[1] | A. D. Lopez, C. D. Mathers, M. Ezzati, D. T. Jamison, C. J. Murray, Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data, The Lancet 367 (9524) (2006) 1747-1757. |
[2] | D. Xavier, P. Pais, P. Devereaux, C. Xie, D. Prabhakaran, K. S. Reddy, R. Gupta, P. Joshi, P. Kerkar, S. Thanikachalam, et al., Treatment and outcomes of acute coronary syndromes in india (create): a prospective analysis of registry data, The Lancet 371 (9622) (2008) 1435-1442. |
[3] | J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents, Nano letters 5 (3) (2005) 473-477. |
[4] | A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy, Nano letters 7 (7) (2007) 1929-1934. |
[5] | A. Fu, W. Gu, B. Boussert, K. Koski, D. Gerion, L. Manna, M. Le Gros, C. A. Larabell, A. P. Alivisatos, Semiconductor quantum rods as single molecule fluorescent biological labels, Nano letters 7 (1) (2007) 179-182. |
[6] | A. M. Smith, A. M. Mohs, S. Nie, Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain, Nature nanotechnology 4 (1) (2009) 56-63. |
[7] | X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Shape control of cdse nanocrystals, Nature 404 (6773) (2000) 59-61. |
[8] | J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson, X. Peng, Large-scale synthesis of nearly monodisperse cdse/cds core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction, Journal of the American Chemical Society 125 (41) (2003) 12567-12575. |
[9] | C. B. Murray, C. Kagan, M. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annual Review of Materials Science 30 (1) (2000) 545-610. |
[10] | J. E. Italiano Jr, A. T. Mairuhu, R. Flaumenhaft, Clinical relevance of microparticles from platelets and megakaryocytes, Current opinion in hematology 17 (6) (2010) 578. |
[11] | P. Wolf, The nature and signi_cance of platelet products in human plasma, British journal of haematology 13 (3) (1967) 269-288. |
[12] | J. N. George, E. Pickett, S. Saucerman, R. McEver, T. Kunicki, N. Kieffer, P. Newman, Platelet surface glycoproteins. studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery, Journal of Clinical Investigation 78 (2) (1986) 340. |
[13] | M. Gawaz, I. Ott, A. J. Reininger, U. Heinzmann, F.-J. Neumann, Agglutination of isolated platelet membranes, Arteriosclerosis, thrombosis, and vascular biology 16 (5) (1996) 621-627. |
[14] | M. Merten, R. Pakala, P. Thiagarajan, C. R. Benedict, Platelet microparticles promote platelet interaction with subendothelial matrix in a glycoprotein iib/iiia dependent mechanism, Circulation 99 (19) (1999) 2577-2582. |
[15] | Z. Mallat, H. Benamer, B. Hugel, J. Benessiano, P. G. Steg, J.-M. Freyssinet, A. Tedgui, Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes, Circulation 101 (8) (2000) 841- 843. |
[16] | M. Baj-Krzyworzeka, M. Majka, D. Pratico, J. Ratajczak, G. Vilaire, J. Kijowski, R. Reca, A. Janowska-Wieczorek, M. Z. Ratajczak, Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells, Experimental hematology 30 (5) (2002) 450-459. |
[17] | R. Lacroix, S. Robert, P. Poncelet, R. Kasthuri, N. Key, F. Dignat-George, Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the international society on thrombosis and haemostasis ssc collaborative workshop, Journal of Thrombosis and Haemostasis 8 (11) (2010) 2571-2574. |
[18] | J. M. Steinke, A. Shepherd, Comparison of mie theory and the light scattering of red blood cells, Applied Optics 27 (19) (1988) 4027-4033. |
[19] | S. Deb, M. Chatterjee, J. Bhattacharya, P. Lahiri, U. Chaudhuri, S. P. Choudhuri, S. Kar, O. P. Siwach, P. Sen, A. K. Dasgupta, Role of purinergic receptors in platelet-nanoparticle interactions, Nanotoxicology 1 (2) (2007) 93-103. |
[20] | S. Deb, H. K. Patra, P. Lahiri, A. K. Dasgupta, K. Chakrabarti, U. Chaudhuri, Multistability in platelets and their response to gold nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine 7 (4) (2011) 376-384. |
[21] | S. M. Penz, I. Bernlochner, O. Tan, K. T.th, R. Lorenz, A. Calatzis, W. Siess, Original basic research selective and rapid monitoring of dual platelet inhibition by aspirin and p2y 12 antagonists by using multiple electrode aggregometry. |
[22] | J. Shaw, S. O. Raja, A. K. Dasgupta, Modulation of cytotoxic and genotoxic effects of nanoparticles in cancer cells by external magnetic field, Cancer Nanotechnology 5 (1) (2014) 1-15. |
[23] | B. De Grooth, L. Terstappen, G. Pupples, J. Greve, Light-scattering polarization measurements as a new parameter in flow cytometry, Cytometry 8 (6) (1987) 539-544. |
[24] | H. F. Heijnen, A. E. Schiel, R. Fijnheer, H. J. Geuze, J. J. Sixma, Activated platelets release two types of membrane vesicles: Microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and granules, Blood 94 (11) (1999) 3791-3799. |
[25] | L. L. Horstman, Y. S. Ahn, Platelet microparticles: a wide-angle perspective, Critical reviews in oncology/ hematology 30 (2) (1999) 111-142. |
[26] | K. Joop, R. Berckmans, R. Nieuwland, J. Berkhout, F. Romijn, C. E. Hack, A. Sturk, Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms, THROMBOSIS AND HAEMOSTASIS-STUTTGART- 85 (5) (2001) 810-820. |
[27] | R. J. Berckmans, R. Nieuwland, A. Boing, F. Romijn, C. E. Hack, A. Sturk, Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation, THROMBOSIS AND HAEMOSTASIS-STUTTGART 85 (4) (2001) 639-646. |
[28] | K. T. Tan, G. Y. Lip, The potential role of platelet microparticles in atherosclerosis, Thromb Haemost 94 (3) (2005) 488-492. |
[29] | H. K. Kim, K. S. Song, J. Chung, K. R. Lee, S. Lee, Platelet microparticles induce angiogenesis in vitro, British journal of haematology 124 (3) (2004) 376-384. |
[30] | J. Ratajczak, M. Wysoczynski, F. Hayek, A. Janowska-Wieczorek, M. Ratajczak, Membrane-derived microvesicles: important and under-appreciated mediators of cell-to-cell communication, Leukemia 20 (9) (2006) 1487-1495. |
[31] | O. Morel, F. Toti, B. Hugel, J.-M. Freyssinet, Cellular microparticles: a disseminated storage pool of bioactive vascular effectors, Current opinion in hematology 11 (3) (2004) 156-164. |
[32] | M. Mack, A. Kleinschmidt, H. Br, C. Klier, P. J. Nelson, J. Cihak, J. Plach, M. Stangassinger, V. Ere, D. Schndorff, Transfer of the chemokine receptor ccr5 between cells by membrane-derived microparticles: a mechanism for cellular human immunode_ciency virus 1 infection, Nature medicine 6 (7) (2000) 769-775. |
[33] | T. Rozmyslowicz, M. Majka, J. Kijowski, S. L. Murphy, D. O. Conover, M. Poncz, J. Ratajczak, G. N. Gaulton, M. Z. Ratajczak, Platelet-and megakaryocyte-derived microparticles transfer cxcr4 receptor to cxcr4-null cells and make them susceptible to infection by x4-hiv, Aids 17 (1) (2003) 33-42. |
[34] | C. M. Boulanger, N. Amabile, A. Tedgui, Circulating microparticles a potential prognostic marker for atherosclerotic vascular disease, Hypertension 48 (2) (2006) 180-186. |
[35] | P. M. van der Zee, Birva, Y. Ko, R. J. de Winter, C. E. Hack, A. Sturk, R. Nieuwland, P-selectin-and cd63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction, Clinical chemistry 52 (4) (2006) 657-664. |
[36] | A. E. Michelsen, E. Brodin, F. Brosstad, J. Hansen, Increased level of platelet microparticles in survivors of myocardial infarction, Scandinavian journal of clinical and laboratory investigation 68 (5) (2008) 386-392. |