[1] | Agarwal, M.C. and Sithapit, A.B. (1995). Unbiased ratio type estimation, Statistics and Probability Letters 25, 361-364 |
[2] | Ahmed, M.S., Raman, M.S. and Hossain, M.I. (2000). Some competitive estimators of finite population variance Multivariate Auxiliary Information, Information and Management Sciences, Volume11 (1), 49-54 |
[3] | Al-Jararha, J. and Al-Haj Ebrahem, M. (2012). A ratio estimator under general sampling design, Austrian Journal of Statistics, Volume 41(2), 105-115 |
[4] | Arcos, A., Rueda, M., Martinez, M.D., Gonzalez, S., Roman, Y. (2005). Incorporating the auxiliary information available in variance estimation, Applied Mathematics and Computation 160, 387-399 |
[5] | Bhushan, S. (2012). Some efficient sampling strategies based on ratio type, estimator, Electronic Journal of Applied Statistical Analysis, Volume 5(1), 74-88 |
[6] | Cochran, W. G. (1977). Sampling techniques, Third Edition, Wiley Eastern Limited |
[7] | Das, A.K. and Tripathi, T.P. (1978). Use of auxiliary information in estimating the finite population variance, Sankhya 40, 139-148 |
[8] | Garcia, M.K. and Cebrain, A.A. (1997). Variance estimation using auxiliary information: An almost unbiased multivariate ratio estimator, Metrika 45, 171-178 |
[9] | Gupta, S. and Shabbir, J. (2008). Variance estimation in simple random sampling using auxiliary information, Hacettepe Journal of Mathematics and Statistics, Volume 37, 57-67 |
[10] | Isaki, C.T. (1983). Variance estimation using auxiliary information, Journal of the American Statistical Association 78, 117-123 |
[11] | Kadilar, C. and Cingi, H. (2006). Improvement in variance estimation using auxiliary information, Hacettepe Journal of Mathematics and Statistics Volume 35 (1), 111-115 |
[12] | Kadilar, C. and Cingi, H. (2006). Ratio estimators for population variance in simple and stratified sampling, Applied Mathematics and Computation 173, 1047-1058 |
[13] | Murthy, M.N. (1967). Sampling theory and methods, Statistical Publishing Society, Calcutta, India |
[14] | Prasad, B. and Singh, H.P. (1990). Some improved ratio type estimators of finite population variance in sample surveys, Communication in Statistics: Theory and Methods 19, 1127-1139 |
[15] | Reddy, V.N. (1974). On a transformed ratio method of estimation, Sankhya, Volume C36, 59-70 |
[16] | Singh, D. and Chaudhary, F.S. (1986). Theory and analysis of sample survey designs, New Age International Publisher |
[17] | Singh, H.P., Chandra, P. and Singh, S. (2003). Variance estimation using multi-auxiliary information for random non-response in survey sampling, STATISTICA, anno LXIII, n. 1, 23-40 |
[18] | Singh, H.P., Tailor, R., Tailor, R. and Kakran, M.S. (2004). An improved estimator of population mean using power transformation, Journal of the Indian Society of Agricultural Statistics 58(2), 223-230 |
[19] | Singh, H.P., Upadhyaya, U.D. and Namjoshi, U.D. (1988). Estimation of finite population variance, Current Science 57, 1331-1334 |
[20] | Sisodia, B.V.S. and Dwivedi, V.K. (1981). A modified ratio estimator using coefficient of variation of auxiliary variable, Journal of the Indian Society of Agricultural Statistics 33(1), 13-18 |
[21] | Subramani, J. and Kumarapandiyan, G. (2012). Modified ratio estimators for population mean using function of quartiles of auxiliary variable, Bonfring International Journal of Industrial Engineering and Management Science, Vol. 2(2), 19-23 |
[22] | Upadhyaya, L.N. and Singh, H.P. (1999). Use of transformed auxiliary variable in estimating the finite population mean, Biometrical Journal 41 (5), 627-636 |
[23] | Upadhyaya, L. N. and Singh, H. P. (2006). Almost unbiased ratio and product-type estimators of finite population variance in sample surveys, Statistics in Transition 7 (5), 1087–1096 |
[24] | Wolter, K.M. (1985). Introduction to Variance Estimation, Springer-Verlag |
[25] | http://www.osservatorionazionalerifiuti.it/ElencoDocPub.asp?A_TipoDoc=6 |