[1] | Dunne AJ, Williams RJ, Martinez ND. Food-web structure and network theory: The role of connectance and size. Proc. Natl Acad. Sci. USA 2002, 99: 12917-12922. |
[2] | Egerton FN. Understanding food chains and food webs, 1700-1970. Bull. Ecol. Soc. Am. 2007, 88(1): 50-69. |
[3] | Laymann CA, Glery ST, Buhler S, Rossi R, Penland T, Henson MN, Bogdnanoff AK, …, Archer SK. A primer on the history of food webs ecology: Fundamental contributions of fourteen researchers. Food webs 2015, 4: 14-24. |
[4] | Martinez ND. Scale dependent constraints on food web structure. Am. Nat 1994, 144: 935-953. |
[5] | Schoener TW. Food webs from the small to the large. Ecology 1989, 70(6): 1559-1589. |
[6] | Cohen JE, Briand F, Newman CM. Community Food Webs: Data and Theory. New York: Springer-Verlag; 1990. |
[7] | Cousins SH. The decline of the trophic level concept. Trends Ecol. Evol. 1987, 2: 312-316. |
[8] | Deb D. Scale-dependence of Food Web Structures: Tropical Ponds as Paradigm. Oikos 1995, 72: 245-262. |
[9] | Akin S, Winemiller KO. Seasonal variation in food web composition and structure in a temperate tidal estuary. Estuar. Coas t2006, 29: 552-567. |
[10] | Quillfeldt P, Ekschmitt K, Brickle P, McGill RA, Wolters V, Dehnhard N, Masello JF. Variability of higher trophic level stable isotope data in space and time - A case study in a marine ecosystem. RapidCommun. Mass Spectrom 2015, 29(7): 667-74. |
[11] | Yodzis P. The connectance of real ecosystems. Nature 1980, 284: 544-545. |
[12] | Pimm SL. Food webs. New York; Ed. Chapman & Hall; 1982. |
[13] | Martinez ND. Constant connectance in community food webs. Am. Nat. 1992, 140: 1208-1218. |
[14] | Banasek-Richter C, Bersier L-F, Cattin M-F, Baltensperger R, Gabriel J-P, Merz Y, Ulanowicz RE, Tavares AF, Williams DD, de Ruiter PC, Winemiller KO, Naisbit RE. Complexity in quantitative food webs. Ecology2009, 90(6): 1470-1477. |
[15] | Valandro L, Caimmi R, Colombo L. What is hidden behind the concept of ecosystem efficiency in energy transformation? Ecol. Model. 2003, 170: 185-191. |
[16] | Begon M, Harper JL, Townsend CR. Ecology: Individuals, populations and Communities. Third edition, Oxford: Blackwell Science; 1996. |
[17] | Briand F. Environmental control of food web structure. Ecology 1983, 64(2): 253-263. |
[18] | Cohen JE. 1989 Ecologists Co-operative Web Bank (ECOWeBTM), New York, Rockefeller University. |
[19] | Merriam G. Connectivity: a fundamental ecological characteristic of landscape pattern. In: Brandt J and Agger P. (eds) Proceedings of first international seminar on methodology in landscape ecology research and planning, vol I. Roskilde Universitessforlag GeoRuc, Roskilde, Denmark, 1984. p.5-15. |
[20] | Hodgson JA, Thomas CD, Wintle BA, Moilanen A. Climate change, connectivity and conservation decision making: back to basics. J. Appl. Ecol. 2009, 46: 964-969. |
[21] | Leguerrier D, Degré D, Niquil N. Network analysis and inter-ecosystem comparison of two intertidal mudflat food webs (Brouage Mudflat and Aiguillon Cove, SW France). Estuar. Coast. Shelf Sci. 2007, 74(3): 403-418. |
[22] | Hairston NG Jr, Hairston NG Sr. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 1993, 142: 379-411. |
[23] | Pimm SL, Lawton JH. Number of trophic levels in ecological communities. Nature 1977, 268: 329-331. |
[24] | DeAngelis DL, Bartell SM, Brenkert AL. Effects of nutrient recycling and food-chain length on resilience. Am. Nat. 1989, 134(5): 778-805. |
[25] | Tunney TD, McCann KS, Lester NP, Shuter BJ. Food web expansion and contraction in response to changing environmental conditions. Nature Com. 2012, 3:1105. |
[26] | McGarvey R, Dowling N, Cohen J. Longer food chains in pelagic ecosystems: trophic energetics of animal body size and metabolic efficiency. Am. Nat. 2016, 188(1): 76-86. |
[27] | Briand F, Cohen JE. Environmental correlates of food web chain length. Science1987, 238: 956-960. |
[28] | Kerr SR. Theory of size distribution in ecological communities. J. Fish. Res. Board Can. 1974, 31(12): 1859-1862. |
[29] | Cohen JE. Food Webs and Niche Space. Princeton: Princeton Univ. Press; 1978. |
[30] | Yodzis P, Innes S. Body size and consumer-resource dynamics. Am. Nat. 1992, 139: 1151-1175. |
[31] | Emmerson MC, Raffaelli D. Predator-prey body-size, interaction strength and the stability of a real food web. J. Anim. Ecol. 2004, 73:399-409. |
[32] | Warren PH, Spencer M. Community and food-web responses to the manipulation of energy input and disturbance in small ponds. Oikos 1996, 75(3): 407-418. |
[33] | Tucker MA, Rogers TL. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. R. Soc. B 2014, 281: 1797. |
[34] | Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L,..., Woodward G. Ecological Networks - beyond food webs. J. Anim. Ecol. 2009, 78:253-269. |
[35] | Williams RJ, Martinez ND. Limits to trophic levels and omnivory in complex food webs: Theory and data. Am. Nat. 2004, 163: 458-468. |
[36] | Dunne J. The Network Structure of Food Webs. Workshop on Theoretical Ecology and Global Change at The Abdus Salam International Centre for Theoretical Physics, Trieste; 2009. |
[37] | Warren PH. Spatial and temporal variation in the structure of a freshwater food web. Oikos 1989, 55:299-311. |
[38] | Bersier LF, Sugihara G. Scaling regions for food web properties. Proc. Natl Acad. Sci. USA 1997, 94: 1247-1251. |
[39] | Gauzens B, Legendre S, Lazzaro X, Lacroix G. Food-web aggregation, methodological and functional issues. Oikos 2013, 122:1606-1615. |
[40] | May RM. Stability and Complexity in Model Ecosystems, Princeton, NJ:Princeton University Press; 1973. |
[41] | Schriever TA. Food webs in relation to variation in the environment and species assemblage. A multivariate approach. Plos ONE 2015, 10(4): e0122719. |
[42] | Forister ML. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA2015, 112(2): 442-447. |
[43] | Cirtwill AR, Stouffer DB, Romanuk TN. Latitudinal gradients in biotic niche breadth vary across ecosystem types. Proc. R. Soc. B2015, 282: 20151589. |
[44] | Shurin JB, Gruner DS, Hillebrand H. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc. R. Soc. B 2006, 273: 1-9. |
[45] | Dunne JA, Labandeira CC& Williams RJ. Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc. R. Soc. B2014, 281: 20133280. |
[46] | Chase JM, Leibold MA, Downing AL, Shurin JB. The effect of productivity, herbivory, and plant species turnover in grassland food webs. Ecology 2000, 81(9): 2845-2497. |
[47] | Rossi L, Di Lascio A, Carlino P, Calizza E, Costantini ML. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 2015, 23: 14-24. |
[48] | Schalk CM, Montaña CG, Winemiller KO, Fitzgerald LA. Trophic plasticity, environmental gradients and food-web structure of tropical pond communities. Freshw. Biol. 2017, 62(3): 519-529. |
[49] | Briand F. Structural singularities of freshwater food webs. Verh. Internat. Verein Limnol.1985, 22: 3356-3364. |
[50] | Carpenter SR, Chisholm SW, Krebs CJ, Schindler DW & Wright RF. Ecosystem experiments. Science 1995, 269: 324-327. |
[51] | Christensen V, Guénette S, Heymans JJ, Walters CJ, Watson R, Zeller D & Pauly D. Hundred-year decline of North Atlantic predatory fishes. Fish Fish. 2003, 4: 1-24. |
[52] | Spiller DA & Schoener TW. Effects of top and intermediate predators in a terrestrial food web. Ecology 1994, 75: 182-196. |
[53] | Polis G, Sears ALW, Huxel GR, Strong D, Maron J. When is a trophic cascade a trophic cascade? Trends Ecol. Evol. 2000, 15: 473-475. |
[54] | Leroux SJ, Loreau M. Consumer mediated recycling and cascading trophic interactions. Ecology2010, 91: 2162-2171. |
[55] | Heath MR, Speirs DC, Steele JH. Understanding patterns and processes in models of trophic cascades. Ecol. Lett. 2013, 17(1): 101-114. |
[56] | Gandiwa E. Top-down and bottom-up control of large herbivore populations: a review of natural and human-induced influences. Trop. Conserv. Sci. 2013, 6(4): 493-505. |
[57] | Schoenly K, Beaver RA, Heumier TA. On the trophic relations of insects. A food web approach. Am. Nat. 1991, 137:597-638. |
[58] | Paine RT. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 1980, 49: 667-685. |
[59] | Kerr JT, Packer L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 1997, 385: 252-254. |
[60] | Guegan JF, Lek S, Oberdorff T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 1998, 391: 382-384. |
[61] | Hurlbert AH. Species-energy relationship and habitat complexity in bird communities. Ecol. Lett. 2004, 7(8): 714-720. |
[62] | Ulanowicz RE, Holt RD, Barfield M. Limit on ecosystem trophic complexity: insights from ecological network analysis. Ecol. Lett. 2014,17:127-136. |
[63] | Borrett SR, Patten BC. Structure of pathways in ecological networks: relationships between length and number. Ecol. Modell. 2003, 170: 173-84. |
[64] | Fryer G. The trophic interrelationships and ecology of some littoral communities of Lake Nyasa with especial reference to the fishes and a discussion of the evolution of a group of rock frequenting Cichlidae. Proc. Zool. Soc. Lond. 1959, 132: 153-281. |
[65] | Burgis MJ., Dunn IG., Ganf GG., McGowan LM. & Viner AB. Productivity Problems of Freshwaters, Kajak Z.& Hillbricht-Ilkowska A. eds. Warsaw: Polish Scientific Publishers; 1972, Lake George, Uganda: Studies on a tropical freshwater ecosystem; pp.301-309. |
[66] | Cyr H, Pace ML. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 1993, 361: 148-150. |
[67] | Lubchenco J, Menge BA. Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 1978, 48: 67-94. |
[68] | Carney HJ, Havens KE, Bersier L. Nonlinear scale dependence and spatiotemporal variability in planktonic food webs. Oikos 1997, 79: 230-240. |
[69] | Coll M, Libralato S. Contribution of food web modelling to the ecosystem approach to marine resource management in the Mediterranean Sea. Fish Fish.2012, 13: 60-88. |
[70] | Soler GA, Graham JE, Thomson RJ. et al. 2015 Reef fishes at all trophic levels respond positively to effective marine protected areas. PLoS ONE10(10): e0140270. |
[71] | Sugihara G, Schoenly K., Trombla A. Scale invariance in food web properties. Science 1989, 245: 48-52. |
[72] | Havens KE. Unique structural properties of pelagic food webs.Oikos 1997, 78: 75-80. |
[73] | Buzhdygan OY, Rudenko SS. Trophic Network assessment of grassland ecosystem status. Biol. Syst. 2016, 8(1): 143-154. |
[74] | Poisot T, Gravel D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ2014, e251: 1-11. |
[75] | Holt RD, Lawton JH, Polis GA, Martinez ND. Trophic rank and the species-area relation. Ecology1999, 80: 1495-1504. |
[76] | Arrington DA, Winemiller KO, Loftus WF, Akin S. How often do fishes “run on empty”? Ecology 2002, 83(8): 2145-2151. |
[77] | Nakazawa T, Ushio M, Kondoh M. Scale dependence of predator-prey mass ratio: determinants and applications. Adv. Ecol. Res. 2011, 45: 269-302. (doi.org/10.1016/B978- |
[78] | Vermeij GJ. Plant defences on land and in water: why are they so different? Annals of Botany, 2016, 117: 1099-1109. |
[79] | Smith MJ, Sander E., Allesina S. Stability and feedback levels in food web models. Ecol. Lett. 2015, 18, 593-595. |
[80] | Stevens M, Lown AE, Wood LE. Color change and camouflage in juvenile shore crabs. Front. Ecol. Evol. 2014, 2, 1-14. |
[81] | Cuthill IC. Camouflage. J. Zool.2019, 308, 75–92. |
[82] | Ayal Y., Groner E. Primary consumer body size and food-chain length in terrestrial communities. Israel. J. Ecol. Evol. 55(4), 239-343. |
[83] | Gill BJ. Eggshell characteristics of moa eggs (Aves: Dinornithiformes). J. R. Soc. N. Z. 2007, 37, 139-150. |
[84] | Secco EL, Valandro L, Caimmi R, Magenes G, Salvato B. Optimization of two-joint arm movements: a model technique or a result of natural selection? Biol. Cybern. 2005, 93(4), 288-306. |
[85] | Wommack KE, Colwell RR. Virioplankton: Viruses in Aquatic Ecosystems. Microbiol. Molec. Biol. Rev. 2000, 64, 69-114. |
[86] | Eklöf A, Tang S, Allesina S. Secondary extinctions in food webs: a Bayesian network approach. Methods Ecol. Evol. 2013, 4, 760-770. |
[87] | Bartomeus I, Gravel D, Tylianakis JM, Aizen MA, Dickie IA, Bernard-Verdier M. A common framework for identifying linkage rules across different types of interactions. Funct. Ecol. 2016, 30, 1894-1903. |
[88] | Soto-Ortiz L. The Regulation of Ecological Communities Through Feedback Loops: A Review, Research in Zoology. 2015; 5(1): 1-15. doi:10.5923/j.zoology.20150501.01. |