[1] | Adamidis, K. and Loukas, S. (1998). "A lifetime distribution with decreasing failure rate". Statistics and Probability Letters, 39, 35-42. |
[2] | Barlow, R. E. and Marshall, A. W. (1964). "Bounds for distribution with monotone hazard rate I and II". Annals of Mathematical Statistics, 35, 1234-1274. |
[3] | Barlow, R. E. and Marshall, A. W. (1965). "Tables of bounds for distribution with monotone hazard rate". Journal of the Americal Statistical Association, 60, 872-890. |
[4] | Barlow, R. E., Marshall, A. W. and Proschan, P. (1963). "Properties of probability distributions with monotone hazard rate". Annals of Mathematical Statistics, 34, 375-389. |
[5] | Bebbington, M. S., Lai, C. D. and Zitikis, R. (2007). "A flexible Weibull extension". Reliability Engineering and System Safety, 92(6), 719–26. |
[6] | Cozzolino, J. M. (1968). "Probabilistic models of decreasing failure rare processes". Naval Research Logistics Quarterly, 15, 361-374. |
[7] | Dahiya, R. C. and Gurland, J. (1972). "Goodness of fit tests for the gamma and exponential distributions". Technometrics, 14, 791-801. |
[8] | Ghitany, M.E. (1998) "On a recent generalization of gamma distribution". Communications in Statistics-Theory and Methods, 27, 223-233. |
[9] | Giorgi, G. M. (1998). "Concentration index, Bonferroni". Encyclopedia of Statistical Sciences, vol. 2, Wiley, New York, pp. 141-146. |
[10] | Giorgi, G. M., Crescenzi, M. (2001). "A look at the Bonferroni inequality measure in a reliability framework". Statistica LXL, 4, 571-583. |
[11] | Gleser, L. J. (1989). "The gamma distribution as a mixture of exponential distributions". Journal of the Americal Statistical Association, 43, 115-117. |
[12] | Gupta, R. D. and Kundu, D. (1999). "Generalized exponential distribution". Austral. & New Zealand Journal Statistics, 41(2), 173-188. |
[13] | Gupta, P.L. and Gupta, R.C. (1983). "On the moments of residual life in reliability and some characterization results". Communications in Statistics-Theory and Methods 12, 449-461. |
[14] | Gurland, J. and Sethuraman, J. (1994). "Reversal of increasing failure rates when pooling failure data". Technometrics, 36, 416-418. |
[15] | Kundu, C. and Nanda, A.K. (2010). "Some reliability properties of the inactivity time". Communications in Statistics-Theory and Methods 39, 899-911. |
[16] | Kus, C. (2007). "A new lifetime distribution". Computational Statistics and Data Analysis, 51(9), 4497-4509. |
[17] | Lawless, J. F. (2003). "Statistical Models and Methods for Lifetime Data". John Wiley and Sons, New York. |
[18] | Lomax, K. S. (1954). "Business failure: another example of the analysis of failure data". Journal of the Americal Statistical Association, 49, 847-852. |
[19] | Marshall, A.W. and Proschan, F. (1965). "Maximum likelihood estimates for distributions with monotone failure rate". Annals of Mathematical Statistics, 36, 69-77. |
[20] | McNolty, F., Doyle, J. and Hansen, E. (1980). "Properties of the mixed exponential failure process". Technometrics, 22, 555-565. |
[21] | Mi, J. (1995). "Bathtub failure rate and upside-down bathtub mean residual life". IEEE Transactions on Reliability 44, 388-391. |
[22] | Mudholkar, G. S. and Srivastava, D.K. (1993). "Exponentiated Weibull family for analysing bathtub failure rate data". IEEE Transactions on Reliability, 42(2), 299–302. |
[23] | Nadarajah, S. and Kotz, S. (2006). "The exponentiated type distributions". Acta Applicandae Mathematicae, 92, 97-111. |
[24] | Nanda, A. K., Singh, H., Misra, N. and Paul, P. (2003). "Reliability properties of reversed residual lifetime". Communications in Statistics-Theory and Methods, 32, 2031-2042. |
[25] | Nassar, M. M. (1988). "Two properties of mixtures of exponential distributions". IEEE Transactions on Reliability, 37(4), 383-385. |
[26] | Park, K. S. (1985). "Effect of burn-in on mean residual life". IEEE Transactions on Reliability, 34, 522-523. |
[27] | Proschan, F. (1963). "Theoretical explanation of observed decreasing failure rate". Technometrics, 5, 375-383. |
[28] | Sarhan, A. M. (2009)." Generalized quadratic hazard rate distribution". Inter. International Journal of Applied Mathematics and Statistics, 14(S09), 94-109. |
[29] | Sarhan, A. M. and Kundu, D. (2009)."Generalized linear failure rate distribution". Communication in Statistics-Theory and Methods, In Press. |
[30] | Sarhan, A. M., Tadj, L. and Al-Malki, S. (2008). "Estimation of the parameters of the generalized linear failure rate distribution". Bulletin of Statistics and Economics, 2, 52-63. |
[31] | Saunders, S. C. and Myhre, J. M. (1983). "Maximum likelihood estimation for two-parameter decreasing hazard rate distributions using censored data". Journal of the Americal Statistical Association, 78, 664-673. |
[32] | Self, S. G. and Liang, K. Y. (1987). "Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions", Journal of the Americal Statistical Association, 82, 605 - 610. |
[33] | Smith, R. L., Naylor, J. C. (1987). "A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution". Applied Statistical, 36, 358-369. |
[34] | Tahmasbi, R. and Rezaei, S. (2008). "A two-parameter lifetime distribution with decreasing failure rate". Computational Statistics and Data Analysis, 52, 3889-3901. |
[35] | Tang, L. C., Lu, Y. and Chew, E.P. (1999) "Mean residual life distributions". IEEE Transactions on Reliability, 48, 68-73. |
[36] | Xie, M. and Lai, C. D. (1995). "Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function". Reliability Engineering System Safety, 52, 87–93. |