[1] | WHO, Global Tuberculosis Report 2013. 2013. |
[2] | WHO, Global tuberculosis report 2012.Geneva: WorldHealth Organization. 2012. |
[3] | Zignol, M., et al., Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis, 2007-2010. Bull World Health Organ, 2012. 90(2): p. 111-119D. |
[4] | Aaron, L., et al., Tuberculosis in HIV-infected patients: a comprehensive review. Clin Microbiol Infect, 2004. 10(5): p. 388-98. |
[5] | WHO, R., World Health Organization report: Global tuberculosis control. 2008. |
[6] | Filliol, I., et al., Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol, 2006. 188(2): p. 759-72. |
[7] | Barnes, P.F. and M.D. Cave, Molecular epidemiology of tuberculosis. N Engl J Med, 2003. 349(12): p. 1149-56. |
[8] | Garcia de Viedma, D., Rapid detection of resistance in Mycobacterium tuberculosis: a review discussing molecular approaches. Clin Microbiol Infect, 2003. 9(5): p. 349-59. |
[9] | Filliol, I., et al., Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol, 2003. 41(5): p. 1963-70. |
[10] | Gutierrez, M.C., et al., Predominance of ancestral lineages of Mycobacterium tuberculosis in India. Emerg Infect Dis, 2006. 12(9): p. 1367-74. |
[11] | Mokrousov, I., et al., Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family: practical implications and evolutionary considerations. J Clin Microbiol, 2004. 42(6): p. 2438-44. |
[12] | Mazars, E., et al., High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A, 2001. 98(4): p. 1901-6. |
[13] | Hirsh, A.E., et al., Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A, 2004. 101(14): p. 4871-6. |
[14] | Soini, H., et al., Characterization of Mycobacterium tuberculosis isolates from patients in Houston, Texas, by spoligotyping. J Clin Microbiol, 2000. 38(2): p. 669-76. |
[15] | Sola, C., et al., Tuberculosis in the Caribbean: using spacer oligonucleotide typing to understand strain origin and transmission. Emerg Infect Dis, 1999. 5(3): p. 404-14. |
[16] | Yang, Z., et al., Diversity of DNA fingerprints of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol, 1998. 36(4): p. 1003-7. |
[17] | van Soolingen, D., et al., Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol, 1993. 31(8): p. 1987-95. |
[18] | van Embden, J.D., et al., Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol, 1993. 31(2): p. 406-9. |
[19] | Kamerbeek, J., et al., Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol, 1997. 35(4): p. 907-14. |
[20] | Cowan, L.S., et al., Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol, 2002. 40(5): p. 1592-602. |
[21] | Dale, J.W., et al., Molecular epidemiology of tuberculosis in Malaysia. J Clin Microbiol, 1999. 37(5): p. 1265-8. |
[22] | Sola, C., et al., Genotyping of the Mycobacterium tuberculosis complex using MIRUs: association with VNTR and spoligotyping for molecular epidemiology and evolutionary genetics. Infect Genet Evol, 2003. 3(2): p. 125-33. |
[23] | Supply, P., et al., Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol, 2001. 39(10): p. 3563-71. |
[24] | Supply, P., et al., Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol, 2000. 36(3): p. 762-71. |
[25] | Kremer, K., et al., Use of variable-number tandem-repeat typing to differentiate Mycobacterium tuberculosis Beijing family isolates from Hong Kong and comparison with IS6110 restriction fragment length polymorphism typing and spoligotyping. J Clin Microbiol, 2005. 43(1): p. 314-20. |
[26] | Warren, R.M., et al., Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J Clin Microbiol, 2004. 42(12): p. 5774-82. |
[27] | Sun, Y.J., et al., Characterization of ancestral Mycobacterium tuberculosis by multiple genetic markers and proposal of genotyping strategy. J Clin Microbiol, 2004. 42(11): p. 5058-64. |
[28] | Supply, P., et al., Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol, 2003. 47(2): p. 529-38. |
[29] | van Soolingen, D., et al., Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol, 1995. 33(12): p. 3234-8. |
[30] | Kremer, K., et al., Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol, 1999. 37(8): p. 2607-18. |
[31] | Bhanu, N.V., et al., Predominace of a novel Mycobacterium tuberculosis genotype in the Delhi region of India. Tuberculosis (Edinb), 2002. 82(2-3): p. 105-12. |
[32] | Niobe-Eyangoh, S.N., et al., Molecular characteristics of strains of the cameroon family, the major group of Mycobacterium tuberculosis in a country with a high prevalence of tuberculosis. J Clin Microbiol, 2004. 42(11): p. 5029-35. |
[33] | Brudey, K., et al., Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol, 2006. 6: p. 23. |
[34] | Filliol, I., et al., Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Infect Dis, 2002. 8(11): p. 1347-9. |
[35] | Sola, C., et al., Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis, 2001. 7(3): p. 390-6. |
[36] | Small, P.M., et al., The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med, 1994. 330(24): p. 1703-9. |
[37] | Valway, S.E., An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N Engl J Med, 1998. 338(10): p. 633-639. |
[38] | F. Barnes, P., Molecular epidemiology of Tuberculosis. New England J of Medicine, 2003. 349(12): p. 1149-1155. |
[39] | Silver, R.F., Q. Li, and J.J. Ellner, Expression of virulence of Mycobacterium tuberculosis within human monocytes: virulence correlates with intracellular growth and induction of tumor necrosis factor alpha but not with evasion of lymphocyte-dependent monocyte effector functions. Infect Immun, 1998. 66(3): p. 1190-9. |
[40] | Caminero, J.A., Epidemiological evidence of the spread of a Mycobacterium tuberculosis strain of the Beijing Genotype on Gran Canaria Island. Am J Resp Crit Care Med, 2001. 164: p. 1165-1170. |
[41] | H. McShane, Susceptibility to tuberculosis- the importance of the pathogen as well as the host. Clin Exp Immunol, 2003. 133: p. 20-21. |
[42] | Iseman, M.D. and L.A. Madsen, Drug-resistant tuberculosis. Clin Chest Med, 1989. 10(3): p. 341-53. |
[43] | Mitchison, D.A., [Mechanisms of the action of drugs in the short-course chemotherapy]. Bull Int Union Tuberc, 1985. 60(1-2): p. 36-40. |
[44] | WHO, R., WHO annual report on global TB control--summary. Wkly Epidemiol Rec, 2003. 78(15): p. 122-8. |
[45] | Bloch, A.B., et al., Nationwide survey of drug-resistant tuberculosis in the United States. Jama, 1994. 271(9): p. 665-71. |
[46] | Edlin, B.R., et al., An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med, 1992. 326(23): p. 1514-21. |
[47] | CDC, Transmission of multidrug-resistant tuberculosis from an HIV-positive client in a residential substance-abuse treatment facility--Michigan. MMWR Morb Mortal Wkly Rep, 1991. 40(8): p. 129-31. |
[48] | CDC, Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons--Florida and New York, 1988-1991. MMWR Morb Mortal Wkly Rep, 1991. 40(34): p. 585-91. |
[49] | Cole, S.T. and A. Telenti, Drug resistance in Mycobacterium tuberculosis. Eur Respir J Suppl, 1995. 20: p. 701s-713s. |
[50] | Cole, S.T., Mycobacterium tuberculosis: drug-resistance mechanisms. Trends Microbiol, 1994. 2(10): p. 411-5. |
[51] | Rattan, A., A. Kalia, and N. Ahmad, Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis, 1998. 4(2): p. 195-209. |
[52] | Drobniewski, F.A. and S.M. Wilson, The rapid diagnosis of isoniazid and rifampicin resistance in Mycobacterium tuberculosis--a molecular story. J Med Microbiol, 1998. 47(3): p. 189-96. |
[53] | Sreevatsan, S., et al., Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A, 1997. 94(18): p. 9869-74. |
[54] | Musser, J.M., Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev, 1995. 8(4): p. 496-514. |
[55] | Telenti, A., et al., Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet, 1993. 341(8846): p. 647-50. |
[56] | Telenti, A., Genetics of drug resistance in tuberculosis. Clin Chest Med, 1997. 18(1): p. 55-64. |
[57] | Kelley, C.L., D.A. Rouse, and S.L. Morris, Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1997. 41(9): p. 2057-8. |
[58] | Banerjee, A., et al., inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 1994. 263(5144): p. 227-30. |
[59] | Zhang, Y., et al., The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992. 358(6387): p. 591-3. |
[60] | Pfyffer, G.E., et al., Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol, 1997. 35(2): p. 364-8. |
[61] | Hillemann, D., S. Rusch-Gerdes, and E. Richter, Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol, 2007. 45(8): p. 2635-40. |
[62] | Torres, M.J., Rapid detection of resistance associated mutations in Mycobacterium tuberculosis by Light Cycler PCR. Rapid cycle real time PCR- methods and applications, 2002: p. p. 83-91. |
[63] | Mathema, B., et al., Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev, 2006. 19(4): p. 658-85. |
[64] | Lipin, M.Y., et al., Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect, 2007. 13(6): p. 620-6. |
[65] | Ahmad, S., et al., Characterization of rpoB mutations in rifampin-resistant Mycobacterium tuberculosis isolates from the Middle East. Diagn Microbiol Infect Dis, 2000. 38(4): p. 227-32. |
[66] | Hillemann, D., S. Rusch-Gerdes, and E. Richter, Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol, 2009. 47(6): p. 1767-72. |
[67] | Steingart, K.R., et al., Xpert(R) MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2013. 1: p. CD009593. |
[68] | Johansen, I.S., et al., Direct detection of multidrug-resistant Mycobacterium tuberculosis in clinical specimens in low- and high-incidence countries by line probe assay. J Clin Microbiol, 2003. 41(9): p. 4454-6. |
[69] | Bartfai, Z., et al., Molecular characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Hungary by DNA sequencing and the line probe assay. J Clin Microbiol, 2001. 39(10): p. 3736-9. |
[70] | Hirano, K., C. Abe, and M. Takahashi, Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis strains isolated mostly in Asian countries and their rapid detection by line probe assay. J Clin Microbiol, 1999. 37(8): p. 2663-6. |
[71] | Meulemans, H., Tuberculosis in Pakistan: The forgotten Plague. 2000. |