[1] | Hyndman R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. |
[2] | Box G. E. P., Jenkins G. M., and Reinsel G. C. (2008). Time Series Analysis: Forecasting and Control. Wiley Online Library. |
[3] | Liu H., Tian H., Liang X. and Li Y. (2015). Wind speed forecasting approach using secondary decomposition, Applied Energy, 183-194. |
[4] | Panigrahi, S. and Behera, H. S. (2017). A hybrid ETS–ANN model for time series forecasting. Engineering Applications of Artificial Intelligence, 66, 49-59. |
[5] | Agatonovic-Kustrin S. and Beresford R. (2000). Basic concepts of artificial neural network (ANN) modelling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 717-727. |
[6] | Andrea S. P., Rafael G. J. and Coronell, H. P. (2020). Encountered Problems of Time Series with Neural Networks: Models and Architectures. Recent Trends in Artificial Neural Networks. Intechopen, 150p. |
[7] | Mehdi, K. and Mehdi, B. (2010). An artificial neural network (p, d, q) model for time series forecasting. Expert System Application. 37, 479-489. |
[8] | Liu Z., Peng, C., Xiang W., Tian D., Deng, X. and Zhao, M. (2010). Application of artificial neural networks in global climate change and ecological research: An overview. Chinese Science Bulletin 55, 3853-3863. |
[9] | Adewole A. P., Akinwale A. T. and Akintomide A. B. (2011). Artificial Neural Network Model for Forecasting Foreign Exchange Rate, World of Computer Science and Information Technology Journal, 1(3), 110-118. |
[10] | Olatayo T. O and Taiwo A. I. (2016). Modelling and Evaluation Performances with Neural Network Using Climatic Time Series Data. Nigerian Journal of Mathematics and Applications, 25, 205-216. |
[11] | Ogunrinde A. T., Oguntunde P. G., Fasinmirin J. T. and Akinwumiju A. S. (2020). Application of artificial neural network for forecasting standardized precipitation and evapotranspiration index: A case study of Nigeria. Engineering Reports, 1-118. |
[12] | Amin, Z. M. M. and Ali, S. A. K. (2022). IOP Conference Series: Earth Environment Science, 1-13. |
[13] | Farzanehdehkordi M., Ghaffaripour S., Tirdad K., Cruz A. D. and Sadeghian, A. (2022). A wavelet feature-based neural network approach to estimate electrical arc characteristics. Electric Power Systems Research, 208, 1-12. |
[14] | Olatayo T. O., Taiwo A. I. and Afolayan R.B. (2014). Statistical Modelling and Prediction of Time Series Data. Journal of the Nigerian Association of Mathematical Physics, 27, 201-208. |
[15] | Taiwo A. I., Olatayo T. O. and Agboluaje S. A. (2020). Time Series Model Building with Fourier Autoregressive Model. South African Statistical Journal, 54(2), 243 – 254. |
[16] | Akinwale A. T., Arogundade O. T. and Adekoya A. F. (2009). Translated Nigeria Stock Market Prices using Artificial Neural Network for Effective Prediction, Journal of Theoretical and Applied Information Technology, 36-43. |
[17] | Ojo J. F. and Olatayo T. O. (2009). On the Estimation & Performance of subset Autoregressive integrated moving Average models; European Journal of Scientific research. 28(2), 287-293. |
[18] | Emenike K. O. (2010). Modelling Stock Returns Volatility in Nigeria using GARCH Models, MPRA Paper, 22723, 1-19. |
[19] | Adebiyi A. A., Ayo C. K., Adebiyi M. O. and Otokiti S. O. (2012). Stock Price Prediction using Neural Network with Hybridized Market Indicators. Journal of Emerging Trends in Computing and Information. 3(1), 1-9. |
[20] | Isenah G. M. and Olubusoye O. E. (2014). Forecasting Nigerian Stock Market Returns using ARIMA and Artificial Neural Network Models. CBN Journal of Applied Statistics, 5(2), 25-48. |
[21] | Ali, P. and Cigizoglu, H. (2013). ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. Journal of Hydrology, 500, 21-36. |
[22] | Panagiotis N., Athanasios, P., Kostas K., Ioanna L. and Kostas M. (2014). Artificial neural Networks modelling for forecasting the maximum daily total precipitation at Athens, Greece. Atmospheric Research, 144, 141–150. |
[23] | Bliss C. I. (1958). Period Regression in Biology and Climatology. New Haven: The Connecticut Agriculture Experiment Station, 345-355. |
[24] | Barfari I. (2002). An Illustration of Harmonic regression based on the result of the Fast Fourier Tranformation. Yugoslav Journal of Operation Research, 12(2), 185-201. |
[25] | Christensen C. F., Rederson L., Sorenson H. T. and Rotheman K. J. (2012). Method to Assess Seasonal Effects in Epidemiology studies of Infectious diseases - exemplified by application to occurrence of Meningococcal disease. European Society of Clinical Infectious Diseases, 18(10), 6963-969. |
[26] | Andrea F., Arianna P., Laura S. and Massimilland M. (2013). Fourier analysis for Demand Forecasting in a Fashion Company. International Journal of Engineering Business Management, 5(30), 1-10. |
[27] | NIMET, (2024). Seasonal Climate Prediction (SCP). https://nimet.gov.ng.scp. |
[28] | Box, G. and Jenkins, G. (1970). Time Series Analysis Forecasting and Control. Holden-Day, San Francisco. |
[29] | Adams, S.O., Bamanga, M.A. (2020). Modelling and Forecasting Seasonal Behavior of Rainfall in Abuja, Nigeria; A SARIMA Approach, American Journal of Mathematics and Statistics 10(01), 10–19. |
[30] | Adams, S.O., Mustapha, B., Alumbugu, A.I. (2019). Seasonal Autoregressive Integrated Moving Average (SARIMA) model for the analysis of frequency of monthly rainfall in Osun state, Nigeria. Physical Science International Journal, 22(4), 1–14. |