Science and Technology
p-ISSN: 2163-2669 e-ISSN: 2163-2677
2013; 3(2A): 32-40
doi:10.5923/s.scit.201301.06
Sana Kausar, Shirish Joshi
Dept. of Physics, Govt. M.V.M. College, Bhopal, India
Correspondence to: Sana Kausar, Dept. of Physics, Govt. M.V.M. College, Bhopal, India.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
The stability and electronic structure of a single monatomic Silicon nanowire has been studied using density functional theory. The Si nanowire undergoes two structural rearrangements when it undergoes compression, i.e., zigzag configurations. Cohesive energy and bond length of Si nanostructures (chains and monolayers) are examined by using Generalized geometry approximation and Local density approximation. The relation between low dimensional 1D structure (chain) to high dimensional 3D bulk Si is estimated.
Keywords: GGA, nanowire,castep and LDA
Cite this paper: Sana Kausar, Shirish Joshi, Structural and Electronic Properties of Si Nanostructures, Science and Technology, Vol. 3 No. 2A, 2013, pp. 32-40. doi: 10.5923/s.scit.201301.06.
![]() | Figure 1. Geometrical configuration of Al chains: (A) first zigzag energy minimum structure with angle=140o, (B) transition zigzag chain with angle=100o, (C) global energy minimum structure, di-atomic chain (triangle) with angle=60o.stretched, and the bond length increases in the zigzag geometry compared to the linear structure |
![]() | Figure 2. variation of total energies, bond length, and bond angle of monoatomic Si nanowire as a function of its length per atom |
![]() | Figure 3. Top view of (a) (111) Si nanowire, (b) (110) silicon nanowire and (c)[100] Si nanowire with their density of states |
[1] | H.Hofmann, Nanomaterials, Powder Technology LaboratoryVersion 1 Sept 2009 |
[2] | Jaya Sarkar, Gobinda Gopal Khan† and A Basumallick, Bull. Mater. Sci., Vol. 30, No. 3, June 2007, pp. 271–290. |
[3] | Erik C. Garnett, Mark L. Brongersma, Yi Cui, and Michael D. McGehee Annual . Rev. Mater. Res. 2011. 41:269–95 |
[4] | B. Lassen, M. Willatzen, R. Melnik, L.C. Lew Yan Voon, J. Mater. Res., Vol. 21, No. 11, Nov 2006 |
[5] | D. Sánchez-Portal, E. Artacho, J. Junquera, P. Ordejón, A. García, and J. M. Soler, Phys. Rev. Lett. 83, 3884 (1999). |
[6] | H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature (London) 395, 780 (1998). |
[7] | A. Rubio, Y. Miyamoto, X. Blasé, M. L. Cohen, and S. G. Louie, Phys. Rev. B. 53, 4023 (1996) |
[8] | L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1948), Chap. XI. |
[9] | M. C. Payne, et al., Rev. Mod. Phys. 64, 1045 (1992). |
[10] | V. Milman, et al., Int. J. Quant. Chem. 77, 895(2000) |
[11] | M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). |
[12] | G. Kresse and J. Hafner Numerical computations have been carried out using VASP software., Phys. Rev. B 47, R558 (1993); G. Kresse and J. Furthmuller, ibid. 54, 11169 (1996). |
[13] | W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965); P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). |
[14] | D. Vanderbilt, Phys. Rev. B 41, R7892 (1990). |
[15] | Jin-Cheng Zheng, Hui-Qiong Wang, A. T. S. Wee and C. H. A. Huan, International Journal of Nanoscience 1(2): 159-169 (2002). |
[16] | N. Y. Skorodumova, S. I. Simak, Computational Materials Science 17, 178-181 (2000) |
[17] | K.P. Bohnen and K.M. Ho, Surf. Sci. Rep. 19, 99-120 (1993). |
[18] | D. Sánchez-Portal, E. Artacho, J. Junquera, P. Ordejón, A. García, and J. M. Soler, Phys. Rev. Lett. 83, 3884 (1999). |
[19] | D. Sánchez-Portal, C. Untiedt, J. M. Soler, J. J. Sáenz, and N. Agraït, Phys. Rev. Lett. 79, 4198 (1997). |
[20] | M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young's Modulus of Silicon?", IEEE Journal of Microelectromechanical Systems, vol. 19, Issue 2, pp. 229-238, 2010. |
[21] | Silicon Self-Diffusion in Isotope Heterostructures H.Bracht, E.E.Haller, R.Clark-Phelps: Physical Review Letters, 1998, 81[2], 393-6 |