| [1] | G. S. Mudholker, D. K. Srivastava, and M. Freimer. The exponentiated Weibull family. Technometrics, 37: 436-445, 1995. |
| [2] | N. Eugene, C. Lee, and F. Famoye. Beta-normal distribution and its applications. Communications in Statistics: Theory and Methods. 31(4): 497-512, 2002. |
| [3] | S. B. Sayibu, A. Luguterah and S. Nasiru. McDonald generalised power Weibull distribution: properties and applications. Journal of Statistics & Probability, 13(1): 297-322, 2024. Doi.org/10.185/jsap/130121. |
| [4] | G. M. Cordeiro, and M. A. De Castro. A new family of generalised distributions. Journal of Statistical Computation and Simulation, 81(7), 883–898, 2011. |
| [5] | A. W. Marshall, and I. Olkin. A new method for adding a parameter to a family of distributions with applications to the exponential and Weibull families. Biometrika, 84(3): 641-652, 1997. |
| [6] | K. Zografos and N. Balakrishnan. On the families of beta and generalised gamma generated distribution and associated inference, Statistical Methods, 6: 344-362, 2009. |
| [7] | L. Souza, D. O. W. R. Junior, C. C. R. De Brito, C. Chesneau, R. L. Fernandes, and T. A. E. Ferreira. Sec-G class of distributions: properties and applications. Symmetry https://doi.org/10.3390/2022/sym14020299. 2022. |
| [8] | C. Chesneau and F. Jamal. The sine Kumaraswamy-G family of distributions. Journal of Mathematical Extensions, 15(2): 1-33, 2021. |
| [9] | L. Souza, W. R. de O. Junior, C. C. R. De Brito, C. Chesneau, R. L. Fernandes and T. A. E. Ferreira. General properties for the cos-G class of distributions with applications. European Bulletin of Mathematics, 2(2): 63-79, 2019. |
| [10] | M. Muhammad, R. A. R. Bantan, L. Liu, C. Chesneau, M. H. Tahir, F. Jamal. and M. Elgarhy, A new extended cosine -G distributions for lifetime studies. Mathematics, 2021 https://doi.org/10.3390/mth9212758. |
| [11] | O. H. Odhah, H. M. Alshanbari, Z. Ahmad, F. Khan. and A. H. El-Bagoury, A novel probabilistic approach based on trigonometric function: model, theory with practical applications. Symmetry, 15(8): 2023, https:doi.org/10.3390/sym15081528. |
| [12] | L. Souza, W. R. de O. Junior, C. C. R. De Brito, C. Chesneau, R. L. Fernandes and T. A. E. Ferreira. Tan-G class of trigonometric distributions and its applications. Cubo A Mathematical Journal, 23(1): 1-20, 2021. |
| [13] | S. Nanga, S. B. Sayibu, I. D. Angbine, A. Mubarika, A. Benson, A. Abubakari, and S. Nasiru. Secant Kumaraswamy Family of Distributions: Properties, Regression Model and Applications, Journal of Mathematics and Computational Theory. 2024. Article ID 8925329, https://doi.org/10.1155/2024/8925329. |
| [14] | W. Weibull. A statistical distribution function of wide applicability. Journal of Applied Mechanics-Transactions of the American Society of Mechanical Engineers, 18(3), 293-297, 1951. |
| [15] | M. Nikulin and F. Haghighi. A Chi-squared test for the generalised power Weibull family for the head-and-neck cancer censored data. Journal of Mathematical Science. 133(3): 1333-1341, 2006. |
| [16] | A. Yakubu, A. Luguterah and S. Nasiru. On the odd inverse exponential class of distributions: properties, applications, and cure fraction regression. Journal of Statistics & Management Systems. 2022, DOI: 10.1080/09720510.2021.1923944. |
| [17] | P. Oguntunde, A. O. Adejumo, and A. Owoloko. Application of Kumaraswamy inverse exponential distribution to real lifetime data. International Journal of Mathematics and Statistics, 56(5): 34-47, 2017. |
| [18] | S. B. Sayibu, and A. Luguterah. Extended cosine Generalised power Weibull distribution: properties and applications. Natural Science Publications: Mathematical Sciences Letters. 12(2): 25-39, 2023. |
| [19] | S. B. Sayibu, A. Luguterah, and S. Nasiru. MacDonald Generalised power Weibull distribution: properties and applications. Journal of Statistics Applications and Probability, An International Journal. 13(1): 297-322, 2024. |
| [20] | A. H. El-Bassiouny, N. F. Abdo, and H. S. Shahen, Exponential Lomax distribution. International Journal of Computer Applications (0975-8887), 122(13), 2015. |
| [21] | J. Farrukh, N. M. Arslan, M. H. Tahir, and N. H. Montazeri. The Odd Burr III family of distributions, Journal of Statistics Applications and Probability, 6(1): 2017, Doi:http://dx.doi.org/10.18576/jsap/060109. |
| [22] | S. Nasiru, P. N. Mwita, and O. Ngesa. Discussion on the generalised modified inverse Rayleigh. Applied Mathematics and Information Sciences, 12(1): 113-124, 2018. |
| [23] | R. Shanker, F. Hagos, and S. Sujatha. On the modelling of lifetime data using exponential and Lindley distributions. Biometrics and Biostatistics International Journal, 2(5): 40-147, 2015. |
| [24] | D. R. Cox, and E. J. Snell. A general definition of residuals. Journal of the Royal Statistical Society Series B, 30: 248-275, 1968. |
| [25] | E. Altun, and G. M. Cordeiro. The unit improved second-degree Lindley distribution inference and regression modelling. Computational Statistics, 35, 2019. |
| [26] | S. Nasiru, A. Abubakari and I. D. Angbing. Bounded odd inverse Pareto exponential distribution: properties, estimation, and regression. International Journal of Mathematics and Mathematical Sciences. Dio.org/10.1155/2021/9955657. |