[1] | Sekar, N. (2013). Advances in the Dyeing and Finishing of Technical Textiles Woodhead Publishing Series in Textiles, pp 26-46. |
[2] | Maile, F. J., Pfaff, G., & Reynders, P. (2005). Effect pigments—past, present and future. Progress in Organic Coatings, 54(3), 150–163. doi:10.1016/j.porgcoat.2005.07.003. |
[3] | Mahltig, B., Zhang, J., Wu, L., Darko, D., Wendt, M., Lempa, E., … Haase, H. (2016). Effect pigments for textile coating: a review of the broad range of advantageous functionalization. Journal of Coatings Technology and Research, 14(1), 35–55. doi:10.1007/s11998-016-9854-9. |
[4] | Pfaff, P. G., Kieser, M., Maile, F. J. & Weitzel, J. (2009). Special Effect Pigments: Technical Basics and Application, Second Revised Edition Page 16-20. |
[5] | Germer, T. A., & Nadal, M. E. (2001). Modeling the appearance of special effect pigment coatings. Surface Scattering and Diffraction for Advanced Metrology. doi:10.1117/12.446721. |
[6] | Textor, T., & Mahltig, B. (2010). A sol–gel based surface treatment for preparation of water repellent antistatic textiles. Applied Surface Science, 256(6), 1668–1674. doi:10.1016/j.apsusc.2009.09.091. |
[7] | Vilčnik, A., Jerman, I., Šurca Vuk, A., Koželj, M., Orel, B., Tomšič, B., … Kovač, J. (2009). Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Sol−Gel Coatings for Cotton Fabrics. Langmuir, 25(10), 5869–5880. doi:10.1021/la803742c. |
[8] | Mahltig, B., Fiedler, D., & Simon, P. (2011). Silver‐containing sol–gel coatings on textiles: antimicrobial effect as a function of curing treatment. Journal of the Textile Institute, 102(9), 739–745. doi:10.1080/00405000.2010.515730. |
[9] | Mahltig, B., Gutmann, E., Meyer, D. C., Reibold, M., Dresler, B., Günther, K., … Böttcher, H. (2007). Solvothermal preparation of metallized titania sols for photocatalytic and antimicrobial coatings. J. Mater. Chem., 17(22), 2367–2374. doi:10.1039/b702519j. |
[10] | Mahltig, B., Böttcher, H., Knittel, D., & Schollmeyer, E. (2004). Light Fading and Wash Fastness of Dyed Nanosol-Coated Textiles. Textile Research Journal, 74(6), 521–527. doi:10.1177/004051750407400610. |
[11] | Pagliaro, M., Ciriminna, R., & Palmisano, G. (2009). Silica-based hybrid coatings. Journal of Materials Chemistry, 19(20), 3116. doi:10.1039/b819615j. |
[12] | Saito, M. (1993). Antibacterial, Deodorizing, and UV Absorbing Materials Obtained with Zinc Oxide (ZnO) Coated Fabrics. Journal of Coated Fabrics, 23(2), 150–164. doi:10.1177/152808379302300205. |
[13] | Daoud, W. A., & Xin, J. H. (2004). Low Temperature Sol-Gel Processed Photocatalytic Titania Coating. Journal of Sol-Gel Science and Technology, 29(1), 25–29. doi:10.1023/b:jsst.0000016134.19752.b4. |
[14] | Vafaee, M., & Ghamsari, M. S. (2007). Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Materials Letters, 61(14-15), 3265–3268. doi:10.1016/j.matlet.2006.11.089. |
[15] | Daoud, W. A., Xin, J. H., & Zhang, Y.-H. (2005). Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surface Science, 599(1-3), 69–75. doi:10.1016/j.susc.2005.09.038. |
[16] | Yuquing, T., Ming, T., Ruifen, X., Weikany, H., Liang, Y., & Liqun, Z. (2003). Novel high antimicrobial nano-TiO2/PP composites and its structure and properties. Acta Materiae Composittae Sinica, 25, 88–94. |
[17] | Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids and Surfaces B: Biointerfaces, 79(1), 5–18. doi:10.1016/j.colsurfb.2010.03.029. |
[18] | Dastjerdi, R., Mojtahedi, M. R. M., Shoshtari, A. M., & Khosroshahi, A. (2010). Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. Journal of the Textile Institute, 101(3), 204–213. doi:10.1080/00405000802346388. |
[19] | Yuranova, T., Rincon, A. G., Pulgarin, C., Laub, D., Xantopoulos, N., Mathieu, H.-J., & Kiwi, J. (2006). Performance and characterization of Ag–cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. Journal of Photochemistry and Photobiology A: Chemistry, 181(2-3), 363–369. doi:10.1016/j.jphotochem.2005.12.020. |
[20] | Blossey, R. (2003). Self-cleaning surfaces — virtual realities. Nature Materials, 2(5), 301–306. doi:10.1038/nmat856. |
[21] | Bozzi, A., Yuranova, T., & Kiwi, J. (2005). Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. Journal of Photochemistry and Photobiology A: Chemistry, 172(1), 27–34. doi:10.1016/j.jphotochem.2004.11.010. |
[22] | Rios, P. F., Dodiuk, H., Kenig, S., McCarthy, S., & Dotan, A. (2008). Durable ultra-hydrophobic surfaces for self-cleaning applications. Polymers for Advanced Technologies, n/a–n/a. doi:10.1002/pat.1208. |
[23] | Daoud, W. A., Leung, S. K., Tung, W. S., Xin, J. H., Cheuk, K., & Qi, K. (2008). Self-Cleaning Keratins. Chemistry of Materials, 20(4), 1242–1244. doi:10.1021/cm702661k. |
[24] | Mahmoodi, N. M., Arami, M., Limaee, N. Y., & Tabrizi, N. S. (2006). Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. Journal of Colloid and Interface Science, 295(1), 159–164. doi:10.1016/j.jcis.2005.08.007. |
[25] | Meilert, K. T., Laub, D., & Kiwi, J. (2005). Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. Journal of Molecular Catalysis A: Chemical, 237(1-2), 101–108. doi:10.1016/j.molcata.2005.03.040. |
[26] | Roldán, M. V., Castro, Y., Pellegri, N., & Durán, A. (2015). Enhanced photocatalytic activity of mesoporous SiO2/TiO2 sol–gel coatings doped with Ag nanoparticles. Journal of Sol-Gel Science and Technology, 76(1), 180–194. doi:10.1007/s10971-015-3765-6. |
[27] | Yang, H., Zhu, S., & Pan, N. (2004). Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. Journal of Applied Polymer Science, 92(5), 3201–3210. doi:10.1002/app.20327. |
[28] | Dastjerdi, R., & Mojtahedi, M. R. M. (2013). Multifunctional melt-mixed Ag/TiO2 nanocomposite PP fabrics: Water vapour permeability, UV resistance, UV protection and wear properties. Fibers and Polymers, 14(2), 298–303. doi:10.1007/s12221-013-0298-x. |
[29] | Pakdel, E., Daoud, W. A., Sun, L., & Wang, X. (2015). Photostability of wool fabrics coated with pure and modified TiO2 colloids. Journal of Colloid and Interface Science, 440, 299–309. doi:10.1016/j.jcis.2014.10.032. |
[30] | Sawada, K., Sugimoto, M., Ueda, M., & Park, C., H. (2003). Hydrophilic Treatment of Polyester Surfaces Using TiO2 Photocatalytic Reactions. Textile Research Journal, 73(9), 819–822. doi:10.1177/004051750307300912. |
[31] | Radetić, M. (2013). Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 16, 62–76. doi:10.1016/j.jphotochemrev.2013.04.002. |
[32] | Becheri, A., Dürr, M., Lo Nostro, P., & Baglioni, P. (2007). Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. Journal of Nanoparticle Research, 10(4), 679–689. doi:10.1007/s11051-007-9318-3. |
[33] | El.Shafei, A., & Abou-Okeil, A. (2011). ZnO/carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric. Carbohydrate Polymers, 83(2), 920–925. doi:10.1016/j.carbpol.2010.08.083. |
[34] | Paul, R., Bautista, L., De la Varga, M., Botet, J. M., Casals, E., Puntes, V., & Marsal, F. (2009). Nano-cotton Fabrics with High Ultraviolet Protection. Textile Research Journal, 80(5), 454–462. doi:10.1177/0040517509342316. |
[35] | Yadav, A., Prasad, V., Kathe, A. A., Raj, S., Yadav, D., Sundaramoorthy, C., & Vigneshwaran, N. (2006). Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Materials Science, 29(6), 641–645. doi:10.1007/s12034-006-0017-y. |
[36] | Shateri-Khalilabad, M., & Yazdanshenas, M. E. (2013). Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection. Textile Research Journal, 83(10), 993–1004. doi:10.1177/0040517512468812. |
[37] | Kirchner, E., van den Kieboom, G.-J., Njo, L., Supèr, R., & Gottenbos, R. (2007). Observation of visual texture of metallic and pearlescent materials. Color Research & Application, 32(4), 256–266. doi:10.1002/col.20328. |
[38] | Saravanan, D. (2007). UV protection textile materials. AUTEX Research Journal, 7(1), 53-62. |
[39] | Dummer, R., & Osterwalder, U. (2000). UV Transmission of Summer Clothing in Switzerland and Germany. Dermatology, 200(1), 81–82. doi:10.1159/000018326. |
[40] | Madronich, S. (1993). Skin cancer and UV radiation. Nature Publishing Group, 366, 23. |
[41] | Mahltig, B., Böttcher, H., Rauch, K., Dieckmann, U., Nitsche, R., & Fritz, T. (2005). Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films, 485(1-2), 108–114. doi:10.1016/j.tsf.2005.03.056. |