[1] | Thompson, W. E., 1986, Analysis of dynamic behavior of roads subject to longitudinally moving loads., HRB, 39, 1-24. |
[2] | Gbadeyan, J. A., Oni, S. T., 1992, Dynamic response to moving concentrated masses of elastic plates on a non-Winkler elastic foundation., Journal of Sound and Vibration, 154, 343–358. |
[3] | Kim, S. M., Roesset, J. M., 1998, Moving loads on a plate on elastic foundation., Journal of Engineering Mechanics, 124, 1010–1017. |
[4] | Cheng, Z. Q., 1999, Kitipornchai S. Membrane analogy of buckling and vibration of inhomogeneous plates., Journal of Engineering Mechanics, 125, 1293–1297. |
[5] | Chien, R. D., Chen, C. S., 2006, Nonlinear vibration of laminated plates on an elastic foundation., Thin-Walled Structures, 44, 852–860. |
[6] | Aiello, M. A., Ombres, L., 1994, Buckling and vibrations of unsymmetric laminates resting on elastic foundations under in-plane and shear forces., Computers and Structures, 44, 31–41. |
[7] | Omurtag, M. H., Kadioglu, F., 1998, Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation., Computers and Structures, 67, 253–265. |
[8] | Malekzadeh, K., Khalili, S. M. R., Abbaspour, P., 2010, Vibration of non-ideal simply supported laminated plate on an elastic foundation subjected to in-plane stresses., Composite Structures, 92, 1478-1484. |
[9] | Liu, G. R., Nguyen Thoi Trung., 2010, Smoothed Finite Element Methods, New York, CRC Press. |
[10] | [10]Chen, J. S., Wu, C. T., Yoon, S., You, Y., 2001, A stabilized conforming nodal integration for Galerkin mesh-free methods., International Journal for Numerical Methods in Engineering, 50, 435–466. |
[11] | Liu, G. R., Dai, K. Y., Nguyen, T. T., 2007, A smoothed finite element for mechanics problems., Computational Mechanics, 39, 859–877. |
[12] | Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., Dai, K.Y., Lam, K.Y., 2009, On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM)., International Journal for Numerical Methods in Engineering, 77, 1863-1869. |
[13] | Liu, G. R., Nguyen-Xuan, H., Nguyen-Thoi, T., 2010, A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates., International Journal for Numerical Methods in Engineering, 84(10), 1222-1256. |
[14] | Liu, G. R, Nguyen-Thoi, T., Dai, K. Y., Lam, K. Y., 2007, Theoretical aspects of the smoothed finite element method (SFEM)., International journal for numerical methods in Engineering, 71, 902-930. |
[15] | Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H., Lam, K. Y., 2009, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems., Computers and Structures, 87, 14-26. |
[16] | Nguyen-Thoi, T., Liu, G. R., Nguyen-Xuan, H., Nguyen-Tran, C., 2011, Adaptive analysis using the node-based smoothed finite element method (NS-FEM), Communications in Numerical Methods in Engineering, 27(2), 198-218. |
[17] | Nguyen-Thoi, T., Liu, G. R., Nguyen-Xuan, H., 2009, Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems., International Journal of Computational Methods, 6(4), 633-666. |
[18] | Liu, G. R., Nguyen-Thoi, T., Lam, K. Y., 2009, An edge-based smoothed finite element method (ES-FEM) for static and dynamic problems of solid mechanics., Journal of Sound and Vibration, 320, 1100-1130. |
[19] | Nguyen-Thoi, T., Liu, G. R., Nguyen-Xuan, H., 2011, An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics., Communications in Numerical Methods in Engineering, 27(9), 1446-1472. |
[20] | Nguyen-Thoi, T., Liu, G. R., Lam, K. Y., Zhang, G. Y., 2009, A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements., International Journal for Numerical Methods in Engineering, 78, 324–353. |
[21] | Nguyen-Thoi, T., Phung-Van, P., Luong-Van, H., Nguyen-Van, H., Nguyen-Xuan, H., 2013, A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates., Computational Mechanics, 50(1), 65-81. |
[22] | Nguyen-Thoi, T., Phung-Van, .P, Thai-Hoang, C., Nguyen - Xuan, H., 2013, A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures., International Journal of Mechanical Sciences, 74, 32-45. |
[23] | Nguyen-Thoi, T., Bui-Xuan, T., Phung-Van, P., Nguyen-Xuan, H., Ngo-Thanh, P., 2013, Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements., Computers and Structures, 125, 100-113. |
[24] | Nguyen-Thoi, T., Bui-Xuan, T., Phung-Van, P., Nguyen - Hoang, S., Nguyen-Xuan, H., 2013, An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates., KSCE Journal of Civil Engineering, (accepted). |
[25] | Phung-Van, P., Nguyen-Thoi, T., Tran V.Loc., Nguyen-Xuan, H., 2013, A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates., Computational Materials Science, doi: 10.1016/j.commatsci.2013.06.010. |
[26] | Nguyen-Xuan, H., Liu G. R., Thai-Hoang, C., Nguyen-Thoi, T., 2009., An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates., Computer Methods in Applied Mechanics and Engineering, 199, 471-489. |
[27] | Nguyen-Xuan, H., Liu. G. R., Nguyen-Thoi, T., Nguyen-Tran, C., 2009, An edge – based smoothed finite element method (ES-FEM) for analysis of two–dimensional piezoelectric structures., Smart Materials and Structures, 18(065015), 1-12. |
[28] | Phung-Van, P., Nguyen-Thoi, T., Le-Din,h T., Nguyen-Xuan, H., 2013, Static, free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3)., Smart Materials and Structures, (accepted). |
[29] | Nguyen-Thoi, T., Liu, G. R., Vu-Do, H. C., Nguyen-Xuan, H., 2009, An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solids using triangular mesh., Computational Mechanics, 45, 23- 44. |
[30] | Nguyen-Thoi, T., Liu, G. R., Vu-Do, H. C., Nguyen-Xuan, H., 2009, A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh., Computer Methods in Applied Mechanics and Engineering, 198, 3479-3498. |
[31] | Tran, T. N., Liu, G. R., Nguyen-Xuan, H., Nguyen-Thoi, T., 2010, An edge-based smoothed finite element method for primal-dual shakedown analysis of structures., International Journal for Numerical Methods in Engineering, 82, 917–938. |
[32] | Nguyen-Thoi, T., Phung-Van, P., Rabczuk, T., Nguyen-Xuan, H., Le-Van, C., 2013, An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid-solid interaction problems., International Journal of Computational Methods, 10(1), 1340003. |
[33] | Liu, G. R., Nguyen-Xuan, H., Nguyen-Thoi, T., Xu, X., 2009, A novel Galerkin-like weakform and a superconvergent alpha finite element method (SFEM) for mechanics problems using triangular meshes., Journal of Computational Physics, 228, 4055-4087. |
[34] | Nguyen-Thoi, T., Phung-Van, P., Rabczuk, T., Nguyen-Xuan, H., Le-Van, C., 2013, Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM)., International Journal of Computational Methods, 10(1), 1340008. |
[35] | Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, X., Thai-Hoang, C., 2012, A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates., International journal for numerical methods in Engineering, 91, 705-741. |
[36] | Bletzinger, K. U., Bischoff, M., Ramm, E., 2000, A unified approach for shear-locking free triangular and rectangular shell finite elements., Computers and Structures, 75, 321–334.. |
[37] | Reddy, J. N., 1997, Mechanics of laminated composite plates – Theory and Analysis, New York, CRC Press. |
[38] | [38]Phan-Dao, H. H., Nguyen-Xuan, H., Thai, C. H., Nguyen-Thoi, T., Rabczuk, T., 2013, An edge-based smoothed finite element method for analysis of laminated composite plates., International Journal of Computational Methods, 10(1), 1340005. |
[39] | Reddy, J. N., 2004, Mechanics of Laminated Composite Plates and Shells Theory and Analysis, CRC Press. |
[40] | Liew, K. M., 1996, Solving the vibration of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Titz method., Journal of Sound and Vibration, 198, 343–360. |
[41] | Zhen, W., Wanji, C., 2006, Free vibration of laminated composite and sandwich plates using global–local higher-order theory., Journal of Sound and Vibration, 298, 333–349. |
[42] | Ferreira, A. J. M., Luís, M. S. C., Silvia, B., 2009, A high order collocation method for the static and vibration analysis of composite plates using a first-order theory., Composite Structures, 89(3), 424-432. |
[43] | Lal, A., Singh, B. N., Kumar, R., 2008, Nonlinear free vibration of laminated composite plates on elastic foundation with random system properties., International Journal of Mechanical Sciences, 50, 1203–1212. |