[1] | Ahsanullah, M. Linear prediction of record values for two parameter exponential distribution. Ann. Inst. Statist. Math., 32: 363 - 368., 1980. |
[2] | Ahsanullah, M. Estimation of the parameters of the Gumbel distribution based on the m record values. Comput. Statist. Quart., 3: 231 - 239, 1990. |
[3] | Ahsanullah, M. Record Values, In The Exponential Distribution: Theory, Methods and Applications. Eds., N. Balakrishnan and A.P. Basu, Gordon and Breach Publishers, New York, New Jersey, 1995. |
[4] | Arnold, B.C., Balakrishnan N. Relations, Bounds and Approximations for Order Statistics. Lecture Notes in Statistics 53, Springer-Verlag, New York, 1989. |
[5] | Arnold, B.C., Balakrishnan, N., Nagaraja, H.N. A First Course in Order Statistics. John Wiley, Sons, New York., 1992. |
[6] | Arnold, B.C., Balakrishnan, N., Nagaraja H.N., Record. John Wiley, Sons, New York, 1998. |
[7] | Balakrishnan, N., Chan, A.C. Order Statistics and Inference: Estimation Methods. Academic Press, San Diego, 1993. |
[8] | Balakrishnan, N.,. Chan, P.S. Record values from Rayleigh and Weibull distributions and associated inference. National Institute of Standards and Technology Journal of Research, Special Publications, 18, 866: 41 - 51, 1993. |
[9] | Chandler, K.N. The distribution and frequency of record values. J. Roy. Statist. Soc. Ser., Second edition, B14: 220 - 228, 1952. |
[10] | David, H.A. Order Statistics. Second edition, John Wiley, Sons, New York., 1981. |
[11] | Galambos. J., The Asymptotic Theory of Extreme Order Statistics. John Wiley, Sons, New York. Krieger, Florida,, Second edition,1987. |
[12] | Frechet, M. Sur la loi de probabilite de l'ecarrt maximum, Annales de la Societe Polonaise de Mathematique. Cracovie , 6: 93 - 116, 1927. |
[13] | Fisher, R.A., Tippett. L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of sample. Proceeding of the Cambridge Philosophical Society, 24: 180 - 190, 1928. |
[14] | Gilks, W.R., Richardson, S., Spiegelhalter, D.J., Markov chain Monte Carlo in Practices. Chapman and Hall, London, 1996. |
[15] | Gamerman, D., Markov chain Monte Carlo: Stochastic Simulation for Bayesian Inference. Chapman and Hall, London, 1997. |
[16] | Geman, S., Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Mathematical Intelligence 6, 721-741, 1984. |
[17] | Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, EEquations of state calculations by fast computing machines. Journal Chemical Physics 21, 1087-1091, 1953. |
[18] | Hastings, W.K., Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109, 1970. |
[19] | Gelfand, A.E., Smith, A.F.M., Sampling based approach to calculating marginal densities. Journal of the American Statistical Association 85, 398-409, 1990. |
[20] | El-Din, M.M., Riad, F.H. and El-Sayed, M.A. Confidence Intervals for Parameters of IWD Based on MLE and Bootstrap. Journal of Statistics Applications & Probability, 3, 1-7, 2014. |
[21] | El-Din, M.M., Riad, F.H. and El-Sayed, M.A. Statistical Inference and Prediction for the Inverse Weibull Distribution Based on Record Data. International Journal of Advanced Statistics and Probability, 3, 171-177. 2014. |
[22] | El-Sayed, M.A., Riad, F.H., Elsafty, M.A. and Estaitia, Y.A. Algorithms of Confidence Intervals of WG Distribution Based on Progressive Type-II Censoring Samples. Journal of Computer and Communications, 5, 101-116, 2017. |
[23] | Elhag, A.A., Ibrahim, O.I., El-Sayed, M.A. and Abd-Elmougod, G.A. Estimations of Weibull-Geometric Distribution under Progressive Type II Censoring Samples. Open Journal of Statistics, 5, 721-729., 2015. |
[24] | Eforon, B. Censored data and bootstrap. Journal of the American statistical association 76, 312-319. 1981. |