[1] | Becceneri, J., 2009, Fundamentals of optimization and artificial intelligence, Technical Intelligence Computational Inspired by Nature Application in Inverse Problems in Radiative Transfer, 41, 35-42. |
[2] | Benardos, P., and Vosniakos, G., 2007, Optimizing feedforward artificial neural network architecture., Engineering Applications of Artificial Intelligence, 20(3), 365–382. |
[3] | Carvalho, A., Ramos, M., Chaves, A., 2011, Metaheuristics for the feedforward artificial neural network (ANN) architecture optimization problem., Neural Comput Applic 20, 1273–1284. |
[4] | Center for Weather Forecasts and Climate Studies (2015). Supercomputação do INPE. [Online]. Available: http://supercomputacao.inpe.br/recursos2. |
[5] | Costa, M., Braga, A., Menezes, B., 2003, Improving neural networks generalization with new constructive and pruning methods., Intelligent and Fuzzy Systems 13, 75–83. |
[6] | Chun-Yan, Y., Ming-Hui, W., Ming, W., 2003, Combining rough set theory with neural network theory for pattern recognition, in Robotics., Intelligent Systems and Signal Processing, IEEE International Conference on, 2, 880–885. |
[7] | Dempster, A., 1967, Upper and lower probabilities induced by a multivalued mapping, The annals of mathematical statistics, JSTOR, 1, 325–339. |
[8] | Doty, B. (2015) Grid Analysis and Display System GrADS. [Online]. Available: http://grads.iges.org/grads/head.html. |
[9] | Haykin, S. (1998). Neural networks principles and practices, 2o edn. Prentice Hall, Canada. |
[10] | Jiang, J., Yang, D., Wei, H. E., 2008, Image segmentation based on rough set theory and neural networks. In Visual Information Engineering, Proc., 5th International Conference on, China, 361-365. |
[11] | Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., 1996, The NCEP/NCAR 40-year reanalysis project., Bulletin of the American meteorological Society, 77 (3), 437–471. |
[12] | Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A., 1998, Rough Set: a tutorial. Department of Computer and Information Science Norwegian University os Science and Technology (NTNU), Polond. |
[13] | Luz, E., Becceneri, J., Campos Velho, H., 2008, A new multiparticle collision algorithm for otimization in a highperformance environment. Journal of Computacional Interdisciplinary Sciences, 1(1), 3–10. |
[14] | Metropolis, N., Resenbluth, A.; Rosenbluth, M.; Teller, A.; Teller, E., 1953, Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 6(21), 1087–1092. |
[15] | Øhrn, A. Rosetta technical reference manual (1999), Norway, [Online]. Available: <http://www.lcb.uu.se>. |
[16] | Pawlak, Z., 1982, Rough sets., International Journal of Computer & Information Sciences, Springer, 11(5), 341–356. |
[17] | Pretchelt, L., 1994, A set of neural network benchmark problems and benchmarking rules., Technical Report 21/94, University Karlsruhe, Germany. |
[18] | Quadro, M., Machado, L., Calbete, S., Batista, N., Oliveira, G. d. (1996). Climatologia de precipitação e temperatura. Climanálise (Boletim de Monitoramento e Análise Climática), Especial de, 10. |
[19] | Sampaio, G., and Silva Dias, P.L., 2014, Evolução dos modelos climáticos e de previsão de tempo e clima., Revista USP, 2(103), 41–54. |
[20] | Sacco, W., Oliveira, C., 2005, A new stochastic optimization algorithm based on a particle collision metaheuristic., Proc., 6th World Congress of Structural and Multidisciplinary Optimization, Rio de Janeiro, 1-8. |
[21] | Thangavel, K., and Pethalakshmi, A., 2009, Dimensionality reduction based on rough set theory: A review., Applied Soft Computing, 9(1), 1-12. |
[22] | Valdez, F., Melin, P., Castillo, O., 2014, Modular neural networks architecture optimization with a new nature inspire method using a fuzzy combination of particle swarm optimization and genetic algorithms., Information Sciences, 270, 143–153. |
[23] | Zadeh, L., 1965, Fuzzy sets, Information and Control, Elsevier, 8, 338–353. |
[24] | Zadeh, L., 1978, Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, Elsevier, 1, 3–28. |