[1] | E.M. Witkin Pure clones of lactose negative mutants obtained in Escherichia coli after treatment with 5-bromouracil, J. Mol. Biol. 8 (1964) 610-613. |
[2] | R.A. Holliday A mechanism for gene conversion in fungi, Genet. Res. 5 (1964) 282-304. |
[3] | M. Roger Evidence for conversion of heteroduplex transforming DNAs to homoduplex by recipient pneumococcal cells, Proc. Nat. Acad. Sci. (USA) 69 (1972) 466-470. |
[4] | J.-G. Tiraby and M.S. Fox Marker discrimination in transformation and mutation of pneumococcus, Proc. Natl. Acad. Sci. U. S. A. 70 (1973) 3541-3545. |
[5] | S. Acharya and R. Fishel The mechanism of DNA mismatch repair from bacteria to human, Taylor & Francis Group, New Yok, NY, 2006. |
[6] | J. Jiricny The multifaceted mismatch-repair system, Nat Rev Mol Cell Biol 7 (2006) 335-346. |
[7] | R.D. Kolodner and G.T. Marsischky Eukaryotic DNA mismatch repair.[Review][84 refs], Current Opinion in Genetics & Development 9 (1999) 89-96. |
[8] | P. Modrich Strand-specific mismatch repair in mammalian cells[Review], Journal of Biological Chemistry 272 (1997) 24727-24730. |
[9] | C. Rayssiguier, D.S. Thaler and M. Radman The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants, Nature 342 (1989) 396-401. |
[10] | R. Fishel The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis, Cancer Research 61 (2001) 7369-7374. |
[11] | J.G. Gong, A. Costanzo, H.Q. Yang, G. Melino, W.G. Kaelin, Jr., M. Levrero and J.Y. Wang The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage[see comments], Nature 399 (1999) 806-809. |
[12] | H. Zhang, B. Richards, T. Wilson, M. Lloyd, A. Cranston, A. Thorburn, R. Fishel and M. Meuth Apoptosis induced by overexpression of hMSH2 or hMLH1, Cancer Research 59 (1999) 3021-3027. |
[13] | C.E. Bronner, S.M. Baker, P.T. Morrison, G. Warren, L.G. Smith, M.K. Lescoe, M. Kane, C. Earabino, J. Lipford, A. Lindblom and et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer, Nature 368 (1994) 258-261. |
[14] | R. Fishel, M.K. Lescoe, M.R. Rao, N.G. Copeland, N.A. Jenkins, J. Garber, M. Kane and R. Kolodner The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer, Cell 75 (1993) 1027-1038. |
[15] | F.S. Leach, N.C. Nicolaides, N. Papadopoulos, B. Liu, J. Jen, R. Parsons, P. Peltomaki, P. Sistonen, L.A. Aaltonen, M. Nystrom-Lahti, X.-Y. Guan, J. Zhang, P.S. Meltzer, J.-W. Yu, F.-T. Kao, D.J. Chen, K.M. Cerosaletti, R.E.K. Fournier, S. Todd, T. Lewis, R.J. Leach, S.L. Naylor, J. Weissenbach, J.-P. Mecklin, H. Jarvinen, G.M. Petersen, S.R. Hamilton, J. Green, J. Jass, P. Watson, H.T. Lynch, J.M. Trent, A. de la Chapelle, K.W. Kinsler and B. Vogelstein Mutations of a mutS Homolog in Hereditary Nonpolyposis Colorectal Cancer, Cell 75 (1993) 1215-1225. |
[16] | N.C. Nicolaides, N. Papadopoulos, B. Liu, Y.F. Wei, K.C. Carter, S.M. Ruben, C.A. Rosen, W.A. Haseltine, R.D. Fleischmann, C.M. Fraser and et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer, Nature 371 (1994) 75-80. |
[17] | N. Papadopoulos, N.C. Nicolaides, B. Liu, R. Parsons, C. Lengauer, F. Palombo, A. D'Arrigo, S. Markowitz, J.K.V. Willson, K.W. Kinzler, J. Jiricny and B. Vogelstein Mutations of GTBP in genetically unstable cells, Science 268 (1995) 1915-1917. |
[18] | N. Papadopoulos, N.C. Nicolaides, Y.-F. Wei, S.M. Ruben, K.C. Carter, C.A. Rosen, W.A. Haseltine, R.D. Fleischmann, C.M. Fraser, M.D. Adams, J.C. Venter, S.R. Hamilton, G.M. Petersen, P. Watson, H.T. Lynch, P. Peltomaki, J.-P. Mecklin, A. de la Chapelle, K.W. Kinzler and B. Vogelstein Mutation of a mutL Homolog in Hereditary Colon Cancer, Science 263 (1994) 1625-1629. |
[19] | M. Demerec, E.L. Lahr, T. Miyake, E. Galehran, E. Balbinder, S. Baric, K. Hashimoto, E.V. Glanville and J.D. Gross Bacterial Genetics, Carnegie Inst. Wash. Yearbook 370 (1957) 390-406. |
[20] | R.F. Hill Location of genes controlling excision repair of UV damage and mutator activity in Escherichia coli WP2, Mutat. Res. 9 (1970) 341-344. |
[21] | E.C. Siegel and V. Bryson Mutator Gene of Escherichia coli B, J. Bacteriol. 94 (1967) 38-47. |
[22] | J.V. Martin-Lopez and R. Fishel The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome, Fam Cancer (2013). |
[23] | S.-S. Su and P. Modrich Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs, Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 5057-5061. |
[24] | S. Acharya, T. Wilson, S. Gradia, M.F. Kane, S. Guerrette, G.T. Marsischky, R. Kolodner and R. Fishel hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6, Proc Natl Acad Sci U S A 93 (1996) 13629-13634. |
[25] | T. Bocker, A. Barusevicius, T. Snowden, D. Rasio, S. Guerrette, D. Robbins, C. Schmidt, J. Burczak, C.M. Croce, T. Copeland, A.J. Kovatich and R. Fishel hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis, Cancer Research 59 (1999) 816-822. |
[26] | R. Fishel and T. Wilson MutS homologs in mammalian cells.[Review][84 refs], Curr Opin Genet Dev 7 (1997) 105-113. |
[27] | S. Gradia, S. Acharya and R. Fishel The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch, J. Biol. Chem. 275 (2000) 3922-3930. |
[28] | J.M. Harrington and R.D. Kolodner Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs, Mol Cell Biol 27 (2007) 6546-6554. |
[29] | G.T. Marsischky, N. Filosi, M.F. Kane and R. Kolodner Redundancy of saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair, Genes & Development 10 (1996) 407-420. |
[30] | T. Wilson, S. Guerrette and R. Fishel Dissociation of mismatch recognition and ATPase activity by hMSH2-hMSH3, J. Biol. Chem. 274 (1999) 21659-21644. |
[31] | M.H. Lamers, A. Perrakis, J.H. Enzlin, H.H. Winterwerp, N. de Wind and T.K. Sixma The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch.[see comments], Nature 407 (2000) 711-717. |
[32] | G. Obmolova, C. Ban, P. Hsieh and W. Yang Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA.[see comments], Nature 407 (2000) 703-710. |
[33] | C.D. Heinen, J.L. Cyr, C. Cook, N. Punja, M. Sakato, R.A. Forties, J.M. Lopez, M.M. Hingorani and R. Fishel Human MSH2 (hMSH2) protein controls ATP processing by hMSH2-hMSH6, J Biol Chem 286 (2011) 40287-40295. |
[34] | M.H. Lamers, H.H. Winterwerp and T.K. Sixma The alternating ATPase domains of MutS control DNA mismatch repair, Embo J 22 (2003) 746-756. |
[35] | S. Acharya, P.L. Foster, P. Brooks and R. Fishel The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair, Molecular Cell. 12 (2003) 233-246. |
[36] | W.K. Cho, C. Jeong, D. Kim, M. Chang, K.M. Song, J. Hanne, C. Ban, R. Fishel and J.B. Lee ATP alters the diffusion mechanics of MutS on mismatched DNA, Structure 20 (2012) 1264-1274. |
[37] | S. Gradia, S. Acharya and R. Fishel The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch, Cell 91 (1997) 995-1005. |
[38] | S. Gradia, D. Subramanian, T. Wilson, S. Acharya, A. Makhov, J. Griffith and R. Fishel hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA, Molecular Cell 3 (1999) 255-261. |
[39] | C. Jeong, W.K. Cho, K.M. Song, C. Cook, T.Y. Yoon, C. Ban, R. Fishel and J.B. Lee MutS switches between two fundamentally distinct clamps during mismatch repair, Nat Struct Mol Biol 18 (2011) 379-385. |
[40] | M. Grilley, K.M. Welsh, S.S. Su and P. Modrich Isolation and characterization of the Escherichia coli mutL gene product, J Biol Chem 264 (1989) 1000-1004. |
[41] | M.G. Marinus Methylation of prokaryotic DNA, in: A. Razin, H. Cedar and A.D. Riggs (Eds.), DNA Methylation, Biochemistry and Biological Significance, Springer-Verlag, New York, 1984, pp. 81-109. |
[42] | K.M. Welsh, A.L. Lu, S. Clark and P. Modrich Isolation and characterization of the Escherichia coli mutH gene product, J Biol Chem 262 (1987) 15624-15629. |
[43] | M. Viswanathan and S.T. Lovett Single-strand DNA-specific exonucleases in Escherichia coli - roles in repair and mutation avoidance, Genetics 149 (1998) 7-16. |
[44] | N. Constantin, L. Dzantiev, F.A. Kadyrov and P. Modrich Human mismatch repair: reconstitution of a nick-directed bidirectional reaction, J Biol Chem 280 (2005) 39752-39761. |
[45] | M. Grilley, J. Griffith and P. Modrich Bidirectional excision in methyl-directed mismatch repair, J Biol Chem 268 (1993) 11830-11837. |
[46] | R.S. Lahue, K.G. Au and P. Modrich DNA mismatch correction in a defined system, Science 245 (1989) 160-164. |
[47] | R.D. Kolodner, M.L. Mendillo and C.D. Putnam Coupling distant sites in DNA during DNA mismatch repair, Proc Natl Acad Sci U S A 104 (2007) 12953-12954. |
[48] | M.S. Junop, G. Obmolova, K. Rausch, P. Hsieh and W. Yang Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair, Molecular Cell 7 (2001) 1-12. |
[49] | D.J. Allen, A. Makhov, M. Grilley, J. Taylor, R. Thresher, P. Modrich and J.D. Griffith MutS mediates heteroduplex loop formation by a translocation mechanism, EMBO Journal 16 (1997) 4467-4476. |
[50] | L.J. Blackwell, K.P. Bjornson and P. Modrich DNA-dependent activation of the hMutS alpha ATPase, Journal of Biological Chemistry 273 (1998) 32049-32054. |
[51] | R. Fishel, S. Acharya, M. Berardini, T. Bocker, N. Charbonneau, A. Cranston, S. Gradia, S. Guerrette, C.D. Heinen, A. Mazurek, T. Snowden, C. Schmutte, K.-S. Shim, G. Tombline and T. Wilson Signaling Mismatch Repair: the mechanics of an adenosine-nucleotide molecular switch, Cold Spring Harbor Symp. Quant. Biol. 65 (2000) 217-224. |
[52] | A. Pluciennik and P. Modrich Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair, Proc Natl Acad Sci U S A 104 (2007) 12709-12713. |
[53] | R. Fishel Mismatch repair, molecular switches, and signal transduction.[Review][56 refs], Genes & Development 12 (1998) 2096-2101. |
[54] | Y. Zhang, F. Yuan, S.R. Presnell, K. Tian, Y. Gao, A.E. Tomkinson, L. Gu and G.M. Li Reconstitution of 5'-directed human mismatch repair in a purified system, Cell 122 (2005) 693-705. |
[55] | L. Dzantiev, N. Constantin, J. Genschel, R.R. Iyer, P.M. Burgers and P. Modrich A defined human system that supports bidirectional mismatch-provoked excision, Mol Cell 15 (2004) 31-41. |
[56] | C. Schmutte, R.C. Marinescu, M.M. Sadoff, S. Guerrette, J. Overhauser and R. Fishel Human exonuclease I interacts with the mismatch repair protein hMSH2, Cancer Research 58 (1998) 4537-4542. |
[57] | D.X. Tishkoff, N.S. Amin, C.S. Viars, K.C. Arden and R.D. Kolodner Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease implicated in mismatch repair and recombination, Cancer Research 58 (1998) 5027-5031. |
[58] | D.X. Tishkoff, A.L. Boerger, P. Bertrand, N. Filosi, G.M. Gaida, M.F. Kane and R.D. Kolodner Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2, Proceedings of the National Academy of Sciences of the United States of America 94 (1997) 7487-7492. |
[59] | F.A. Kadyrov, L. Dzantiev, N. Constantin and P. Modrich Endonucleolytic function of MutLalpha in human mismatch repair, Cell 126 (2006) 297-308. |
[60] | F.A. Kadyrov, S.F. Holmes, M.E. Arana, O.A. Lukianova, M. O'Donnell, T.A. Kunkel and P. Modrich Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease, J Biol Chem 282 (2007) 37181-37190. |
[61] | M.C. Pillon, J.J. Lorenowicz, M. Uckelmann, A.D. Klocko, R.R. Mitchell, Y.S. Chung, P. Modrich, G.C. Walker, L.A. Simmons, P. Friedhoff and A. Guarne Structure of the endonuclease domain of MutL: unlicensed to cut, Mol Cell 39 (2010) 145-151. |
[62] | M.C. Pillon, J.H. Miller and A. Guarne The endonuclease domain of MutL interacts with the beta sliding clamp, DNA Repair (Amst) 10 (2011) 87-93. |
[63] | N.S. Amin, M.N. Nguyen, S. Oh and R.D. Kolodner exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair, Mol Cell Biol 21 (2001) 5142-5155. |
[64] | K. Wei, A.B. Clark, E. Wong, M.F. Kane, D.J. Mazur, T. Parris, N.K. Kolas, R. Russell, H. Hou, Jr., B. Kneitz, G. Yang, T.A. Kunkel, R.D. Kolodner, P.E. Cohen and W. Edelmann Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility, Genes Dev 17 (2003) 603-614. |
[65] | N. Sugawara, T. Goldfarb, B. Studamire, E. Alani and J.E. Haber Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1, Proc Natl Acad Sci U S A 101 (2004) 9315-9320. |
[66] | B.D. Harfe and S. Jinks-Robertson DNA mismatch repair and genetic instability, Annu Rev Genet 34 (2000) 359-399. |
[67] | L. Worth, Jr., S. Clark, M. Radman and P. Modrich Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs, Proc Natl Acad Sci U S A 91 (1994) 3238-3241. |
[68] | R. Fishel Signaling mismatch repair in cancer, Nature Medicine 5 (1999) 1239-1241. |
[69] | K. Yoshioka, Y. Yoshioka and P. Hsieh ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts, Mol Cell 22 (2006) 501-510. |
[70] | P. Peltomaki and H. Vasen Mutations associated with HNPCC predisposition -- Update of ICG-HNPCC/INSiGHT mutation database, Dis Markers 20 (2004) 269-276. |
[71] | L.A. Loeb Mutator phenotype may be required for multistage carcinogenesis.[Review][63 refs], Cancer Res 51 (1991) 3075-3079. |
[72] | D.P. Lin, Y. Wang, S.J. Scherer, A.B. Clark, K. Yang, E. Avdievich, B. Jin, U. Werling, T. Parris, N. Kurihara, A. Umar, R. Kucherlapati, M. Lipkin, T.A. Kunkel and W. Edelmann An Msh2 point mutation uncouples DNA mismatch repair and apoptosis, Cancer Res 64 (2004) 517-522. |
[73] | J. Gorman, F. Wang, S. Redding, A.J. Plys, T. Fazio, S. Wind, E.E. Alani and E.C. Greene Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair, Proc Natl Acad Sci U S A 109 (2012) E3074-3083. |
[74] | R. Roy, S. Hohng and T. Ha A practical guide to single-molecule FRET, Nat Methods 5 (2008) 507-516. |
[75] | J. Gorman, A. Chowdhury, J.A. Surtees, J. Shimada, D.R. Reichman, E. Alani and E.C. Greene Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6, Mol Cell 28 (2007) 359-370. |
[76] | O.G. Berg, R.B. Winter and P.H. von Hippel Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory, Biochemistry 20 (1981) 6929-6948. |
[77] | L.E. Sass, C. Lanyi, K. Weninger and D.A. Erie Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes, Biochemistry 49 (2011) 3174-3190. |
[78] | R. Qiu, V.C. DeRocco, C. Harris, A. Sharma, M.M. Hingorani, D.A. Erie and K.R. Weninger Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling, Embo J 31 (2012) 2528-2540. |
[79] | C. Ban and W. Yang Crystal structure and ATPase activity of MutL: Implications for DNA repair and mutagenesis, Cell 95 (1998) 541-552. |
[80] | R. Dutta and M. Inouye GHKL, an emergent ATPase/kinase superfamily, Trends in Biochemical Sciences 25 (2000) 24-28. |
[81] | N. Charbonneau, R. Amunugama, C. Schmutte, K. Yoder and R. Fishel Evidence that hMLH3 functions primarily in meiosis and in hMSH2-hMSH3 mismatch repair, Cancer Biol Ther 8 (2009) 1411-1420. |
[82] | S. Guerrette, S. Acharya and R. Fishel The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer, J Biol Chem 274 (1999) 6336-6341. |
[83] | C. Ban, M. Junop and W. Yang Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair, Cell 97 (1999) 85-97. |
[84] | S.M. Bende and R.H. Grafstrom The DNA binding properties of the MutL protein isolated from Escherichia coli, Nucleic Acids Res. 19 (1991) 1549-1555. |
[85] | M.C. Hall, H. Wang, D.A. Erie and T.A. Kunkel High Affinity Cooperative DNA Binding by the Yeast Mlh1-Pms1 Heterodimer, J. Mol. Biol 312 (2001) 637-647. |
[86] | A. Robertson, S.R. Pattishall and S.W. Matson The DNA binding activity of MutL is required for methyl-directed mismatch repair in Escherichia coli, J Biol Chem 281 (2006) 8399-8408. |
[87] | J. Gorman, A.J. Plys, M.L. Visnapuu, E. Alani and E.C. Greene Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice, Nat Struct Mol Biol 17 (2010) 932-938. |
[88] | J. Park, Y. Jeon, D. In, R. Fishel, C. Ban and J.B. Lee Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding, PLoS One 5 (2010) e15496. |
[89] | L.E. Sass, C. Lanyi, K. Weninger and D.A. Erie Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes, Biochemistry 49 (2010) 3174-3190. |
[90] | R. Galletto, I. Amitani, R.J. Baskin and S.C. Kowalczykowski Direct observation of individual RecA filaments assembling on single DNA molecules, Nature 443 (2006) 875-878. |
[91] | Y.T. Kim, S. Tabor, J.E. Churchich and C.C. Richardson Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7, J Biol Chem 267 (1992) 15032-15040. |
[92] | X. Shi, Y. Jung, L.J. Lin, C. Liu, C. Wu, I.K. Cann and T. Ha Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging, Nat Methods 9 (2012) 499-503. |
[93] | K. Lang, L. Davis, J. Torres-Kolbus, C. Chou, A. Deiters and J.W. Chin Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction, Nat Chem 4 (2012) 298-304. |
[94] | C. Albayrak and J.R. Swartz Cell-free co-production of an orthogonal transfer RNA activates efficient site-specific non-natural amino acid incorporation, Nucleic Acids Res 41 (2013) 5949-5963. |
[95] | R. Heim, A.B. Cubitt and R.Y. Tsien Improved green fluorescence, Nature 373 (1995) 663-664. |
[96] | N.C. Shaner, P.A. Steinbach and R.Y. Tsien A guide to choosing fluorescent proteins, Nat Methods 2 (2005) 905-909. |
[97] | R. Iino, I. Koyama and A. Kusumi Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface, Biophys J 80 (2001) 2667-2677. |
[98] | H. Murakoshi, R. Iino, T. Kobayashi, T. Fujiwara, C. Ohshima, A. Yoshimura and A. Kusumi Single-molecule imaging analysis of Ras activation in living cells, Proc Natl Acad Sci U S A 101 (2004) 7317-7322. |
[99] | G.V. Los, L.P. Encell, M.G. McDougall, D.D. Hartzell, N. Karassina, C. Zimprich, M.G. Wood, R. Learish, R.F. Ohana, M. Urh, D. Simpson, J. Mendez, K. Zimmerman, P. Otto, G. Vidugiris, J. Zhu, A. Darzins, D.H. Klaubert, R.F. Bulleit and K.V. Wood HaloTag: a novel protein labeling technology for cell imaging and protein analysis, ACS Chem Biol 3 (2008) 373-382. |
[100] | Y. Zhang, M.K. So, A.M. Loening, H. Yao, S.S. Gambhir and J. Rao HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots, Angew Chem Int Ed Engl 45 (2006) 4936-4940. |
[101] | A. Keppler, M. Kindermann, S. Gendreizig, H. Pick, H. Vogel and K. Johnsson Labeling of fusion proteins of O6-alkylguanine-DNA alkyltransferase with small molecules in vivo and in vitro, Methods 32 (2004) 437-444. |
[102] | G. Rigaut, A. Shevchenko, B. Rutz, M. Wilm, M. Mann and B. Seraphin A generic protein purification method for protein complex characterization and proteome exploration, Nat Biotechnol 17 (1999) 1030-1032. |
[103] | K. Terpe Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems, Appl Microbiol Biotechnol 60 (2003) 523-533. |
[104] | S.R. Adams, R.E. Campbell, L.A. Gross, B.R. Martin, G.K. Walkup, Y. Yao, J. Llopis and R.Y. Tsien New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications, J Am Chem Soc 124 (2002) 6063-6076. |
[105] | M.A. Whitt and C.E. Mire Utilization of fluorescently-labeled tetracysteine-tagged proteins to study virus entry by live cell microscopy, Methods 55 (2011) 127-136. |
[106] | A.C. Hearps, M.J. Pryor, H.V. Kuusisto, S.M. Rawlinson, S.C. Piller and D.A. Jans The biarsenical dye Lumio exhibits a reduced ability to specifically detecttetracysteine-containing proteins within live cells, J Fluoresc 17 (2007) 593-597. |
[107] | K. Stroffekova, C. Proenza and K.G. Beam The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also non-specifically to endogenous cysteine-rich proteins, Pflugers Arch 442 (2001) 859-866. |
[108] | J. Yin, A.J. Lin, D.E. Golan and C.T. Walsh Site-specific protein labeling by Sfp phosphopantetheinyl transferase, Nat Protoc 1 (2006) 280-285. |
[109] | J. Yin, P.D. Straight, S.M. McLoughlin, Z. Zhou, A.J. Lin, D.E. Golan, N.L. Kelleher, R. Kolter and C.T. Walsh Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase, Proc Natl Acad Sci U S A 102 (2005) 15815-15820. |
[110] | G. Lee, J. Yoo, B.J. Leslie and T. Ha Single-molecule analysis reveals three phases of DNA degradation by an exonuclease, Nat Chem Biol 7 (2011) 367-374. |
[111] | B. Treutlein, A. Muschielok, J. Andrecka, A. Jawhari, C. Buchen, D. Kostrewa, F. Hog, P. Cramer and J. Michaelis Dynamic architecture of a minimal RNA polymerase II open promoter complex, Mol Cell 46 (2012) 136-146. |
[112] | S. Waichman, C. You, O. Beutel, M. Bhagawati and J. Piehler Maleimide photolithography for single-molecule protein-protein interaction analysis in micropatterns, Anal Chem 83 (2011) 501-508. |
[113] | L. Wang, A. Pulk, M.R. Wasserman, M.B. Feldman, R.B. Altman, J.H. Cate and S.C. Blanchard Allosteric control of the ribosome by small-molecule antibiotics, Nat Struct Mol Biol 19 (2012) 957-963. |
[114] | I.S. Carrico, B.L. Carlson and C.R. Bertozzi Introducing genetically encoded aldehydes into proteins, Nat Chem Biol 3 (2007) 321-322. |
[115] | P. Wu, W. Shui, B.L. Carlson, N. Hu, D. Rabuka, J. Lee and C.R. Bertozzi Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag, Proc Natl Acad Sci U S A 106 (2009) 3000-3005. |
[116] | A. Dirksen and P.E. Dawson Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling, Bioconjug Chem 19 (2008) 2543-2548. |
[117] | S. Wolter, M. Schuttpelz, M. Tscherepanow, V.D.L. S, M. Heilemann and M. Sauer Real-time computation of subdiffraction-resolution fluorescence images, J Microsc 237 (2010) 12-22. |
[118] | R. Henriques, M. Lelek, E.F. Fornasiero, F. Valtorta, C. Zimmer and M.M. Mhlanga QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ, Nat Methods 7 (2010) 339-340. |
[119] | P.N. Hedde, J. Fuchs, F. Oswald, J. Wiedenmann and G.U. Nienhaus Online image analysis software for photoactivation localization microscopy, Nat Methods 6 (2009) 689-690. |
[120] | R. Parthasarathy Rapid, accurate particle tracking by calculation of radial symmetry centers, Nat Methods 9 (2012) 724-726. |
[121] | C.S. Smith, N. Joseph, B. Rieger and K.A. Lidke Fast, single-molecule localization that achieves theoretically minimum uncertainty, Nat Methods 7 (2010) 373-375. |
[122] | A. Kechkar, D. Nair, M. Heilemann, D. Choquet and J.B. Sibarita Real-time analysis and visualization for single-molecule based super-resolution microscopy, PLoS One 8 (2013) e62918. |
[123] | H. Yardimci, A.B. Loveland, A.M. van Oijen and J.C. Walter Single-molecule analysis of DNA replication in Xenopus egg extracts, Methods 57 (2012) 179-186. |