[1] | Agrawal, A. A., Overcompensation of plants in response to herbivory and the by-product benefits of mutualism, Trends in Plant Sci., 5(7),309-313, 2000. |
[2] | Anderson, L. L., and Paige, K. N., Multiple herbivores and coevolutionary interactions in an Ipomopsis hybrid swarm, Evol.Ecol., 17(2),139-156, 2003. |
[3] | Barow, M., Endopolyploidy in seed plants, BioEssays, 28(3),271–281, 2006. |
[4] | Barow, M., and Meister, A., Endopolyploidy in seed plants is differently correlated systematics, organ, life strategy, and size, Plant, Cell and Envir., 26(4),571-584, 2003. |
[5] | Barratt, D. H. P., Derbyshire, P., Findlay, K., Pike, M., Wellner, N., Lunn, J., Feil, R., Simpson, C., Maule, A. J., Smith, A. M., Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase, Proc. Nat. Acad. of Sci., 106(31),13124-13129, 2009. |
[6] | Engelen-Eigles, G., Jones, R. J., Phillips, R.L., DNA endoreduplication in maize endosperm cells is reduced by high temperature during the mitotic phase, Crop Sci., 41,1114-1121, 2001. |
[7] | Hermsmeier, D., Schittko, U., Baldwin, I. T., Molecular interactions between the specialist herbivoreManduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs, Plant Phys., 125(2),683-700, 2001. |
[8] | Imai, K. K., Ohashi, Y., Tsuge, T., Yoshizumi, T., Matsui, M., Oka, A., Aoyama, T., The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication, The Plant Cell, 18,382-396, 2006. |
[9] | Ishida, T., Adachi, S., Yoshimura, M., Shimizu, K., Umeda, M., Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis, Development, 137(1),63-71, 2010. |
[10] | Juenger, T., and Bergelson, J., Factors limiting rosette recruitment in scarlet gilia, Ipomopsis aggregata: Seed and disturbance limitation, Oecologia, 123(3),358-363, 2000. |
[11] | Kessler, A., and Baldwin, I. T., Plant responses to insect herbivory: The emerging molecular analysis, Ann. Rev. of Plant Bio., 53,299-328, 2002. |
[12] | Kowles, R. V., and Phillips, R. L., Endosperm development in maize, Internat. Rev. of Cytology, 112,97-136, 1988. |
[13] | Lee, H. O., Davidson, J. M., Duronio, R. J., Endoreplication: ploidy with purpose, Genes and Devel., 23(21),2461-2477, 2009. |
[14] | Lennartsson, T., Tuomi, J., Nilsson, P., Evidence for an evolutionary history of overcompensation in the grassland biennial Gentianella campestris (Gentianaceae), Am. Nat., 149(6),1147-1155, 1997. |
[15] | Lister, C., and Dean, C., Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana, Plant Journal, 4(4),745-750, 1993. |
[16] | Maschinski, J., and Whitham, T. G., The continuum of plant responses to herbivory: The influence of plant association, nutrient availability, and timing, Am. Nat., 134(1),1-19, 1989. |
[17] | Mauricio, R., Rausher, M. D., Burdick, D.S., Variation in the defense strategies of plants: Are resistance and tolerance mutually exclusive?, Ecol., 78(5),1301-1311, 1997. |
[18] | Nagl, W., Endoreduplication and polyteny understood as evolutionary strategies, Nature, 261,614–615, 1976. |
[19] | Nilsson, P., Tuomi, J., Strom, M. A., Bud dormancy as a bet hedging strategy, Am. Nat., 147(2),269–281, 1996. |
[20] | Paige, K. N., Overcompensation in response to mammalian herbivory: From mutualistic to antagonistic interactions, Ecol., 73(6),2076-2085, 1992. |
[21] | Paige, K. N., Herbivory and Ipomopsis aggregata: Differences in response, differences in experimental protocol: A reply to Bergelson and Crawley, Am. Nat., 143(4),739-749, 1994. |
[22] | Paige, K. N., Regrowth following ungulate herbivory in Ipomopsis aggregata: geographic evidence for overcompensation, Oecologia, 118(3), 316-323, 1999. |
[23] | Paige, K. N., and Whitham, T. G., Flexible life history traits: Shifts by scarlet gilia in response to pollinator abundance, Ecol., 68(6),1691-1695, 1987. |
[24] | Peters, J. L., Constandt, H., Neyt, P., Cnops, G., Zethof, J., A physical amplified fragment-length polymorphism map of Arabidopsis, Plant Phys., 127(4),1579-1589, 2001. |
[25] | Poveda, K., Isabel, M., Jimenez, G., Kessler, A., The enemy as ally: herbivore-induced increase in crop yield, Ecol. Appl., 20(7),1787-1793, 2010. |
[26] | Rautio, P., Huhta, A-P., Piippo, S., Tuomi, J., Juenger, T., Overcompensation and adaptive plasticity of apical dominance in Erysimum strictum (brassicaceae) in response to simulated browsing and resource availability, Oikos, 111(1),179-191, 2005. |
[27] | Scharte, J., Schön, H., Tjaden, Z., Weis, E., von Schaewen, A., Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants, Proc. Nat. Acad. Sci., 106(19),8061-8066, 2009. |
[28] | Scholes, D. R., and Paige, K. N., Chromosomal plasticity: mitigating the impacts of herbivory, Ecol., 92(8),1691-1698, 2011. |
[29] | Schmidt, S., and Baldwin, I. T., Down-regulation of systemin after herbivory is associated with increased root allocation and competitive ability in Solanum nigrum, Phys. Ecol., 159(3),473-482, 2009. |
[30] | Schwachtje, J., Minchin, P. E. H., Jahnke, S., van Dongen, J. T., Schittko, U., Baldwin, I. T., SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots, Proc. Nat. Acad. Sci., 103(34),12935-12940, 2006. |
[31] | Siddappaji, M. H., Scholes, D. R., Bohn, M., Paige, K. N., Overcompensation in response to herbivory in Arabidopsis thaliana: the role of Glucose-6-Phosphate Dehydrogenase and the Oxidative Pentose-Phosphate Pathway, Genetics, 2013 (Published on-line August 9, 2013). |
[32] | Stowe, K.A., Marquis, R. J., Hochwender, C. G., Simms, E. L., The evolutionary ecology of tolerance to consumer damage, Ann. Rev. Ecol. and Syst., 31,565-595, 2000. |
[33] | Sugimoto-Shirasu, K., and Roberts, K., ‘‘Big it up’’: endoreduplication and cell-size control in plants, Current Opin. in Plant Bio., 6(6),544–553, 2003. |
[34] | Tiffin, P., and Rausher, M. D., Genetic constraints and selection acting on tolerance to herbivory in the common morning glory Ipomoea purpurea, Am. Nat., 154(6),700-716, 1999. |
[35] | Vlieghe, K., Boudolf, V., Beemster, G. T. S., Mares, S., Magyar, Z., Antanassova, A., de Almeida Engler, J., De Groodt, R., Inze, D., De Veylder, L., The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana, Current Bio.,15(1),59-63, 2005. |
[36] | Wayne, M. L., and McIntyre, L. M., Combining mapping and arraying: An approach to candidate gene identification, Proc. Natl. Acad. Sci., 99(23),14903-14906, 2002. |
[37] | Weinig, C., Stinchcombe, J. R., Schmitt, J., QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments, Mol. Ecol., 12(5),1153-1163, 2003. |
[38] | Yoshizumi, T., Tsumoto, Y., Takiguchi, T., Nagata, N., Yamamoto, Y.Y., Kawashima, M., Ichikawa, T., Nakazawa, M., Yamamoto, N., and Matsu, M., INCREASED LEVEL OF POLYPLOIDY1, a conserved repressor of CYCLINA2 transcription, controls endoreduplication in Arabidopsis, The Plant Cell, 18,2452-2468, 2006. |