[1] | UNICEF/WHO/World Bank Group (2017). Levels and trends in child nutrition. Accessed online from: http://www.who.int/nutgrowthdb/jme_brochoure2017.pdf. |
[2] | SUN (2014). Scaling up nutrition in practice: effectively engaging multiple stakeholders. Accessed online from: http://scalingupnutrition.org/wp-content/uploads/2014/03/Sun-in-Practice-issue-1.pdf. |
[3] | Tomkins, A. Watson, F. (1989). Malnutrition and infection: A review, ACC/SCN (Paper no. 5). Clinical Nutrition Unit, Centre for Human Nutrition, London School of Hygiene and tropical Medicine. |
[4] | UNICEF (2009). Tracking progress on child and maternal nutrition: a survival and development priority. New York: United Nations Children’s Fund (UNICEF). |
[5] | Martorell, R., Khan, L.K. Schroeder, D.G. (1994). Reversibility of obesity: Epidemiological findings in children from developing countries. Eur J Clin Nutr, 48, 45-57. |
[6] | UNICEF/WFP (2006). Global framework for action. United Nations Children’s Fund and World Food Program. |
[7] | UNICEF (1998). The state of the world’s children. New York: United Children’s Fund. |
[8] | WHO/UNICEF (2014). Global nutrition targets 2025: childhood stunting policy brief. Accessed online from: http://apps.who.int/iris/bitstream/10665/149019/1/WHO_NMH_NHD_14.3_eng.pdf?ua=1. |
[9] | WHO/UNICEF (2014). Global nutrition targets 2025: childhood overweight and obesity policy brief. Accessed online from:http://apps.who.int/iris/bitstream/10665/149021/2/WHO_NMH_NHD_14.6_eng.pdf?ua=1. |
[10] | WHO (2006). Child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index for age-for-age: methods and development. Geneva. |
[11] | Kandala, N.B., Lang, S., Klasen, S. Fahrmeir, L. (2005). Semiparametric analysis of the socio-demographic determinants of undernutrition in two African countries. Research in Official Statistics, 4(1), 81-100. |
[12] | Khatab, K. Fahrmeir, L., (2008). Geoadditive latent variable modeling of child morbidity and malnutrition in Nigeria. Munich, Germany. |
[13] | Koenker, R., Ng P. Portnoy, S. (1994). Quantile smoothing splines. Biometrika, 81(4), 673-680. |
[14] | Yu, K., Lu, Z. Stander, J. (2005). Quantile regression: Applications and current research areas. The Statistician, 52(3), 331-350. |
[15] | Koenker, R., Hallock, K.F. (1999). Quantile Regression. Journal of Economic Perspectives, 15(4), 143-156. |
[16] | Yu, K., Moyeed, R.A. (2005). Bayesian quantile regression. Statistics and Probability Letters, 54, 437-447. |
[17] | Wecker, W.E., Ansley, C.F. (1983). The signal extraction approach to nonlinear regression and spline smoothing. Journal of the American Statistical Association, 78, 81-89. |
[18] | Besag, J., Kooperberg, C. (1995). On conditional and intrinsic autoregressions. Biometrika, 82, 733-746. |
[19] | Rue, H., Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. (Volume 104 of Monographs on Statistics and Applied Probability). London: Chapman and Hall. |
[20] | Kneib, T., Konrath, S., Fahrmeir, L. (2009). High-dimensional structured additive regression models: Bayesian regularisation, smoothing and predictive performance. Technical report, Department of Statistics, University of Munich. |
[21] | Rue, H., Yu, Y., (2009). Bayesian inference for structured additive quantile regression models. Norwegian University for Science and Technology. |
[22] | Tsionas, E.G. (2005). Bayesian quantile inference. Journal of Statistical Computation and Simulation, 73, 659-674. |
[23] | Rue, H., Martino, S. (2007). Approximate Bayesian inference for hierarchical Gaussian Markov random fields. Journal of Statistical Planning and Inference, 137, 3177-3192. |
[24] | Rue, H., Martino, S. (2009). Implementing approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations: A manual for the inla program. Technical report, Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim. |
[25] | Fenske, N., Kneib, T., Hothorn, T. (2009). Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. Technical report, Department of Statistics, University of Munich. |
[26] | Kneib, T., (2013). Beyond mean regression. Statistical Modeling, 13(4), 275-303. |
[27] | Rigby, R., Stasinopoulos, D., Voudourisi, V., (2013). Discussion: A comparison of GAMLSS with quantile regression. Statistical Modeling, 13(4), 335-348. |
[28] | Koenker, R., (2013). Discussion: Living beyond our means. Statistical Modeling, 13(4), 323-333. |
[29] | Harvey, A., (2013). Discussion of ‘Beyond mean regression’. Statistical Modeling, 13(4), 363-372. |
[30] | Green, P., (2013). Discussion of ‘Beyond mean regression’. Statistical Modeling, 13(4), 305-31. |
[31] | Gelfand, A., Diggle, P., Fuentes, M., Guttorp, P. (Eds.), (2012). Handbook of Spatial Statistics. Chapman & Hall. |
[32] | Gneiting, T., (2002). Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical Association, 97 (458), 590–600. |
[33] | Gneiting, T., Genton, M., Guttorp, P., (2006). Statistical Methods for Spatiotemporal systems. CRC Press, Chapmann and Hall, pp. 151–175. |
[34] | Harvill, J., (2012). Spatio-temporal processes. Wiley Interdisciplinary Reviews: Computational Statistics 2 (3), 375–382. |
[35] | Knorr-Held, L., 2000. Bayesian modeling of inseparable space-time variation in disease risk. Statistics in Medicine 19 (17-18), 2555–2567. |
[36] | Onis M., Blossenr, M., Borghi, E., (2012). World Health Organization study. American Journal of Clinical Nutrition, 92, 1257-1264. |
[37] | Rue, H., Martino, S., Chopin, N., (2009), Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations (with discussion), Journal of the Royal Statistical Society B, 71, 319-392. |
[38] | Lindgren, F., Rue, H., (2015). Bayesian Spatial Modeling with R-INLA. Journal of Statistical Software, 63(19), 1-25. URL http://www.jstatsoft.org/v63/i19/. |
[39] | R Core Team (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. |
[40] | Kandala, N.B., Fahrmeir, L., Klasen, S., Priebe, J., (2008). Geo-additive models of childhood undernutrition in three sub-Saharan African countries. Accessed online from: http://dx.doi.org/10.1002/psp.254Page 26 of 26. |
[41] | Kandala, N.B., Madungu, T.P., Emina, J.B., Nzita, K.P., Cappuccio, F.P., (2011). Malnutrition among children under the age of five in the Democratic Republic of Congo (DRC): does geographic location matter? Journal of Public Health. Accessed online from:http://bmcpublichealth.biomedicentral.com/articles/10.1186/1471-2458-11-261. |
[42] | Semali, I.A., Kessy, A.T., Mmbaga, E.J., Leyna, G., (2015). Prevalence and determinants of stunting in under-five children in central Tanzania: remaining threats to achieving Millennium Development Goal 4. Accessed online from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654796/. |
[43] | Cook, B.L., Manning, W.G., (2013). Thinking beyond the mean: a practical guide for using quantile regression methods for health services research. PMC 25 (1), 55-59. Accessed online from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054530/. |
[44] | Cressie, N. (1993). Statistics for spatial statistics. Wiley, New York. |
[45] | Cameletti, M., Lindgren, F., Simpson, D., Rue, H., (2011b). Spatio-temporal modeling of particulate matter concentration through the spde approach. Journal of Advances in Statistical Analysis. |