[1] | O. Arslan and N. Billor, “Robust Liu estimator for regression based on a M-estimator,” J. Appl. Stat., vol 27 pp. 39-47, 2000. |
[2] | H. Ertas and S. Toker, and S. Kaciranlar, “Robust two parameter ridge M-estimator for linear regression” J. Appl. Stat., vol 42, pp. 1490-1502, 2015. |
[3] | A.E. Hoerl and R.W. Kennard, “Ridge regression: biased estimation for non orthogonal problems,” Technometrics vol 12, pp. 55-68, 1970a. |
[4] | A.E. Hoerl, R.W. Kennard, and K.F. Baldwin, “Ridge regression: some simulations,” Commun. Statist., vol 4, pp. 105-123, 1975. |
[5] | R.A. Maronna, “Robust ridge regression for high-dimensional data,” Technometrics, vol 53, pp. 44-53, 2011. |
[6] | M.J. Silvapulle, Robust ridge regression based on an M estimator, Austral. J. Stat., vol 33, pp. 319-333, 1991. |
[7] | J.R. Simpson and D.C. Montgomery, “A biased robust regression technique for combined outlier multicollinearity problem,” J. Stat. Comput. and Sim., vol 56, pp. 1-22, 1996. |
[8] | F.A. Graybill, Introduction to Linear Statistical Models, New York-Toronto-London: Mc. Graw-Hill Series in Probability & Statistics, 1961. |
[9] | A.V. Dorugade, “On comparison of some ridge parameters in ridge regression,” Sri Lanka J. Appl. Stat., vol 15, pp. 31-46, 2014. |
[10] | J.F. Lawless and P. Wang, “A simulation study of ridge and other regression estimators,” Commun. Stat. Theory Methods vol 14, pp. 1589-1604, 1976. |
[11] | G. Muniz and B.M.G. Kibria, “On some ridge regression estimators: an emprical comparison,” Commun. Stat. Simul. Comput., vol 38, pp. 621-630, 2009. |
[12] | L. Davies, “The asymptotics of S-estimators in the linear regression model,” Ann. Stat., vol 18, pp. 1651-1675, 1990. |
[13] | P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier Detection, United States: Wiley, 1987. |
[14] | B. Kan and O. Alpu, and B. Yazici, “Robust ridge and robust Liu estimator for regression based on the LTS estimator,” J. Appl. Stat., vol 40, pp. 644-655, 2013. |
[15] | O.U. Ekiz and M. Ekiz, “A small-sample correction factor for S-estimators,” J. Stat. Comput. and Sim., vol 85, pp. 794-801, 2015. |
[16] | M. Ekiz and O.U. Ekiz, “Outlier detection with Mahalanobis square distance: incorporating small sample correction factor,” J. Appl. Stat., vol 44, pp. 2444-2457, 2017. |
[17] | A. Bagheri, Robust estimation methods and robust multicollinearity diagnostics for multiple regression model in the presence of high leverage collinearity-influential observations, Unpublished doctorial thesis. University Putra, 2011. |
[18] | A. Bagheri, M. Habshah, and R.H.M.R. Imon, “A novel collinearity-influential observation diagnostic measure based on a group deletion approach,” Commun. Stat. Simul. Comput., vol 41, pp. 1379-1396, 2012. |
[19] | D.A. Belsley, E. Kuh, and R.E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, New York: John Wiley & Sons, 1980. |
[20] | S. Chatterjee and B. Price, Regression Analysis by Example, New York: John Wiley & Sons, 1977. |
[21] | D.K. Guilkey and J.L. Murphy, “Directed ridge regression techniques in cases of multicollinearity,” J. Am. Stat. Assoc., vol 70, pp. 769-775, 1975. |
[22] | B.M.G. Kibria, “Performance of some new ridge regression estimators,” Commun. Stat. Simul. Comput., vol 32, pp. 419-435, 2003. |
[23] | G.C. McDonald and D.I. Galarneau, “A Monte Carlo evaluation of some ridge-type estimators,” J. Am. Stat. Assoc., vol 70, pp. 407-416, 1975. |
[24] | R.A. Maronna, D.R. Martin, and V.J. Yohai, Robust Statistics: Theory and Methods, New York: Wiley, 2006. |
[25] | P. Rousseeuw and V. Yohai, “Robust and nonlinear time series analysis,” Lecture Notes in Statistics, vol 26, pp. 256-272, 1984. |
[26] | M. Amini and M. Roozbeh, “Least trimmed squares ridge estimation in partially linear regression models,” J. Stat. Comput. and Sim., vol 86, pp. 2766-2780, 2016. |
[27] | D.M. Hawkins, D. Bradu, and G.V. Kass, “Location of several outliers in multiple regression data using elemental sets,” Technometrics, vol 26, pp. 197-208, 1984. |