[1] | Azzalini, A. (1985) A class of distributions which includes the normal ones, Scand. J.Statist. 12, pp. 171-178. |
[2] | Azzalini, A., Capitanio, A. (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew distribution, J. Roy.Statist.Soc., series B vol 65(2003), pp. 367-389. |
[3] | Azzalini, A., Dalla Valle, A. (1996) The multivariate skew normal distribution. Biometrika 83, pp. 715-726. |
[4] | Brodie, J., Daubechies, I., De Mol, C., Giannone, D. (2007) Sparse and stable Markowitz portfolios, No 6474, CEPR Discussion Papers from C.E.P.R. Discussion Papers. |
[5] | Chan, L.K.C. and Lakonishok, J. (1992), Robust measurement of beta risk, Journal of Financial and Quantitative Analysis 27, 265-282. |
[6] | DeMiguel, V., Nogales, F.J., (2009). Portfolio selection with robust estimation. Operations Research 57, 560-577. |
[7] | DeMiguel, V., Martin-Utrera, A., Nogales, F.J., (2013), Size matters: Optimal calibration of shrinkage estimators for portfolio selection, Journal of Banking & Finance 37 (2013) 3018-3034. |
[8] | Genton, M., Ronchetti, E. (2008) Robust Prediction of Beta, in Kontoghiorghes, E. J., Rustem, B. and Winker, P. (eds.), Computational Methods in Financial Engineering, Essays in Honour of Manfred Gilli, Springer, 147-161. |
[9] | Gramacy, R. B., Lee, J. H., and Silva, R. (2008). On estimating covariances between many assets with histories of highly variable length." Tech. Rep. 0710.5837, arXiv. Url: http://arxiv.org/abs/0710.5837. |
[10] | Gramacy R. and Pantaleo E., (2010) Shrinkage Regression for Multivariate Inference with Missing Data, and an Application to Portfolio Balancing, Bayesian Analysis 5, Number 2, pp. 237-262. |
[11] | Hampel, F.R., Ronchetti, E., Rousseeuw, P.J., et Stahel (1986) Robust Statistics: The Approach Based on Influence Functions, Wiley, New York. |
[12] | Hampel, F.R., (1968) Contribution to the theory of Robust Estimation, Ph. D. thesis, University of California, Berkeley. |
[13] | Hu W., Kercheval A. (2010), Portfolio optimization for student t and skewed t returns, Quantitative Finance, Volume 10, Issue 1 Jan. 2010, p. 91-105. |
[14] | Huber, P.J. (1964) Robust estimation of a location parameter, Annals of mathematical Statistics 35, 73-101. |
[15] | Huber P.J., Ronchetti E.M. (2009), Robust Statistics, Wiley, New York, 2nd edition. |
[16] | Huisman R. (1999) Adventures in international financial markets, PhD. Thesis, Maastricht University. |
[17] | Markowitz H. (1952) Portfolio Selection. Journal of Finance. 7:1, pp.77-91. |
[18] | Martin, R.D. and Simin, T. (2003), Outlier resistant estimates of beta, Financial Analysts Journal 59, 56-69. |
[19] | Perret-Gentil, C., M.-P. Victoria-Feser. (2004). Robust mean-variance portfolio selection. FAME Research Paper 140. International Center for Financial Asset Management and Engineering, Geneva. |
[20] | Popova, I., Morton, D., Popova, E., Yau, J. (2003) Optimal hedge fund allocation with asymmetric preferences and distributions, Technical Report, University of Texas. |
[21] | Rousseeuw, P.J. (1985) Multivariate estimation with high breakdown point, in W.Grossman, G. Pflug, I. Vincze, and W. Wertz eds., Mathematical statistics and Aplications, Vol. B, Reidel, Dordrecht, The Netherlands, 283-197. |
[22] | Rousseeuw, P.J. and Van Driessen, K. (1999) A Fast Algorithm for the Minimum Covariance Determinant Estimator, Technometrics, 41, 212-223. |
[23] | Sharpe, W.F. (1971), Mean-absolute-deviation characteristic lines for securities and portfolios, Management Science 18, B1-B13. |
[24] | Vaz-de Melo, B., R. P. Camara. (2003). Robust modeling of multivariate financial data. Coppead Working Paper Series 355, Federal University at Rio de Janeiro, Rio de Janeiro, Brazil. |
[25] | Welsch, R., Zhou, X. (2007) Application of robust statistics to asset allocation models, Statistical Journal volume 5, number 1, March 2007. pp. 97-114. |