error free. 

The different type of messages used is REQUEST, 
LOCKED, INQUIRY, FAILED, RELINQUISH and RE-
LEASE. Timestamps (TS) at any site i (where 1≤ i ≤ N), TSi 
are ordered by (Li, i), containing the Lamport’s logical 
clock[10] value Li and the site id i. 

An ordering, “<” on timestamps is defined as: 
TSi<TSjiff (Li <Lj) o r (Li=Lj and i < j). 

4.2. The Algorithm 

In Maekawa’s algorithm, a site does not request permis-
sion from all the sites, but only from a subset of sites. The 
sites of the system are div ided into groups called  quorums 
(Si,,1≤ i ≤ N). The quorums are constructed such as to sat-
isfy the following conditions: 

(ⅰ) ∀i, ∀j, Si ∩ Sj≠∅, i ≠ j, 1≤i,j≤N  
(ⅱ) ∀i, node i ∈Sj, 1≤ i ≤N  
(ⅲ) ∀i, Si=K, 1≤ i ≤ N 
(ⅳ) ∀j, node j is with in KSis, 1≤i,j≤N 
Condition (i) (non null intersection property) is a neces-

sary condition for the Si’s so that mutual exclusion requests 
can be resolved. Condition (ii) reduces the number of mes-
sages to be sent and received by a node. Condition (iii) 
means that each node needs to send and receive the same 
number of messages to obtain mutual exclusion (equal 
work). Finally condition (iv) signifies that each node is 
equally responsible for mutual exclusion (equal responsibil-
ity). 
For example, the finite  projective plane of order 2 seen in 
Section 3. workswell in the case of Maekawa's 
algorithmwith the properties of quorums definedabove. 

Maekawa establishes the following relationship between 
N and K: N=K(K-1)+1. Hence K can be found approxi-
mated to √N. 

For any node i, who intends to execute its CS, the algo-
rithm works as follows. 

Entry section:Process i multicasts the REQUEST to all 
the nodes in its Si including itself. The intersection nodes 
can send the REQUEST messages to any one of the districts 
to which theybelong. When a process j receives the RE-
QUEST message, it sends LOCKED message to site i if it 
has not yet sent it to any other site from the time it received 
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RELEASE message. Or else it queues the REQUEST. 
CS execution: Process i executes its CS after receiving 

LOCKED message from all the nodes of its Si. 
Exit section: After executing its CS, site i sends RE-

LEASE message to all nodes of its Si which restores node’s 
right to send LOCKED message to any other pending re-
quests in the queue. 

This basic algorithm is prone to deadlock which  is han-
dled as follow: Assume that a site j has LOCKED message 
to some site k  and it  later receives a REQUEST message 
from any other site i (i≠ k). Then, node j sends FAILED 
message to site i if TSk<TSi, otherwise it sends INQUIRY 
message to site k . When such a process k  receives INQUIRY 
message, it sends RELINQUISH message to site j if site k 
has received FAILED message from at least one site in  Sk, 
and has not received new LOCKED message from it(after 
receipt of FAILED message). 

5. The Proposed Algorithm 
Our proposed algorithm presents an improvement to the 

Maekawa’s distributed mutual exclusion algorithm. From 
Maekawa’s algorithm[1] it is clear that the role of the arbi-
trator is to  resolve the conflicting  requests to enter CS. 
Every  node has the responsibility to become an  arbit rator to 
handle the conflicting requests coming from the quorum to 
which it belongs. Nodes that belong to more than one quo-
rum (referred to as intersection nodes), act as inter-quorum 
arbitrators, resolving conflict ing requests arising from 
nodes of different quorums. Because of the role played by 
these intra and inter-quorum arb itrator, the mutual exclusion 
condition is maintained throughout the entire network. 

Intersection nodes can also act as intra-quorum arb itra-
tors since they are also the members of the quorum. Here 
we see that, since the intersection nodes can act as both 
inter-quorum and intra-quorum arb itrators, and since every 
quorum should have at least one intersection node, all con-
flicting requests can be resolved by communicating with 
intersection nodes of the system. This way, we can achieve 
per CS invocation with respect to Maekawa’s algorithm[1], 
as all the messages required to communicate with 
non-intersection nodes can be eliminated. 

Hence our proposition is: Maekawa’s d istributed mutual 
exclusion algorithm can perform better (in terms of number 
of messages required) by restricting the entire algorithm 
related communication to be carried out with only the in-
tersection node in the quorum. 

In Maekawa’s algorithm[1], all nodes in the quorum are 
intersection nodes (from condition (iv) for construction of 
quorums which is outlined in section 4.) and hence all 
nodes work as inter-quorum arbitrators. To  ensure that 
number of nodes in the quorum, we propose to liberalize the 
conditions for construction of quorums in Maekawa’s algo-
rithm[1]. 

The quorums in our algorithm are constructed using the 
following conditions: 

(i) ∀i, ∀j, Si ∩ Sj≠∅, i ≠ j, 1≤i,j≤ y, where y is the num-
ber of quorums, y ≤ N 

(ii) Node i belongs to at least one of the quorums 
(iii) The number of nodes in the quorum needs to be 

equal. 
Here, we presented the conditions in the same way as 

done by Maekawa’s algorithm in the previous section so 
that the reader may  note the difference. Condit ions (i) and 
(ii) are required to ensure correctness of the algorithm. In 
Maekawa’s algorithm[1], it was required to have k  number 
of nodes in the entire quorum to ensure that all nodes per-
form an equal amount of work for each CS invocation, 
which is a desirable feature o f a truly d istributed system. 
The system using our algorithm would be a 
pseudo-distributed system as the non-intersection nodes do 
not participate in CS invocation of other nodes and hence 
condition (iii) follows. 

The basic working of the algorithm and the required 
types of messages need not to be modified. Th is improvisa-
tion would shift  the responsibility to maintain the mutual 
exclusion condition to the intersection nodes. 

6. Proof of Correctness 
6.1. Mutual Exclusion 

Mutual exclusion is achieved when no pair of processes is 
ever simultaneously in its crit ical section. For any pair of 
processes, one must leave its CS before the other may enter. 

Theorem 6.1: The proposed algorithm ensures the mutual 
exclusion property. 

Proof: By contradiction. Let  us assume that, any two 
nodes i and j are executing the CS simultaneously. Let Si and 
Sj be the quorums of i and j respectively. Let Si’ and Sj’ be 
sets of intersection nodes of Si and Sj respectively. Let k  be a 
node that belongs to the intersection of Si and Sj. 

Consider the case when Si=Sj (i.e. i and j belongs to the 
same quorums), then, we choose k from Si’. Since Si=Sj, we 
have Si’=Sj’. Thus k belong to Sj’, hence k  belongs to both Si’ 
and Sj’. If Si≠Sj, since k  belongs to both Si and Sj, k  is an 
intersection node, k belongs to both Si’ and Sj’. 

Since i is executing the CS, i has captured the LOCKED 
message from the entire node belonging to Si’ including k . 
Since j is also executing the CS, j also should have captured 
the LOCKED messages from all the nodes belonging to Sj’ 
including k . Thus k  has been locked by 2 requests simulta-
neously. However, according to the algorithm only one 
request can lock a node at a  time. Thus maximum of only one 
process can execute the CS at any time. 

This proof holds well when i and j belong to same quorum 
as well as different quorums. Thus, we see that the proposed 
improvement does not affect the correctness of the algo-
rithm. 

6.2. Deadlock and Starvation 

The system of nodes is said to be deadlocked when no 



 Ousmane THIARE et al.:  Using Maekawa’s Algorithm to Perform Distributed Mutual Exclusion in Quorums 58 
 

 

process is in its CS and no requesting process can ever 
proceed to its CS. 

Starvation occurs when one process must wait indefinitely  
to enter its CS even though other processes are entering and 
exit ing their own critical section. 

Theorem 6.2: The proposed algorithm is deadlock and 
starvation free. 

Proof: Since no two requests carry same timestamp (pri-
ority), total ordering is achieved among requests. If the total 
ordering condition is followed strictly “circu lar wait” con-
dition is not satisfied, and hence deadlock cannot oc-
curs[11]. 

If an arbitrator (here an intersection node) finds out that it 
has actually violated the total ordering condition by sending 
LOCKED message to a request with higher priority when 
there is a request with lower priority waiting in the request 
queue, it sends an INQUIRY message to the recipient of the 
LOCKED message. Then if the recipient node has already 
started executing the CS, it will not reply. If the recipient 
node has not yet entered the CS and if it  receives a FAILED 
message from at least one of the intersection process, then it 
would send the RELINQUISH message to the arbitrator and 
release the lock on that node. Then the arbitrator can get 
locked to the request with lesser timestamp. Here the “No 
pre-emption” condition is not satisfied. Thus, in any case a 
deadlock situation cannot occur in the system. 

Since no modification has been done to the way the time-
stamp of a node is used or updated, even the improvised 
algorithm is starvation free, similar to the original 
Maekawa’s algorithm[1]. 

7. Performance Analysis 
Let M  be the number of intersection nodes in the quorum. 

In the best case where there is no relinquishment happening, 
we have M REQUEST messages being sent by the requesting 
node for every CS invocation. The node receives M 
LOCKED messages. After executing its CS, node sends M 
RELEASE messages. Thus 3M number of message is re-
quired. In the worst case, where every LOCKED message is 
relinquished, we have additional k  number of INQUIRY and 
RELINQUISH messages each. Thus 5M (3M+2M) number 
of messages is required. Hence, the number of messages 
required for every CS execution after modification is cM, 
where 3≤ c≤5. 

The value of M  depends on the way the have the nodes 
have been distributed into various quorums. When M=1, 
then the system is similar to a centralized system. When M 
= N, for all the nodes, then the algorithms performs similar 
to that of Ricart-Agrawala’s algorithm[12]. WhenM=√N, 
the algorithm performs similar to original Maekawa’s algo-
rithm. Also, it can be noted that, in any case, the number of 
intersection processes in a quorum is lesser than or equal to 
the number of messages required by the original algorithm. 
The system can be designated is such a way that M <√N  for 
all the quorums of the system, in  which case the improvised 

algorithm would require lesser number of messages than the 
original Maekawa’s algorithm. 

8. Conclusions 
In this paper, we have proposed a permission-based dis-

tributed mutual exclusion algorithm, which is an improve-
ment of Maekawa’s algorithm. The proposed algorithm is a 
modification of Maekawa’s distributed mutual exclusion 
algorithm and signification reduction in the number of 
messages is being achieved by  restricting the communication 
of any node of the quorums. The proposed algorithm does 
not introduce any additional overheads over the existing 
Maekawa’s algorithm, which requires 3K to 5Knumbers of 
messages per CS invocation, where K is the number of nodes 
in the quorum (M < K ). 
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