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Abstract  One of the techniques to resolve the problem more quickly is using the multi-scale spatial dimension reduction. 
In classical theory, system analysis based on multi-scaling is extremely difficult, because it is dependent on the behavior of 
every component analysis and understanding the relationship between them. The new achievements in this field show that 
most systems cannot be scaled at any condition. Regardless to this property of the system, Kadanoff's theory shows a nec-
essary condition of scaling. Based on this theory, the best condition of scaling occurs in the phase transition condition at the 
critical temperatures of material. In this condition, upper-scale system behavior is approximately similar to the main-scale 
system behavior. This article is benefited from this theory and is presented the new algorithm that is named Simulated An-
nealing Multi-Scaling (SAMS). This algorithm is based on the spin glass paradigm to solve the NP-complete portfolio se-
lection problem as a case study. Due to many relationships between stocks, the problem scaling, is equivalent to loss of part of 
the data, hence the possibility to achieve the ground state decline so much. By using this theory, it is shown that the best time 
to change the scale of the problem with minimum error occurs during its phase transition. Tests on five major stock exchange 
data show, this algorithm, in addition to confirming Kadanoff's theory in application, has more convergence speed than 
traditional methods such as SA and also, provides the possibility of using parallel processing in optimization problems. 

Keywords  Ising Spin Glass Model, Portfolio Selection Problem, Multi-Scaling, Kadanoff's Scaling Picture Theory, 
Parallel Processing 

1. Introduction 
Most systems around us have superiority complex na-

ture[1]. For adequate understanding of these systems, only 
recognition of its principal components is not enough. Be-
cause of identifying the relationship between them is more 
difficult than recognizing its individual components[1] and 
specially, it is more complicated for systems with emergent 
behavior[2,3]. In this case, heuristic algorithms such as ge-
netic algorithm or simulation techniques such as Monte- 
Carlo methods usually help to find the optimal system's state. 
Because of the inherent low speed specification (with re-
gards to accuracy) of these algorithms, scientists are en-
couraged to representing new methods to reach both accu-
racy and speed[4,5]. One of these techniques considered in 
this direction uses a physical property of materials such as 
multi-scaling property[6]. Since, scaling cannot be done at 
any condition and depend on recognizing individual system's 
components[7,8]; Kadafnoff's theory can help us to find the 
best time and conditions of scaling. Based on Kadanoff's 
theory, the best scaling condition of system is in phase tran-
sition at the critical temperatures[8]. In other words, the best 
time to build up the upper-scale of a system (to reduce the 
dimensionality of system's space) is during its phase  
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transition. Despite, the number of variables in upper scale is 
less and relationships between them are weaker, and require 
less processing time[9] to find optimal state of the problem in 
upper scale; both systems (main scale and upper scale) have 
the same functional behavior, and the energy equations are 
used without significantly changes. Hence it is enough to 
provide the phase transition condition for the problem and 
rescale the problem into upper-scale to find the optimal state 
faster. 

In this paper, a new optimization algorithm that is named 
SAMS based on spin glass scaling and Kadanoff's theory is 
presented and as a case study, the portfolio selection problem 
is solved. So first, the portfolio selection problem is mapped 
into long range spin glass as mentioned in paper[10], and 
then the glass is placed in phase transition situation. In this 
condition, the scale of the glass is changed into a upper scale 
glass and some smaller main scale glass. For each generated 
glasses, ground state is found with one of the heuristic 
methods such as simulated annealing (SA) and finally re-
normalized again to show the found ground state of the 
problem. 

The experiments show, the speed of finding ground state 
has increased about fifty percent regardless having compu-
tation overhead. 

So first, in Section 2, concepts of renormalization and 
multi-scaling are described, in Section 3, the proposed 
SAMS algorithm based on the kadanoff's theory and multi- 
scaling is explained. In Section 4, the portfolio selection 
problem and Markowitz model are defined and in Section 5, 
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the portfolio selection solution by using long range spin glass, 
which is described in paper[10], is expressed again. Finally, 
in Section 6, experimental results and conclusions are pre-
sented. 

2. Renormalization Group and 
Multi-Scaling 

Renormalization group transformation is a process that all 
algorithms and formulas of a system in scale S α=  be-
come represented into the algorithms and formulas in scale 
S β= [8]. S shows the scale factor and its numerical value 
is smaller than or equal to 1 and is greater than zero. Value 1, 
represents the main glass and, smaller than 1, indicates the 
glass in upper-scale. In renormalization group theory, first, 
the glass is clustered. It is assumed that each cluster of spins 
is a new spin in upper-scale glass. In new glass, with less 
spins, it is assumed the energy equations remain constant 
during the scaling and it can be used for upper-scale without 
any changes. It should be mentioned that there are various 
clustering algorithms and can be studied as sample in[9,11]. 
This article, dose not talks about the glass clustering; the 
desired clustering is more like making mesh. In other words, 
kind of division and regional position on the glass is per-
formed. After clustering, for each smaller glass and upper- 
scale glass, ground state is calculated using heuristic algo-
rithm. This operation can be performed in several stages as 
much as scaling allows. 

 
Figure 1.  Glass with scale factor 1=S , in this glass, there are twenty spin 

 
Figure 2.  Glass with scale factor 1.0=S , a glass with twenty spin re-
normalized to a glass with 2 spin that each one has ten spin 

Energy of each glass is calculated as follows[12]: 

1 1 1

1
2

N N N
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i j i
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= = =

= − −∑∑ ∑        (1) 

E  is the energy of the glass and N  is total number of 
spins in the glass. The sum i , j  runs over all pairs of 
nearest neighbors (in this paper, glass is long range spin glass, 
and each spin is nearest neighbor of all other spins), ijJ  

denotes the strength of the bond connecting spins i  and j . 
0ijJ >  describes a ferromagnetic interaction, while 0<ijJ  

describes an anti-ferromagnetic interaction. The quantity ih  
is the external field acting on spin i  and describes the en-

ergy due to the spin's orientation. Also, the factor 1
2

 cor-

rects for double counting of the interaction between every 
two neighboring spins. Here the task is to find a spin con-
figuration ix  that minimizes the energy of the spin glass, 
given { ijJ }, { ih }. 

For calculating the energy of upper-scale glass, the 
strength of the bond between spins ABJ  and external field 

Ah energy must first be calculated. For this purpose, formula 
(2) is used for calculating the energy between spins and 
formula (3) is used for calculating the external field energy 
per spin[9]. 
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is the total spin of each cluster and a  is the total 

spin in glass in upper-scale. So, the total number of spins of 
main scale glass is equal to .N a b= . 

Considering the above definitions and regarding to the 
renormalization theory the energy per glass in upper-scale is 
calculated as follows: 

1 1 1

1
2

a a a

AB A B A A
A B A

E J S S h S
= = =

= − −∑ ∑ ∑         (4) 

3. SAMS Algorithm 
In Fig. (1), a summery of SAMS algorithm is shown. This 

algorithm is a combination of SA and multi-scale techniques 
regards to the renormalization process and used for solving 
optimization problems. SA is used for finding optimal state 
of each glass and scaling is used for creating glasses with 
different scale. 

As shown in Fig. (3), first, glass is placed in phase transi-
tion condition and renormalized. In this condition, an up-
per-scale glass along with several smaller glasses is pro-
duced. For all produced glass, SA algorithm is applied. The 
results are glasses that are locally optimal. Now, the result of 
upper-scale glass is applied on main-scale glass, (by multi-
plying the amount of each spin in upper-scale glass), to 
demonstrate the glass's ground state. 

Experiments show, the optimal glass's state, in regards to 
SAMS algorithm, is closer to ground state; but it is not 
ground state yet. The reason is clear: the renormalization 
formulas are approximate and accuracy is reduced from 
main-scale to upper-scale. Even, these conditions are worse 
for more scaling levels that cause glass can not specify the 
ground state clearly. 
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0 Set the Glass in phase transition position 
  

1 
Renormalize the glass to main scale glasses and a 

upper scale glass based on formula (2), (3) 
   

2 
For each main scale glasses run SA for finding 

ground state based on formula (1) 
   

3 
For a upper scale glass Run SA for finding ground 

state based on formula (4) 
   
4 Renormalize all glasses to main-glass 
   
5 Run SA on main-scale with lower temperature 

Figure 3.  Algorithm SAMS, based on Kadanoff's theory. Row 5, can be 
executed after renormalization for finding glass ground state; it is not part of 
SAMS algorithm 

The above algorithm has been tested for portfolio selec-
tion problem based on spin glass paradigm. However, the 
state of upper-scale spins represents the better assets but this 
may not be optimal portfolio; also, it is largely influenced on 
finding better assets and causes the performance of the op-
timization algorithm increase. 

4. Portfolio Selection Problem 
Let us consider the Markowitz mean-variance model[13, 

14] for the portfolio selection problem as stated below,  

Min 
1 1
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i ij j
i j
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= =
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1

1
N

i
i

x
=
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0 1, 1,...,ix i N≤ ≤ =               (5) 
where N  is the number of different assets, iµ  is the 

mean return of asset i , and ijσ  is the covariance between 
returns of assets i and j . The decision variable ix  repre-
sents the fraction of capital to be invested in asset i . Eqs. 
(2)-(3) are two cost functions that should be solved with 
constraints (4) and (5). iµ  is the mean return of asset i  in 

n  intervals of time, i.e. 
1

( ) ( )
( )

n
ei bi

i
t bi

W t W t
W t

µ
=

−
=∑ , where biW  

is the i th asset value at the beginning and eiW  is the i th 
asset value at the end of each interval. 

In this paper we change the multiobjective problem into a 
multimodal problem with single objective function as fol-
lows, 

Minimize . (1 ).
1 1 1

N N N
x x xi ij j i ii j i

λ σ λ µ+ − −∑ ∑ ∑
= = =

   
     

        (6) 
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1

N
xii
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=
                             (7) 

0 1, 1, ...,x i Ni≤ ≤ =                 (8) 
In Eq. (6), let [ ]1,0∈λ  be the risk aversion parameter. If 

λ =0 then Eq. (6) represents maximum portfolio mean return 
(without considering the variance) and the optimal solution 
will be formed only by the asset with the greatest mean re-
turn. The case with λ =1 represents minimizing the total 
variance associated with the portfolio (regardless of the 
mean returns) and the optimal solution will typically consist 
of several assets. Any value of λ  inside the interval (0,1) 
represents a tradeoff between mean return and variance, 
generating a solution between the two extremes, λ =0 and 1. 

5. Solving Portfolio Selection Problem 
Using Spin Glass Paradigm 

To present our method, we initially map the portfolio se-
lection problem into a spin glass computational model and 
then find its ground state by looking at the objective function, 
Eq. (6), of the portfolio selection problem and comparing it 
with the spins energy function Eq. (1) of the spin glass model. 
We obtain the values for the interaction strength as follows 
[10]: 

ijijJ λσ2−=                 (9) 

iih µλ)1( −=                (10) 
The decision variable ix  represents the proportion of 

capital to be invested in asset i; and in spin glass, we can 
define ix to be the state of spin i. So the problem of portfolio 
selection can be solved by minimizing the mapped function 
as in Eq. (6). 

For finding the minimum of optimization function Eq. (6) 
with regard to constraints (7)-(8), we first randomly place the 
possible assets into a long range glass (Full connection glass). 
All of the spins in this structure are initialized to random 
values. Therefore, we can use some heuristic algorithm or 
methods such as SA to select the best assets by finding the 
ground state or minimum energy of the glass. 

According to the SA algorithm, a spin is chosen randomly 
at every flip and the value of the selected spin is increased by
ε . Accordingly, the value of neighboring spins changes to 
meet the constraints (7) and (8). 

For the heating and cooling schedule, procedures related 
to SA are used, as in[15,16]. To do so, the temperature of the 
network is considered to be initially set to 0 1T =  (at high 
temperatures all states can occur). Each time the changes are 
applied the temperature gradually decreases until it reaches 
near zero. Temperature variations can be governed by the 
following formula,  

1,2
0)( ≥= n

n

T
nT             (11) 

where n represents the number of epochs. The stop con-
dition of algorithm is the iteration of single result in number 
of defined steps continually with regard to defined precision. 
For example all experiments' results have been measured by 
ten same results with a precision of 710− . 
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6. Experimental Results 
Experiments on the benchmark data were originally per-

formed in[17]. These benchmark data are presented in text 
file format as follows: 

Number of assets (N); and for each asset i (i=1,...,N): mean 
return as well as standard deviation of return; for all possible 
pairs of assets: i, j, correlation between asset i and asset j. 
The above data were taken from five major stock exchange 
markets, during the time period extending from March 1992 
to September 1997. These five stock exchange markets in-
clude Hang Seng in Hong Kong (31 assets), Deutscher Ak-

tien Index (DAX100) in Germany (85 assets), Financial 
Times London Stock Exchange (FTSE100) in Britain (89 
assets), Standard & Poor's (S&P100) in USA (98 assets), and 
Nikkei in Japan (225 assets). Probability density function 
(pdf) of covariance P(J) of each stock market for the given 
data has been shown in Fig. (4). 

As can be observed, the P(J) of the five given stock mar-
kets have small mean and variance. 

All of the experiments were performed using Borland 
Delphi 6.0 running on a Pentium 2.4 GHz PC, under Win-
dows XP operating system. 

 
Figure 4.  Probability density functions for covariances between assets in 5 major stock markets from 1992 to 1997 from data in [17] 

 
Figure 5.  Phase Transition Temperature for five stock markets [17], this temperature is the same for all stocks 
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Table 1.  Comparison between SA and SAMS, the time to find ground state with random initialization is more than time to find ground state after initia-
lizing with SAMS algorithm 

Productivity 
(%) 

Total time to find ground state 
with random initialization and 
using SAMS algorithm (ms) 

Time to find ground state 
after initializing with 
SAMS results (ms) 

Time to find ground 
state with random 
initialization (ms) 

Number of Assets 

81 9610 2033 11221 32 assets Hang Seng 
50 80433 38721 77669 90 Assets DAX100 
52 86300 39780 84536 90 Assets FTSE100 
74 86132 21827 85579 100 Assets S&P100 
84 512034 216234 1402401 240 Assets Nikkei 

 

6.1. Phase Transition for Portfolio Selection Problem 

A phase transition typically refers to a transformation of a 
thermodynamic system from one state to another. This 
transformation is typically marked by a sudden change in 
some physical property that is the result of some small 
change in what is called an order parameter (e.g., tempera-
ture)[18,19]. Phase transition temperature in spin glasses is a 
sudden change that occurs in a state of glass. In other words, 
at this temperature, the probability of finding the ground 
state of the glass decreases significantly and glasses' states 
are unlikely to be a ground state. Fig. (8) illustrates phase 
transition temperature of spin glasses applied to the portfolio 
selection problems. As shown in this figure, the probability 
of reaching ground state (

min

E
E

) is equal to 1 in low tempera-

tures, where E is the amount of glass energy and minE  is the 
actual minimum of the energy function. As temperature rises, 
glass energy also changes and the probability of reaching 
ground state is expected to gradually decrease. However, this 
drop is delayed until phase transition, where a sudden drop 
occurs. After phase transition temperature (critical tem-
perature), the probability of reaching ground state decreases 
significantly. As shown in Fig. (8), this temperature is ap-
proximately 5.8* 10-5 for all of the five mentioned stocks. At 
this temperature, system is not in ground state and selecting 
any state as answer of the problem is unlikely to be a ground 
state. 

After the spin glass was placed in phase transition condi-
tion, renormalization process is performed. In this case, the 
glass is divided into several smaller glasses. Also according 
to formulas (2) and (3), a upper-glass scale is produced. Now, 
SA algorithm applies for upper-scale glass and all main-scale 
glasses. The results show that the time to reach to optimal 
state reduced effectively. So that, if the starting temperature 
without using renormalization process is 0T , then tempera-
ture, for the case with using renormalization process is ap-
proximately 0

1000
T . 

This means, the SA algorithm needs lower temperature for 
initializing and is caused increasing convergence speed of 
the algorithm. 

Table (1), shows the time of convergence speed to finding 
spin glass ground state for two SA and SAMS algorithm. As 
shown, productivity (the ratio of the time of finding ground 
state that initialize with applying SAMS algorithm to the 
time of finding ground state with random initializing) is 
significant. For example, in Hang Seng stock market, pro-

ductivity is 0.81 percent. 
In this experiment, the scale factor is 0.5 and glass is di-

vided into two separated glasses. 
This experiment shows that dividing glasses into two 

separated glass cause higher convergence speed in finding its 
ground state but it may not find the ground state of the main 
glass respectively. However, the upper-scale glass ground 
state help to provide better initialization condition. 

Advantages in using this algorithm can be expressed as 
follows: 1) Initializing glass with one thousandth of original 
temperature means higher convergence speed and savings in 
time and energy. 2) Many of inappropriate states that were 
searched by SA, was not explored by SAMS; because of 
exploiting in the range of optimal state. 3) Provides possi-
bility of using parallel processing for each glass separately. 4) 
If the bond energy between spins is weak then the SAMS 
algorithm gives better response. This is because, loosely 
interaction between spins, as expressed in [7], increase the 
local behavior of each spin and causes the local search 
methods, have greater accuracy to find the optimal states. 

7. Summary and Conclusions 
In this article, a new optimization algorithm (SAMS) for 

solving problems based on spin glasses is presented. This 
algorithm, by using multi-scaling property of material, tries 
to break problem into smaller problems. Since scaling can 
not be done at any condition, Kadanoff's theory has been 
used to show the best conditions of scaling. Based on Ka-
danoff's theory, the best condition of scaling is in phase 
transition condition at critical temperature of material. So, 
this algorithm uses these two properties and solves the 
portfolio selection problem as case study. The experiments 
show, this algorithm, in addition to confirm Kadanoff's the-
ory in application, has more convergence speed than tradi-
tional methods such as SA and also, provides possibility of 
using parallel processing in optimization problems. 
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