International Journal of Textile Science
p-ISSN: 2325-0119 e-ISSN: 2325-0100
2017; 6(6): 148-152
doi:10.5923/j.textile.20170606.02
E. M. R. Elzairy, W. A. Abdallah, S. M. Osman, M. A. M. Fouad
Faculty of Applied Arts, Helwan University, Cairo, Egypt
Correspondence to: M. A. M. Fouad, Faculty of Applied Arts, Helwan University, Cairo, Egypt.
Email: |
Copyright © 2017 Scientific & Academic Publishing. All Rights Reserved.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
Monochlorotriazinebetacyclodextrin (MCT-βCD) was used in this study as an eco-friendly chemical modifying agent for cellulose component contained in cotton/polyester fabric blends via covalently bonds. Inclusion of each vitamin E and Jojoba oils to the MCT-βCD grafted cellulose portion in the above blended substrate were made in order to verify that the cavities were available for inclusion compounds. The impart of UV-protection (UPF) and antibacterial efficiency functionality to cellulose component contained in cotton/polyester blends through permanent fixation of MCT-βCD onto cellulose structure followed by inclusion of certain natural antibacterial and UV-protection agent separately i.e. Jojoba oil and vitamin E oil proved to give very good results and follows the descending order: Jojoba > Vitamin E oils keeping other parameters constant. Herein, they are considered as promising reagents in textile functional finishing.
Keywords: Monochlorotriazinebetacyclodextrin (MCT-βCD), Vitamin E, & Jojoba oils, UV-protection, Antibacterial efficiency, Functional finishing
Cite this paper: E. M. R. Elzairy, W. A. Abdallah, S. M. Osman, M. A. M. Fouad, Recent Approach for Multifunctional Finishing of Cotton/Polyester Fabric Blends via Natural Products, International Journal of Textile Science, Vol. 6 No. 6, 2017, pp. 148-152. doi: 10.5923/j.textile.20170606.02.
Figure 1. Effect of MCT-βCD concentration on the nitrogen content (%N) of modified cotton/polyester samples |
|
[1] | Abidi, N., Hequet, E., Tarimala, S., & Dai, L. L. (2007). Cotton fabric surface modification for improved UV-radiation protection using sol-gel process. Journal of Applied Polymer Science, 104, 111-117. doi: 10.1002/app.24572. |
[2] | Babu, P. V. A., Sabitha, K. E., & Shyamaladevi, C. S. (2006). Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chemico-Biological Interactions, 162, 114–120. doi:10.1016/j.cbi.2006.04.009. |
[3] | Bajai, M., Gupta, P., & Bajai, S., K. (2013). Silver (I) ions loaded cyclodextrin-grafted-cotton fabric with excellent antimicrobial property. Fiber and Polymer, 11, 8-13. doi: 10.1007/s12221-010-0008-x. |
[4] | Cabrales, L., Abidi N., & Hammad, A. (2012). Cotton fabric functionalization with cyclodextrins. Journal of Materials and Environmental science, 3, 561-574. |
[5] | Holme, I. (2007). Innovative technologies for high performance textiles. Coloration Technology, 123, 59-73. doi: 10.1111/j.14784408.2007. 00064-.x. |
[6] | Ibrahim, N., A. (1978). Ph.D. Thesis, EL-Azhar University, Faculty of Science, Cairo, Egypt. |
[7] | Ibrahim, N., A., E-Zairy, W., R., & Eid, B., M. (2010). Novel approach for improving disperse dyeing and UV-protective function of cotton-containing fabrics using MCT-β-CD. Carbohydrate Polymers, 79, 839-846. doi: 10.1016/j.carbpol.2009.10.008. |
[8] | Ibrahim, N., A., Abdalla, W., A., Elzairy, E., M., R., & Khalil, H., M. (2013). Utilization of monochloro-triazine-β-cyclodextrin for enhancing printability and functionality of wool. Carbohydrate Polymers, 92, 1520- 1529, doi: 10.1016/j.carbpol.2012.11.020. |
[9] | Ibrahim, N., A., El-Zairy, E., M., R., & Eid, B., M. (2017). Eco-friendly modification and antibacterial functionalization of viscose fabric. the Journal of the Textile Institute, 108, 1406-1411. doi: 10.1080/00405000.-2016.1254583. |
[10] | Kim, S. H. (2006). Dyeing characteristics and UV-protection property of green tea dyed cotton fabrics focusing on the effect of chitosan mordanting condition. Fibers and Polymers, 7, 255–261. doi: 10.1007/BF02875682. |
[11] | Nassar, S., H. (2008). A comparative study for using different solvents in pretreatment fabrics and in corporation in printing paste. Journal of Applied Polymer Science, 108, 1064-1069. doi: 10.1002/app.27671. |
[12] | Park, Y., Koo, K., Kim, S., & Choe, J. (2008). Improving the colorfastness of poly(ethylene terephthalate) fabrics with the natural dye of caesalpinia sappan L. wood extract and the effect of chitosan and low temperature plasma. Journal of Applied Polymer Science, 109, 160-166. doi: 10.1002/app.27899. |
[13] | Shih, F., F., & Rowland, S., P. (1982). Catalysis of the Dimethylolethylene-urea-Cotton Cellulose Reaction with Three Different Metal Salts. Textile Research Journal, 52, 108-115. doi: 10.1177/004051758205200204. |
[14] | Turaga, U., Sing, V., & Ramkumar, S. (2015). Biological and chemical protective finishes for texiles. In R. Paul (Ed.), Functional finishes for textiles (pp. 555–578). Oxford: Woodhead Publisher. Chapter 18. doi: 10.1533/9780857098450.2.555. |
[15] | Uddin, F. (2014). Cellulose fibers: Antimicrobial finishing. In Munmaya K. Mishra (Ed.), Encyclopedia of biomedical polymer and polymeric materials (pp. 1–18). Taylor and Francis. doi:10.1801/E-EBPP-120049931. |
[16] | Winder, L., Height, M., & Nowack, B. (2013). Comparative evaluation of antimicrobials for textile applications, Environmental International. 53, 62-73. doi:10.1016/j.envint.2012.12.010. |