American Journal of Environmental Engineering
p-ISSN: 2166-4633 e-ISSN: 2166-465X
2016; 6(4A): 135-142
doi:10.5923/s.ajee.201601.20
E. Zahn1, T. L. Chor2, N. L. Dias1, 2, 3
1Graduate Program in Environmental Engineering, Federal University of Paraná, Curitiba PR, Brazil
2Laboratory for Environmental Monitoring and Modeling Analysis, Federal University of Paraná, Curitiba PR, Brazil
3Department of Environmental Engineering, Federal University of Paraná, Curitiba PR, Brazil
Correspondence to: N. L. Dias, Graduate Program in Environmental Engineering, Federal University of Paraná, Curitiba PR, Brazil.
Email: |
Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
We propose a simple quality control procedure for micrometeorological datasets focused on removing the most common problems known to affect them using only raw data (i.e., without calculating fluxes) and simple tests. Given that this quality control was motivated by the need to process large amounts of data produced by the Amazon Tall Tower Observatory (ATTO) project, we opted to implement fast-to-execute tests over computationally costly ones. This characteristic, which is often overlooked by quality control procedures, is important in some cases since runtime can be an issue when dealing with very large datasets. As an example, we applied our proposed quality control to a 10-month period ATTO dataset. The procedure implemented successfully flagged all situations where a subjective analysis would have detected the usual errors and problems in the dataset. Our results suggest that the most frequent issue with this dataset is the fact that sensor resolution is insufficient to measure fluctuations under low turbulence conditions, more specifically the virtual temperature. This issue was responsible for excluding roughly 66% of our data.
Keywords: Micrometeorology, High frequency data, Quality control
Cite this paper: E. Zahn, T. L. Chor, N. L. Dias, A Simple Methodology for Quality Control of Micrometeorological Datasets, American Journal of Environmental Engineering, Vol. 6 No. 4A, 2016, pp. 135-142. doi: 10.5923/s.ajee.201601.20.
Figure 1. Flowchart of the proposed quality control. Note that when any variable of the run fails a test, the entire run is discarded |
(1) |
|
Figure 2. Examples of some runs that were discarded by some tests. In panel (a) we show the fluctuations of a run that failed the Maximum difference test, along with the moving median used in the test. In (b) we show an example of a run that failed the standard deviation test. In (c) we present a run that failed the Reverse arrangement test, along with the 50-points array used for the actual application of the test. Lastly, in (d) we have a run which clearly fails the Bounds test because of the negative concentrations |
|
[1] | R. Rollenbeck, K. Trachte, and J. Bendix, 2016, A new class of quality controls for micrometeorological data in complex tropical environments. Journal of Atmospheric and Oceanic Technology, 33(1):169–183. |
[2] | D. Vickers and L. Mahrt, 1997, Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14:512–526. |
[3] | T. Foken, M. Gockede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger. Post-field data quality control. In: X. Lee, W. Massman, and B. Law, editors, “Handbook of Micrometeorology”. Kluwer Academic Publishers, 2004. |
[4] | C. L. Klipp and L. Mahrt, 2004, Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 130(601):2087–2103. |
[5] | T. Foken and B. Wichura, 1996, Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78(1–2):83–105. |
[6] | M. Mauder, M. Cuntz, C. Drue, A. Graf, C. Rebmann, H.-P. Schmid, M. Schmidt, and R. Steinbrecher, 2013, A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural and Forest Meteorology, 169:122–135. |
[7] | C. Rebmann, M. Göckede, T. Foken, M. Aubinet, M. Aurela, P. Berbigier, C. Bernhofer, N. Buchmann, A. Carrara, A. Cescatti, R. Ceulemans, R. Clement, A. J. Elbers, A. Granier, T. Grünwald, D. Guyon, K. Havránková, B. Heinesch, A. Knohl, T. Laurila, B. Longdoz, B. Marcolla, T. Markkanen, F. Miglietta, J. Moncrieff, L. Montagnani, E. Moors, M. Nardino, J.-M. Ourcival, S. Rambal, Ü. Rannik, E. Rotenberg, P. Sedlak, G. Unterhuber, T. Vesala, and D. Yakir, 2005, Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling. Theoretical and Applied Climatology, 80(2):121--141. |
[8] | M. Mauder, C. Liebethal, M. Göckede, J.-P. Leps, F. Beyrich, and T. Foken, 2006, Processing and quality control of flux data during litfass-2003. Boundary-Layer Meteorology, 121(1):67–88. |
[9] | T. Foken, R. Leuning, S. R. Oncley, M. Mauder, and M. Aubinet. Corrections and data quality control. In: Marc Aubinet, Dario Papale, and Timo Vesala, editors, “Eddy Covariance: A Practical Guide to Measurement and Data Analysis”. Springer, 2012. |
[10] | M. O. Andreae, O. C. Acevedo, A. Araújo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, D. Moran-Zuloaga, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. D. O. Sá, C. B. Sales, R. M. N. D. Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yañez Serrano, 2015, The amazon tall tower observatory (ATTO) in the remote Amazon basin: overview of first results from ecosystem ecology, meteorology, trace gas, and aerosol measurements. Atmospheric Chemistry and Physics Discussions, 15(8):11599–11726, 2015. |
[11] | E. Zahn and N. L. Dias, 2016, Controle de qualidade em dados de alta frequência no projeto ATTO. Ciência e Natura, Santa Maria, RS, Brazil. In press. |
[12] | E. Zahn, N. L. Dias, A. Araújo, L. Sá, M. Söergel, I. Trebs, S. Wolff, and A. Manzi, 2016, Scalar turbulent behavior in the roughness sublayer of an Amazonian forest. Atmospheric Chemistry and Physics Discussions, 2016:1–24. Under review. |
[13] | J. S. Bendat and A. G. Piersol. “Random Data”. John Wiley & Sons, 2nd edition, 1986. |
[14] | L. Mahrt, E. Moore, D. Vickers, and N. O. Jensen, 2001, Dependence of Turbulent and Mesoscale Velocity Variances on Scale and Stability. Journal of Applied Meteorology, 40:628–641. |
[15] | C. L. Klipp and L. Mahrt, 2004, Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 130(601):2087–2103. |
[16] | D. Vickers and L. Mahrt, 2006, A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer Meteorology, 118(3):431–447. |
[17] | J. G. Campos, Otávio C. Acevedo, J. Tota, and A. O. Manzi, 2009, On the temporal scale of the turbulent exchange of carbon dioxide and energy above a tropical rain forest in Amazonia. Journal of Geophysical Research Atmospheres, 114(8):1–10. |
[18] | L. Mahrt, J. Sun, and D. Stauffer, 2015, Dependence of Turbulent Velocities on Wind Speed and Stratification. Boundary-Layer Meteorology, 155(1):55–71. |
[19] | D. M. Santos, O. C. Acevedo, M. Chamecki, J. D. Fuentes, Tobias Gerken, and P. C. Stoy, 2016, Temporal Scales of the Nocturnal Flow Within and Above a Forest Canopy in Amazonia. Boundary-Layer Meteorology, 1–26, 2016. |