[1] | P. Cawley, R. D. Adams, 1979, A vibration technique for non-destructive testing of fibre composite structures, J. Compos. Mater., 13, 161–175. |
[2] | J. J. Tracy, G. C. Pardoen, 1989, Effect of delamination on the natural frequencies of composite laminates, J. Compos. Mater., 23, 1201–1215. |
[3] | A. A. E. H. Amada, 1997, An investigation into the eigen-nature of cracked composite beams, Compos. Struct., 38(1-4), 45–55. |
[4] | A. Messina, E. J. Williams, T. Contursi, 1998, Structural damage detection by a sensitivity and statistical-based method, J. Sound Vib., 216(5), 791–808. |
[5] | R. P. C. Sampaio, N. M. M. Maia, J. M. M. Silva, 1999, Damage detection using the frequency-response-function curvature method, J. Sound Vib., 226(5), 1029–1042. |
[6] | A. K. Pandey, M. Biswas, M. M. Samman, 1991, Damage detection from changes in curvature mode shapes, J. Sound Vib., 145(2), 321–332. |
[7] | S. Vanlanduit, E. Parloo, P. Guillaume, 2003, Combined damage detection techniques, J. Sound Vib., 266(4), 815–831. |
[8] | A. Iwasaki, A. Todoroki, Y. Shimamura, H. Kobayashi, 2004, Unsupervised structural damage diagnosis based on change of response surface using statistical tool – (application to damage detection of composite structure), JSME Int. J. A–Solid M., 47(1), 1–7. |
[9] | P. Cornwell, S. W. Doebling, C. R. Farrar, 1999, Application of the strain energy damage detection method to plate-like structures, J. Sound Vib., 224(2), 359–374. |
[10] | H. C. H. Li, M. Weis, I. Herszberg, A. P. Mouritz, 2004, Damage detection in composite beam using random decrement signatures, Compos. Struct., 66, 159–167. |
[11] | J. N. Yang, Y. Lei, S. Lin, N. Huang, 2004, Hilbert-Huang based approach for structural damage detection, J. Eng. Mech.–ASCE, 130(1), 85–95. |
[12] | J.-H. Chou, J. Ghaboussi, 2001, Genetic algorithm in structural damage detection, Comput. Struct., 79(14), 1335–1353. |
[13] | E. Manoach, S. Samborski, A. Mitura, J. Warmiński, 2012, Vibration based damage detection in composite beams under temperature variations using Poincaré maps, Int. J. Mech. Sci., 62, 120–132. |
[14] | A. Haar, 1910, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann., 69(3), 331–371. |
[15] | D. Gabor, 1946, Theory of communication, J. Inst. Electr. Eng. – III: Radio and Communication Engineering, 93(26), 429–457. |
[16] | J. Morlet, G. Arens, E. Fourgeau, J. Giard, 1982, Wave propagation and sampling theory – Part 1: Complex signal and scattering in multilayered media, J. Geophys., 47(2), 203–221. |
[17] | A. Grossmann, J. Morlet, T. Paul, 1985, Transforms associated to square integrable group representation, I. General results, J. Math. Phys., 26(10), 2473–2479. |
[18] | I. Daubechies, 1990, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theory, 36(5), 961–1005. |
[19] | I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. |
[20] | S. Mallat, 1989, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal., 11(7), 674–693. |
[21] | G. Beylkin, R. Coifman, V. Rokhlin, 1991, Fast wavelet transforms and numerical algorithms, Comm. Pure Appl. Math., 44(2), 141–183. |
[22] | A. Cohen, I. Daubechies, J.-C. Feauveau, 1992, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 45(5), 485–560. |
[23] | C. K. Chui, J. Wang, 1992, A general framework of compactly supported splines and wavelets, J. Approx. Theory, 71(3), 263–304. |
[24] | C. K. Chui, An Introduction to Wavelets, Academic Press, San Diego 1992. |
[25] | M. Holschneider, R. Kronland-Martinet, J. Morlet, P. Tchamitchian, A real-time algorithm for signal analysis with the help of the wavelet transform, In: Wavelets, Time-Frequency Methods and Phase Space, Springer-Verlag, 1989, 289–297. |
[26] | W. Sweldens, 1998, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal., 29(2), 511–546. |
[27] | M. Unser, T. Blu, 2000, Fractional splines and wavelets, SIAM Rev., 42(1), 43–67. |
[28] | T. Blu, M. Unser, The fractional spline wavelet transform: definition and implementation. Proc. IEEE Int. Conf. on Acoustics, Speech and Singal Processing, 2000, 512–515. |
[29] | C. Surace, R. Ruotolo, Crack detection of a beam using the wavelet transform, Proc. 12th Int. Modal Analysis Conf., Honolulu, 1994, 1141–1147. |
[30] | K. M. Liew, Q. Wang, 1998, Application of wavelet theory for crack identification in structures, J. Eng. Mech., 124(2), 152–157. |
[31] | Q. Wang, X. Deng, 1999, Damage detection with spatial wavelets, Int. J. Solids Struct., 36(23), 3443–3468. |
[32] | D.-U. Sung, C.-G. Kim, C.-S. Hong, 2002, Monitoring of impact damages in composite laminates using wavelet transform, Compos. Part B – Eng., 33(1), 35–43. |
[33] | C.-C. Chang, L.-W. Chen, 2003, Vibration damage detection of a Timoshenko beam by spatial wavelet based approach, Appl. Acoust., 64(12), 1217–1240. |
[34] | C.-C. Chang, L.-W. Chen, 2004, Damage detection of a rectangular plate by spatial wavelet based approach, Appl. Acoust., 65(8), 819–832. |
[35] | C.-C. Chang, L.-W. Chen, 2005, Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach, Mech. Syst. Signal Pr., 19(1), 139–155. |
[36] | E. Douka, S. Loutridis, A. Trochidis, 2003, Crack identification in beams using wavelet analysis, Int. J. Solids Struct., 40(13-14), 3557–3569. |
[37] | S. Loutridis, E. Douka, A. Trochidis, 2004, Crack identification in double-cracked beams using wavelet analysis, J. Sound Vib., 277(4-5), 1025–1039. |
[38] | E. Douka, S. Loutridis, A. Trochidis, 2004, Crack identification in plates using wavelet analysis, 270(1-2), 279–295. |
[39] | S. Loutridis, E. Douka, L. J. Hadjileontiadis, A. Tochidis, 2005, A two-dimensional wavelet transform for detection of cracks in plates, Eng. Struct., 27(9), 1327–1338. |
[40] | Gentile A., Messina A., 2003, On the continuous wavelet transforms applied to discrete vibrational data for detecting open cracks in damaged beams, Int. J. Solids Struct., 40(2), 295–315. |
[41] | M. Rucka, K. Wilde, 2006, Application of continuous wavelet transform in vibration based damage detection method for beams and plates, J. Sound Vib., 297(3-5), 536–550. |
[42] | S. Zhong, S. O. Oyadiji, 2007, Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform, Mech. Syst. Signal Pr., 21(4), 1853–1884. |
[43] | H. Gökdağ, O. Kopmaz, 2009, A new damage detection approach for beam-type structures based on the combination of continuous and discrete wavelet transform, J. Sound Vib., 324(3-5), 1158–1180. |
[44] | Y. Huang, D. Meyer, S. Nemat-Nasser, 2009, Damage detection with spatially distributed 2D Continuous Wavelet Transform, Mech. Mater., 41(10), 1096–1107. |
[45] | W. Fan, P. Qiao, 2009, A 2-D continuous wavelet transform of mode shape data for damage detection of plate structures, Int. J. Solids Struct., 46(25-26), 4379–4395. |
[46] | W. L. Bayissa, N. Haritos, S. Thelandersson, 2008, Vibration-based structural damage identification using wavelet transform, Mech. Syst. Signal Pr., 22(5), 1194–1215. |
[47] | A. Katunin, 2010, Identification of multiple cracks in composite beams using discrete wavelet transform, Sci. Probl. Mach. Oper. Maint., 45(2), 41–52. |
[48] | A. Katunin, 2011, The construction of high-order B-spline wavelets and their decomposition relations for fault detection and localisation in composite beams, Sci. Probl. Mach. Oper. Maint., 46(3), 43–59. |
[49] | A. Katunin, 2011, Damage identification in composite plates using two-dimensional B-spline wavelets, Mech. Syst. Signal Pr., 25(8), 3153–3167. |
[50] | A. Katunin, 2013, Vibration-based damage identification in composite circular plates using polar discrete wavelet transform, J. Vibroeng., 15(1), 355–363. |
[51] | A. Katunin, F. Holewik, 2013, Crack identification in composite elements with non-linear geometry using spatial wavelet transform, Arch. Civ. Mech. Eng., 13(3), 287-296. |
[52] | M. Rucka, K. Wilde, 2010, Neuro-wavelet damage detection technique in beam, plate and shell structures with experimental validation, J. Theor. Appl. Mech., 48(3), 579–604. |
[53] | H. Hein, L. Feklistova, 2011, Computationally efficient delamination detection in composite beams using Haar wavelets, Mech. Syst. Signal Pr., 25(6), 2257–2270. |
[54] | J. Xiang, M. Liang, 2012, A two-step approach to multi-damage detection for plate structures, Eng. Fract. Mech., 91, 73–86. |
[55] | A. Katunin, 2013, Crack identification in composite beam using causal B-spline wavelets of fractional order, Model. Eng., 15(46), 57-63. |
[56] | A. Katunin, P. Przystałka, 2013, Structural diagnostics of composite beams using optimally selected fractional B-spline wavelets, In: Intelligent Systems in Technical and Medical Diagnostics, Advances in Intelligent Systems and Computing, J. Korbicz, M. Kowal, Eds., Springer, in press. |
[57] | S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, San Diego, 2008. |
[58] | J.-C. Pesquet, H. Krim, H. Carfantan, 1996, Time-invariant orthonormal wavelet representations, IEEE Trans. Signal Pr., 44, 1964–1970. |
[59] | Y. H. Habiboğlu, K. Kose, A. E. Çetin, 2011, Fractional wavelet transform using an unbalanced lifting scheme, Proc. SPIE 8058, Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX, H. Szu, L. Dai, Eds., Orlando, FL. |
[60] | J. C. Hong, Y. Y. Kim, H. C. Lee, Y. W. Lee, 2002, Damage detection using Lipschitz exponent estimated by the wavelet transform: application to vibration modes of beam, Int. J. Solids Struct., 39(7), 1803–1816. |
[61] | U. Depczynski, K. Jetter, K. Molt, A. Niemöller, 1999, The fast wavelet transform on compact intervals as a tool in chemometrics II. Boundary effects, denoising and compression, Chemometr. Intell. Lab., 49(2),151–161. |
[62] | D. Černá, V. Finěk, M. Gottfried, P. Hübnerová, S. Paulusová, J. Róža, L. Viščur, 2009, Boundary artifact reduction in wavelet image compression, In: Technical Computing Prague, Prague. |
[63] | A. Katunin, 2012, Reduction of boundary effect during structural damage identification using wavelet transform, Sel. Eng. Probl., 3, 97–102. |
[64] | A. Cohen, I. Daubechies, B. Jawerth, P. Vial, 1993, Multiresolution analysis, wavelets and fast algorithms on an interval, Comptes Tendus de l’Académie des Sciences Paris Série I, 316, 417–421. |
[65] | P. Shui, Z. Bao, 2000, Interval interpolating wavelets with robust boundary filters, Sci. China Ser. E, 43, 287–296. |
[66] | M. Rucka, K. Wilde, 2006, Crack identification using wavelets on experimental static deflection profiles, Eng. Struct., 28(2), 279–288. |
[67] | M. Cao, L. Cheng, Z. Su, H. Xu, A multi-scale pseudo-force model in wavelet domain for identification of damage in structural components, Mech. Syst. Signal Pr., 28, 638–659. |
[68] | Y. Wang, S. Yuan, L. Qiu, 2011, Improved wavelet-based spatial filter of damage imaging method on composite structures, Chinese J. Aeronaut., 24(5), 665–672. |
[69] | A. Panopoulou, T. Loutas, D. Roulias, S. Fransen, V. Kostopoulos, 2011, Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures, Acta Astronaut., 69(7-8), 445–457. |