[1] | Acevedo, O. C., Costa, F. D., Oliveira, P. E. S., Puhales, F. S., Degrazia, G. A. and Roberti, D. R., 2014: The influence of submeso processes on stable boundary layer similarity relationships. J. Atmos. Sci., 71, 207–225. |
[2] | Acevedo, O. C. and Fitzjarrald, D. In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-Layer Meteorology, Kluwer Academic Publishers, v. 106, n. 1, p. 1–33, 2003. |
[3] | Banta, R. M. and Mahrt, L. and Vickers, D. and Sun, J. and Balsley, B. B. and Pichugina, Y. L. and Williams, E.J. The very stable boundary layer on nights with weak low-level jets. Journal of the Atmospheric Sciences, v. 64, n. 9, p. 3068–3090, 2007. |
[4] | Beare, R. J. and Macvean, M. K. and Holtslag, A. A. and Cuxart, J. and Esau, I. and Golaz, J.C. and Jimenez, M. A. and Khairoutdinov, M. and Kosovic, B. and Lewellen, D. et al. An inter-comparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorology, Springer, v. 118, n. 2, p. 247–272, 2006. |
[5] | Brunet, Y. and Finnigan, J. and Raupach, M. A wind tunnel study of air flow in waving wheat: Single-point velocity statistics. Boundary-Layer Meteorology, Kluwer Academic Publishers, v. 70, n. 1-2, p. 95–132, 1994. |
[6] | Choi, B. R. C. K.-S. The mechanism of turbulent drag reduction with wall oscillation. International Journal of Heat and Fluid Flow, v. 22, p. 1 – 9, 2001. |
[7] | Choi, K.-S. and Orchard, D. Turbulence management using riblets for heat and momentum transfer. Experimental Thermal and Fluid Science, v. 15, n. 2, p. 109 – 124, 1997. |
[8] | Clarke, R. H. and Dyer, A. J. and Brook, R. and Reid, D. and Troup, A. The Wangara experiment: Boundary layer data. [S.l.]: CSIRO Australia, 1971. |
[9] | Costa, F. D. and Acevedo, O. C. and Mombach, J. M. C. and Degrazia, G. A. A simplified model for intermittent turbulence in the nocturnal boundary layer. J. Atmos. Sci., v. 68, p. 1714– 1729, 2011. |
[10] | Cuxart, J. and Holtslag, A. A. and Beare, R. and Bazile, E. and Beljaars, A. and Cheng, A. and Conangla, L. and Ek, M. and Freedman, F. and Hamdi, R. et al. Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorology, Springer, v. 118, n. 2, p. 273–303, 2006. |
[11] | Deardorff, J. W. Numerical investigation of neutral and unstable planetary boundary layers. Journal of the Atmospheric Sciences, v. 29, n. 1, p. 91–115, 1972. |
[12] | Degrazia, G. A. and Rizza, U. and Mangia, C. and Tirabassi, T. and Velho, H. F. C. and Moraes, O. L.L.A method to calculate dispersion parameter sin a shear-dominated stable boundary layer. AIR POLLUTION, Kluwer Academic Publishers, v. 3, p. 207–213, 1997. |
[13] | Duynkerke, P.G. Application of the e–et urbulence closure model to the neutral and stable atmospheric boundary layer. Journal of the Atmospheric Sciences, v. 45, 1988. |
[14] | Haugen, D.A. and Kaimal, J.C. and Bradley, E.F. An experimental study of reynolds stress and heat flux in the atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, John Wiley & Sons, Ltd, v. 97, n. 412, p. 168–180, 1971. |
[15] | Kaimal, J. and Wyngaard, J. and Haugen, D. and Coté, O. and Izumi, Y. and Caughey, S. and Readings, C. Turbulence structure in the convective boundary layer. Journal of the Atmospheric Sciences, v. 33, n. 11, p. 2152–2169, 1976. |
[16] | Kitaigorodskii, S. A note on similarity theory for atmospheric boundary layers in the pre- sence of background stable stratification. Tellus A, Wiley Online Library, v. 40, n. 5, p. 434– 438, 1988. |
[17] | kosovic, B. and Curry, J. A. A Large Eddy Simulation Study of a Quasi-Steady, Stably Stratified Atmospheric Boundary Layer. Journal of the Atmospheric Sciences, 57, 1052-1068, 2000. |
[18] | Lienhard, J. H. and Atta, V. The decay of turbulence in thermally stratified flow. Journal of Fluid Mechanics, Cambridge Univ Press, v. 210, p. 57–112, 1990. |
[19] | Mahrt, L. Stratified atmospheric boundary layers. Boundary-Layer Meteorology, Springer, v. 90, n. 3, p. 375–396, 1999. |
[20] | Ohya, Y. Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorology, Kluwer Academic Publishers, v. 98, n. 1, p. 57–82, 2001. |
[21] | Ohya, Y. and Nakamura, R. and Uchida, T. Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-layer meteorology, Springer, v.126, n.3, p.349–363, 2008. |
[22] | Ohya, Y. and Neff, D. E. and Meroney, R. N. Turbulence structure in a stratified boundary layer under stable conditions. Boundary-Layer Meteorology, Springer, v. 83, n. 1, p. 139–162, 1997. |
[23] | Panchev, S. Random Functions and Turbulence. 1. ed. Oxford: Pergamon Press, 1971. 444 p. |
[24] | Poulos, G. S. and Blumen, W. and Fritts, D. C. and Lundquist, J. K. and Sun, J. and Burns, S. P. and Nappo, C. and Banta, R. and Newsom, R. and Cuxart, J. et al. Cases-99: A comprehensive investigation of the stable nocturnal boundary layer. Bulletin of the American Meteorological Society, v. 83, n. 4, p. 555–581, 2002. |
[25] | Shah S. and Bou-Zeid E. Direct Numerical Simulations of Turbulent Ekman Layers with Increasing Static Stability: Modifications to the Bulk Structure and Second-Order Statistics. The Journal of Fluid Mechanics, 760, 494-539, 2014. |
[26] | Sreenivasan, K. R. On the universality of the kolmogorov constant. Physics of Fluids, v. 7, n. 11, p. 2778–2784, 1995. |
[27] | Sun, J. and Burns, S. P. and Lenschow, D. H. and Banta, R. and Newsom, R. and Coulter, R. and Frasier, S. and Ince, T. and Nappo, C. and Cuxart, J. and Blumen, W. and Lee, X. and Hu, X.-Z. Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.- Layer Meteor., v. 105, p. 199–219, 2002. |
[28] | Yoon, K. and Warhaft, Z. The evolution of grid-generated turbulence under conditions of stable thermal stratification. Journal of Fluid Mechanics, Cambridge Univ Press, v. 215, p. 601–638, 1990. |
[29] | Zhu, W. and Hout, R. and Katz, J. On the flow structure and turbulence during sweep and ejec- tion events in a wind-tunnel model canopy. Boundary-Layer Meteorology, Kluwer Academic Publishers, v. 124, n. 2, p. 205–233, 2007. |
[30] | Zhu, W. and Hout, R. and Luznik, L. and Kang, H. and Katz, J. and Meneveau, C. A comparison of PIV measurements of canopy turbulence performed in the field and in a wind tunnel model. Experiments in Fluids, Springer-Verlag, v. 41, n. 2, p. 309–318, 2006. |