[1] | Abdullah, S., Yahaya, S.S.S., & Othman, A.R. (2007). Proceedings of The 9th Islamic Countries Conference on Statistical Sciences. In Modified One Step M-Estimator as a Central Tendency Measure for Alexander-Govern Test, 834-842. |
[2] | Abdullah, S, Syed Yahaya & Othman, A. R. (2008). A Power Investigation of Alexander-Govern Test Using Modified One Step M-Estimator as the Central Tendency Measure. IASC 2008: December 5-8, Yokohama, Japan. |
[3] | Alexander, R.A., & Govern, D.M. (1994). A New and Simpler Approximation for ANOVA Under Variance Heterogeneity. Journal of Education Statistics, 19(2), 91-101. |
[4] | Algina, J., Oshima, T. C., & Lin, W-Y. (1994). Type I Error Rates for Welch’s Test and James’s Second-Order Test Under Nonnormality and Inequality of Variance When There Are Two Groups. Journal of Educational and Behavioral Statistics, 19(3), 275-291. |
[5] | Brown, M.B., & Forsythe, A.B. (1974). The small sample behavior of some statistics which test the equality of several means. Technometrics, 16, 129-132. |
[6] | Brunner, E., Dette, H., & Munk, A. (1997). Box-Type Approximations in Nonparametric Factorial Designs. Journal of the American Statistical Association, 92(440), 1494-1502. |
[7] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Chapman & Hall. |
[8] | Efron, B., & Tibshirani (1998). An introduction to the bootstrap. New York: Chapman & Hall. |
[9] | Hill, G. W (1970). Algorithm 395. Student’s t-distribution. Communications of the ACM, 13, 617-619. |
[10] | James, G. S. (1951). Variances are Unknown when the ratios of the population variances, 38(3/4), 324-329. |
[11] | Keselman, H. J., Kowalchuk, R. K., Algina, J., Lix, L. M., & Wilcox, R. R. (2000). Testing treatment effects in repeated measure designs: Trimmed means and bootstrapping. British Journal of Mathematical and Statistical Psychology, 53, 175-191. |
[12] | Keselman, J. J. C. and H. J. (1982). Parametric Alternative to the Analysis of Variance Author (s): Jennifer J. Clinch and H. J. Keselman Source: Journal of Educational Statistics, 7(3), 207-214. |
[13] | Kohr, R. L., & Games, P. A. (1974). Robustness of the analysis of variance, the Welch procedure, and a Box procedure to heterogeneous variances. Journal of Experimental Education, 43, 61-69. |
[14] | Krishnamoorthy, K., F., & Matthew, T. (2007). A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Computational Statistics & Data Analysis, 51(12), 5731-5742. |
[15] | Lix, Lisa, M., & Keselman, J.C., & Keselman, H. J (1995). Approximate degrees of freedom tests. A unified perspective on testing for mean equality. Pschological Bulletin, 117(3), 547-560. |
[16] | Lix, L. M, Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Review of Educational Research, 66, 579-619. |
[17] | Lix, L. M, & Keselman, H. J. (1998). To trim or not to trim. Educational and Psychological Measurement, 58(3), 409-429. |
[18] | Luh, W. M. (1999). Developing trimmed mean test statistics for two-way fixed-effects ANOVA models under variance heterogeneity and nonnormality. Journal of Experimental Education, 67(3), 243-265. |
[19] | Luh, W. M., & Guo, J. H. (2005). Heteroscedastic test statistics for one-way analysis of variance: The trimmed means and Hall’s transformation conjunction. The Journal of Experimental Education, 74(1), 75-100. |
[20] | Myers, L. (1998). Comparability of The James’ Second-Order Approximation Test and The Alexander and Govern A Statistic for Non-normal Heteroscedastic Data. Journal of Statistical Simulation Computation, 60, 207-222. |
[21] | Murphy, K.R., & Myors, B. (1998). Statistical power analysis: A simple and general model for traditional and modern hypothesis tests. Mahwah, NJ: Lawrence Erlbaum. |
[22] | Oshima, T. C., & J. Algina (1992). Type I error rates for James’s second-order test and Wilcoxon’s Hm test under heteroscedasticity and non-normality. British Journal of Mathematical and Statistical Psychology, 45, 255-263. |
[23] | Othman, A. R., Keselman, H. J., Padmanabban, A. R., Wilcox, R. R., Wilcox, R. R., & Fradette, K. (2004). Comparing measures of the “typical” score across treatment groups. The British Journal of Mathematical and Statistical Psycholofy, 57(2), 215-234. |
[24] | Pardo, J. A, Pardo, M. C., Vincente, M. L., & Esteban, M. D. (1997). A statistical information theory approach to compare the homogeneity of several variances. Computational Statistics & Data Analysis, 24(4), 411-416. |
[25] | SAS Institute Inc. (1999). SAS/IML User’s Guide Version 8. Cary, NC: SAS Institute Inc. |
[26] | Schneider, P. J., & Penfield, D. A. (1997). Alexander-Govern’s Approximation: Providing an alternative to ANOVA Under Variance Heterogeneity. Journal of Experimental Education, 65(3), 271-287. |
[27] | Welch, B. L. (1951). On the comparison of several means: An alternative approach. Biometrica, 38, 330-336. |
[28] | Wilcox, R. R. (1988). A new alternative to the ANOVA F and new results on James’s second-order method. British Journal of Mathematical and Statistical Psychology, 41, 109-117. |
[29] | Wilcox, R. R. (1997). Introduction to robust estimation and hypothesis testing. San Diego, CA: Academic Press. |
[30] | Wilcox, R. R., & Keselman, H. J. (2003). Modern Robust Data Analysis Methods: Measures of Central Tendency. Psychological Methods, 8(3), 254-274. |
[31] | Wilcox, R. R, Charlin, V. L., & Thompson, K. L. (1986). New Monte Carlo results on the robustness of the ANOVA F, W, and F statistics. Communications in Statistics-Simulation, 15, 933-943. |
[32] | Yahaya, S. S. S., Othman, A. R., & Keselman, H. J. (2006). Comparing the “Typical Score” Across Independent Groups Based on Different Criteria for Trimming, 3(1), 49-62. |
[33] | Yusof, Z., Abdullah, S. & Yahaya, S. S. S. (2011). Type I Error Rates of Ft Statistic with Different Trimming Strategies for TWO Groups Case. Modern Applied Science, 5(4), 1-7. |