[1] | S. Liao, M. Ngiam, F. Watari, S.Ramakrishna, C. K. Chan. Systematic fabrication of nano-carbonatedhydroxyapatite/collagen composites for biomimetic bone grafts, Bioinspiration & Biomimetics, 2[3], 37-42, 2007. |
[2] | X. Liu, L. A. Smith, J. Hu, P. X. Ma. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials, 30[12], 2252–8, 2009. |
[3] | M. Lee, W. Li, R. K. Siu, J. Whang, X. Zhang, C. Soo, et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials, 30[30], 6094–101, 2009. |
[4] | X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, J. Hua, Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties, Acta Biomaterialia, 5[7], 2693-703, 2009. |
[5] | X. Zhang , Y. Li, G. Lv, Y. Zuo, Y. Mu, Thermal and crystallization studies of nano-hydroxyapatite reinforced polyamide 66 biocomposites, Polymer Degradation and Stability, 91[5], 1202-7, 2006. |
[6] | Kong XD, F. Z. Cui, X. M. Wang, M. Zhang, W. Zhang, Silk fibroin regulated mineralization of hydroxyapatite nanocrystals, Journal of Crystal Growth, 270[1-2], 197-202, 2004. |
[7] | R. Nemoto, L. Wang, M. Aoshima, M. Senna, T. Ikoma, J. Tanaka, Increasing the Crystallinity of Hydroxyapatite Nanoparticles in Composites Containing Bioaffinitive Organic Polymers by Mechanical Stressing, Journal of the American Ceramic Society, 87[6], 1014-7, 2004. |
[8] | R. Nemoto, S. Nakamura, T. Isobe, M. Senna, Direct Synthesis of Hydroxyapatite-Silk Fibroin Nano-Composite Sol via a Mechanochemical Route, Journal of Sol-Gel Science and Technology, 21[1-2], 7-12, 2001. |
[9] | L. Wang, R. Nemoto, M. Senna, Effects of alkali pretreatment of silk fibroin on microstructure and properties of hydroxyapatite-silk fibroin nanocomposite, Journal of Materials Science: Materials in Medicine, 15[3], 261-5, 2004. |
[10] | Ch. Du, J. Jin, Y. Lia, X. Kong, K. Weic, J. Yao. Novel silk fibroin/hydroxyapatite composite films: Structure and properties. Materials Science and Engineering: C, 29[1], 62-8, 2009. |
[11] | R. Nemoto, L. Wang, T. Ikoma, J. Tanaka, M. Senna. Preferential Alignment of Hydroxyapatite Crystallites in Nanocomposites with Chemically Disintegrated Silk Fibroin. Journal of Nanoparticle Research, 6[2], 259-65, 2004. |
[12] | Y. Ren, X. Sun, F. Ciu, Effects of pH and initial Ca2+-H2PO4- concentration on fibroin mineralization, Frontiers of Materials Science, 1[3], 258-62, 2007. |
[13] | Ch. Fan, J. Li, G. Xu, H. He, X. Ye, Y. Chen, et al., Facile fabrication of nano-hydroxyapatite/silk fibroin composite via a simplified coprecipitation route, Journal of Materials Science: Materials in Medicine, 45[21], 5814-9, 2010 |
[14] | L. Wang, Ch. Li, M. Senna. "High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin". Journal of Nanoparticle Research 2007;9[5]:919-29. |
[15] | T. Furuzono, K Ishihara, N Nakabayashi, Y Tamada, Chemical modification of silk fibroin with2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets, Biomaterials, 21[4], 327-33, 2000. |
[16] | R. Kino, T. Ikoma, A. Monkawa, S. Yunoki, M. Munekata, J. Tanaka, et al., Deposition of bone-like apatite on modified silk fibroin films from simulated body fluid, Journal of Applied Polymer Science, 99[5], 2822-283, 2006. |
[17] | Y. Li, Y. Cai, X. Kong, J.Yao, Anisotropic growth of hydroxyapatite on the silk fibroin films, Applied Surface Science, 255[5], 11681-5, 2008. |
[18] | X. Kong, X. Sun, F. Cui, Ch. Ma. Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate, Materials Science and Engineering: C, 28[4], 639-43, 2006. |
[19] | L. Li, K-M Wei, F. Lin, X-D Kong, J-M. Yao. Effect of silicon on the formation of silk fibroin/calcium phosphate composite, Journal of Materials Science: Materials in Medicine, 19[2], 577-82. 2008 |
[20] | H. Zhu, J. Shen, X. Feng, H. Zhang, Y. Guo, J. Chen, Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds, Materials Science and Engineering: C, 30[1], 132-40, 2010. |
[21] | N. Vachiraroj, J. Ratanavaraporn, S. Damrongsakkul, R. Pichyangkura, T. Banaprasert, S. Kanokpanont, A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes, International Journal of Biological Macromolecules, 45:470-7, 2009. |
[22] | L. Radev, V. Hristov, I. Michailova, B. Samuneva, Sol-gel bioactive glass-ceramics Part I: Calcium phosphate silicate/wollastonite glass-ceramics, Central European Journal of Chemistry, 7[3]:317-2, 2009. |
[23] | L. Radev, V. Hristov, I. Michailova, M. Helena V. Fernandes, I. Miranda M. Salvado, In vitro bioactivity of biphasic calcium phosphate silicate glassceramic in CaO-SiO2-P2O5 system, Processing and Application of Ceramics, 4[1], 15-24, 2010. |
[24] | N. Y. Mostafa, A. A. Shaltout, L. Radev, H. M. Hassan, In vitro surface biocompatibility of high-content silicon-substituted calcium phosphate ceramics, Central European Journal of Chemistry, 11[2], 140-50, 2013 |
[25] | L. Radev, V. Hristov, I. Michailova, B. Samuneva, Sol-gel bioactive glass-ceramics Part II: Glass-ceramics in the CaO-SiO2-P2O5-MgO system, Central European Journal of Chemistry, 7[3]: 322-7, 2009 |
[26] | V. Hristov, L. Radev, B. Samuneva, G. Apostolov, Organic / inorganic bioactive materials Part I: Synthesis, structure and in vitro assessment of collagen/silicocarnotite biocoatings, Central European Journal of Chemistry, 7[4], 702-10, 2009 |
[27] | L. Radev, V. Hristov, B. Samuneva, D. Ivanova. Organic/Inorganic bioactive materials Part II: in vitro bioactivity of Collagen-Calcium PhosphateSilicate/Wollastonite hybrids, Central European Journal of Chemistry, 7[4], 711-20, 2009. |
[28] | L. Radev, N. Y. Mostafa, I. Michailova, I. M. M. Salvado, M. H. V. Fernandes, In VitroBioactivity of Collagen/Calcium Phosphate Silicate Composites, Cross-Linked with Chondroitin Sulfate, International Journal of Materials and Chemistry, 2[1], 1-9, 2012. |
[29] | L. Radev, M. Helena V. Fernandes, I. Miranda Salvado, D. Kovacheva, Organic/Inorganic bioactive materials Part III: in vitro bioactivity of gelatin/silicocarnotite hybrids, Central European Journal of Chemistry, 7[4], 721-30, 2009 |
[30] | L. Radev, V. Hristov, M. Helena V. Fernandes, I. M. Miranda Salvado, Organic/inorganic bioactive materials part IV: In vitro assessment of bioactivity of gelatin-calcium phosphate silicate/wollastonite hybrids, Central European Journal of Chemistry, 8[2], 278-84, 2010. |
[31] | L. Guo, M. Huang, X. Zhang, Effects of sintering temperature on structure of hydroxyapatite studied with Rietveld method, Journal of Materials Science: Materials in Medicine, 14[9], 817-22, 2003 |
[32] | S. S. Silva, D. Maniglio, A. Motta, J. F. Mano, R. L. Reis, C. Migliaresi, Genipin-Modified Silk-Fibroin Nanometric Nets, Macromolecular Bioscience, 8[8], 766-74, 2008. |
[33] | E. Pecoraro, M. R. Davolos, M. Jafelicci, Silica Morphology Characterized by SEM. The Effects of the Solvent Treatment and the Drying Process, Journal of the Brazilian Chemical Societry,6[4], 337-41, 1995. |
[34] | S. R. Federman, V. C. Costa, D. C. Vasconcelos, W. L. Vasconcelos, Sol-gel SiO2-CaO-P2O5 biofilm with surface engineered for medical application, Materials Research, 10,177-812007. |
[35] | D. Luna-Zaragoza, E. T. Romero-Guzmán, L. R. Reyes-Gutiérrez, Surface and PhysicochemicalCharacterization of Phosphates Vivianite, Fe2(PO4)3 and Hydroxyapatite, Ca5(PO4)3OH, Journal of Minerals & Materials Characterization & Engineering, 8[8], 591-609, 2009. |
[36] | M.R. Majhi, R. Pyare, S.P.Singh, Studies on preparation and characterizations of CaO-Na2O-SiO2-P2O5 bioglass ceramics substituted with Li2O, K2O, ZnO, MgO, and B2O3, International Journal of Scientific & Engineering Research, 2[9], 1-9, 2011. |
[37] | N. Y. Mostafa, H. M. Hassan, O. Elkader, Preparation and Characterization of Na+, SiO44-, and CO32- Co-Substituted Hydroxyapatite, Journal of the American Ceramic Society, 94[5] 1584-90, 2011. |
[38] | P. Regnier, A. C. Lasaga, R. A. Berner, O. H. Han, K. W. Zilm, Mechanism of CO32- substitution in carbonate- fluorapatite: Evidence from FTIR spectroscopy,13 C NMR and quantum mechanicalc calculations, American Mineralogist, 78, 809-18, 1994. |
[39] | R. Santos, R. Clayton, The carbonate content in high-temperature apatite: An analytical method applied to apatite from the Jacupiranga alkaline complex, American Mineralogist, 80, 336-44, 1995. |
[40] | M. Fleet, Infrared spectra of carbonate apatites: ν2-Region bands, Biomaterials, 30[8], 1473-81, 2009. |
[41] | M. E. Fleet, X. Liu, Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure, Journal of Solid State Chemistry, 177[9], 3174-82, 2004. |
[42] | J. Kolmas, A. Jaklewicz, A. Zima, M. Bućko, Z. Paszkiewicz, J. Lis, et al., Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: The effect on physicochemical properties, Journal of Molecular Structure, 987[1-3], 40-50, 2011. |
[43] | J. P. Lafon, E. Champion, D. Barnache-Assolant, Processing of AB-type carbonated hydroxyapatiteCa10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition, Journal of the European Ceramic Society, 28[1], 139-47, 2008. |