[1] | Draper, N.R. and Smith, H. Applied Regression Analysis. 3rd edition. New York: Wiley, 1998. |
[2] | Gujarati, D. Basic Econometrics. 4th ed. New York: McGraw−Hill, 1995. |
[3] | Judge, G.G., Introduction to Theory and Practice of Econometrics. New York: John Willy and Sons, 1988. |
[4] | Montgomery, D.C. and Peck, E.A., Introduction to Linear Regression Analysis. New York: John Willy and Sons, 1992. |
[5] | Kutner, M.H. et al., Applied Linear Statistical Models. 5th Edition. New York: McGraw-Hill, 2005. |
[6] | Hoerl, A.E. and Kennard, R.W., 2000, Ridge Regression: Biased Estimation for nonorthogonal Problems. Technometrics, 42, 80-86. |
[7] | Melkumovaa, L.E. and Shatskikh, S.Ya. 2017. Comparing Ridge and LASSO estimators for data analysis. Procedia Engineering, 201, 746-755. |
[8] | Boulesteix, A-L., R. De Bin, X. Jiang and M. Fuchs. 2017. IPF-LASSO: Integrative-Penalized Regression with Penalty Factors for Prediction Based on Multi-Omics Data. Computational and Mathematical Methods in Medicine, 2017, 14 p. |
[9] | Helton, K.H. and N.L. Hjort. 2018. Fridge: Focused fine-tuning of ridge regression for personalized predictions. Statistical Medicine, 37(8), 1290-1303. |
[10] | Abdel Bary, M.N. 2017. Robust Regression Diagnostic for Detecting and Solving Multicollinearity and Outlier Problems: Applied Study by Using Financial Data Applied Mathematical Sciences, 11 (13), 601-622. |
[11] | Usman, U., D. Y. Zakari, S. Suleman and F. Manu. 2017. A Comparison Analysis of Shrinkage Regression Methods of Handling Multicollinearity Problems Based on Lognormal and Exponential Distributions. MAYFEB Journal of Mathematics, 3, 45-52. |
[12] | Slawski, M. 2017. On Principal Components Regression, Random Projections, and Column Subsampling. Arxiv: 1709.08104v2 [Math-ST]. |
[13] | Wethrill, H., 1986, Evaluation of ordinary Ridge Regression. Bulletin of Mathematical Statistics, 18, 1-35. |
[14] | Hoerl, A.E., 1962, Application of ridge analysis to regression problems. Chem. Eng. Prog., 58, 54-59. |
[15] | Hoerl, A.E., R.W. Kannard and K.F. Baldwin, 1975, Ridge regression: Some simulations. Commun. Stat., 4, 105-123. |
[16] | James, G., Witten D., Hastie T., Tibshirani R An Introduction to Statistical Learning: With Applications in R. New York: Springer Publishing Company, Inc., 2013. |
[17] | Tibshirani, R., 1996, Regression shrinkage and selection via the LASSO. J Royal Stat Soc, 58, 267-288. |
[18] | Hastie, T., Tibshirani, R., Mainwright, M., 2015, Statistical learning with Sparsity The LASSO and Generalization. USA: Chapman and Hall/CRC Press. |
[19] | Coxe, K.L., 1984, “Multicollinearity, principal component regression and selection rules for these components,” ASA Proceed. Bus fj Econ sect'ion, 222-227. |
[20] | Jackson, J.E., A User's Guide To Principal Components. New York: Tiley, 1991. |
[21] | Jolliffe, LT, Principal Component Analysis. New York: Springer-Verlag, 2002. |
[22] | Flury, B. and Riedwyl, H., Multivariate Statistics. A Practical Approach, London: Chapman and Hall, 1988. |
[23] | Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In B.N. Petrow and F. Csaki (eds), Second International symposium on information theory (pp.267-281). Budapest: Academiai Kiado. |
[24] | Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723. |
[25] | McDonald G.C. and Galarneau, D.I., 1975, A Monte Carlo evaluation of some ridge type estimators. J. Amer. Statist. Assoc., 20, 407-416. |
[26] | Zhang, M., Zhu, J., Djurdjanovic, D. and Ni, J. 2006, A comparative Study on the Classification of Engineering Surfaces with Dimension Reduction and Coefficient Shrinkage Methods. Journal of Manufacturing Systems, 25(3): 209-220. |