[1] | Thomas, D.T., Erdman, K.A., and Burke, L.M., 2016, American College of Sports Medicine Joint Position Statement. Nutrition and athletic performance. Med. Sci. Sports Exerc., 48(3), 543-568. |
[2] | McCartney, D., Desbrow, B., and Irwin, C., 2017, The effect of fluid intake following dehydration on subsequent athletic and cognitive performance: a systematic review and meta-analysis. Sports Med. Open, 3(1), 13. |
[3] | Burke, L.M., van Loon, L.J.C., and Hawley, J.A., 2017, Postexercise muscle glycogen resynthesis in humans. J. Appl. Physiol., 122(5), 1055-1067. |
[4] | Phillips S., Van Loon L., 2011, Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci., 29(suppl 1), 29. |
[5] | Moore D.R., Camera D.M., Areta J.L., Hawley J.A., 2014, Beyond muscle hypertrophy: why dietary protein is important for endurance athletes. Appl. Physiol. Nutr. Metab., 39(9), 987-997. |
[6] | Beelen M., Burke L.M., Gibala M.J., Van Loon L.J., 2010, Nutritional strategies to promote postexercise recovery. Int. J. Sports Nutr. Exerc. Metab., 20(6), 515-532. |
[7] | Gaskell, S.K., Snipe, R.M.J., and Costa, R.J.S., 2019, Test re-test reliability of a modified visual analogue scale assessment tool for determining incidence and severity of gastrointestinal symptom in response to exercise stress. Int. J. Sports Nutr. Exerc. Metab., In press. |
[8] | Costa R.J.S., Camoes-Costa V., Snipe R.M.J., Dixon D., Russo I., Huschtscha Z., 2019, The impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J. Appl. Physiol., In press. |
[9] | Costa R.J.S., Snipe R.M.J., Kitic C.M., Gibson P.R., 2017, Systematic review: exercise-induced gastrointestinal syndrome—implications for health and intestinal disease. Alim. Pharmacol. Therap., 46(3), 246-265. |
[10] | Costa R.J.S., Miall A., Khoo A., Rauch C., Snipe R., Camões-Costa V., 2017, Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl. Physiol. Nutr. Metab., 42(5), 547-557. |
[11] | Miall, A., Khoo, A., Rauch, C., Snipe, R., Camões-Costa, V., Gibson, P., and Costa, R.J.S., 2018, Two weeks of repetitive gut-challenge reduces exercise associated gastrointestinal symptoms and malabsorption. Scand. J. Med. Sci. Sports, 28, 630-640. |
[12] | Maughan, R.J., Watson, P., Cordery, P.A., Walsh, N.P., Oliver, S.J., Dolci, A., Rodriguez-Sanchez, N., and Galloway, S.D., 2017, A randomized trial to assess the potential of different beverages to affect hydration status: development of a beverage hydration index. Am. J. Clin. Nutr., 103(3), 717-723. |
[13] | Pritchett K., Pritchett R., 2013, Chocolate milk: A post-exercise recovery beverage for endurance sports. Acute Topic Sport Nutr., 59, 127-134. |
[14] | Saunders J.M., 2011, Carbohydrate-protein intake and recovery from endurance exercise: Is chocolate milk the answer? Current Sports Medicine Reports, 10(4), 203-210. |
[15] | Howarth K.R., Moreau N.A., Phillips S.M., Gibala M.J., 2009, Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J. Appl. Physiol., 106(4), 1394-1402. |
[16] | Williams M.B., Raven P.B., Fogt D.L., Ivy J.L., 2003, Effects of recovery beverages on glycogen restoration and endurance exercise performance. J. Strength Cond. Res., 17(1), 12-19. |
[17] | Moore D.R., 2015, Nutrition to support recovery from endurance exercise: optimal carbohydrate and protein replacement. Curr. Sports Med. Rep., 14(4), 294-300. |
[18] | Roy B.D., 2008, Milk: the new sports drink? A Review. J. Int. Soc. Sports Nutr., 5(1), 15. |
[19] | Shirreffs S.M., Watson P., Maughan R.J., 2007, Milk as an effective post-exercise rehydration drink. Br. J. Nutr., 98(1), 173-180. |
[20] | Spaccarotella J.K., Andzel D.W., 2011, building a beverage for recovery from endurance activity: A review. J. Strength Cond. Res., 25(11), 3198-3204. |
[21] | James L.J., Stevenson E.J., Rumbold P.L.S., Hulston C.J., 2019, Cow's milk as a post-exercise recovery drink: implications for performance and health. Eur. J. Sport Sci., 19(1), 40-48. |
[22] | Pegoretti C., Antunes A.E.C., de Barros Manchado-Gobatto F., Capitani C.D., 2015, Milk: an alternative beverage for hydration? Food Nutr. Sci., 6(06), 547. |
[23] | Amiri M., Ghiasvand R., Kaviani M., Forbes S.C., Salehi-Abargouei A., 2018, Chocolate milk for recovery from exercise: a systematic review and meta-analysis of controlled clinical trials. Eur. J. Clin. Nutr., 73(6), 835-849. |
[24] | Alcantara, J. M., Sanchez-Delgado, G., Martinez-Tellez, B., Labayen, I., & Ruiz, J. R., 2019, Impact of cow’s milk intake on exercise performance and recovery of muscle function: a systematic review. J. Int. Soc. Sports. Nutr., 16(1), 22. |
[25] | Moher D., Liberati A., Tetzlaff J., Altman D.G., 2009, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med., 151(4), 264-269. |
[26] | Higgins J.P., Green S., 2011 Cochrane handbook for systematic reviews of interventions: John Wiley & Sons. |
[27] | Pritchett K., Bishop P., Pritchett R., Green M., Katica C., 2009, Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance. Appl. Physiol. Nutr. Met., 34(6), 1017-1022. |
[28] | Lunn W.R., Pasiakos S.M., Colletto M.R., Karfonta K.E., Carbone J.W., Anderson J.M., 2012, Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance. Med. Sci. Sports Exerc., 44(4), 682-691. |
[29] | Baguley B.J., Zilujko J., Leveritt M.D., Desbrow B., Irwin C., 2016, The effect of ad libitum consumption of a milk-based liquid meal supplement vs. a traditional sports drink on fluid balance after exercise. Int. J. Sport Nutr. Exerc. Metab., 26(4), 347-55. |
[30] | Campagnolo N., Iudakhina E., Irwin C., Schubert M., Cox G.R., Leveritt M., 2017, Fluid, energy and nutrient recovery via ad libitum intake of different fluids and food. Physiol. Beh., 171, 228-235. |
[31] | McCartney D., Irwin C., Cox G.R., Desbrow B., 2018, Fluid, energy, and nutrient recovery via ad libitum intake of different commercial beverages and food in female athletes. Appl. Physiol. Nutr. Met., 44(1), 37-46. |
[32] | Desbrow B,, Jansen S., Barrett A., Leveritt M.D., Irwin C., 2014, Comparing the rehydration potential of different milk-based drinks to a carbohydrate-electrolyte beverage. Appl. Physiol. Nutr. Met., 39(12), 1366-1372. |
[33] | Seery S., Jakeman P., 2016, A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate–electrolyte solution or water in healthy young men. Br. J. Nutr., 116(6), 1013-1021. |
[34] | Watson P., Love T.D., Maughan R.J., Shirreffs S.M., 2008, A comparison of the effects of milk and a carbohydrate-electrolyte drink on the restoration of fluid balance and exercise capacity in a hot, humid environment. Eur. J. Appl. Physiol., 104(4), 633-642. |
[35] | Brown M.A., Green B.P., James L.J., Stevenson E.J., Rumbold P.L.S., 2016, The effect of a dairy-based recovery beverage on post-exercise appetite and energy intake in active females. Nutr., 8(6), 355. |
[36] | Rumbold P., Shaw E., James L., Stevenson E., 2015, Milk consumption following exercise reduces subsequent energy intake in female recreational exercisers. Nutr., 7(1), 294-306. |
[37] | Thomas K., Morris P., Stevenson E., 2009, Improved endurance capacity following chocolate milk consumption compared with 2 commercially available sport drinks. Appl. Physiol. Nutr. Met., 34(1), 78-82. |
[38] | Upshaw A.U., Wong T.S., Bandegan A., Lemon P.W.R., 2016, Cycling time trial performance 4 hours after glycogen-lowering exercise is similarly enhanced by recovery nondairy chocolate beverages versus chocolate milk. Int. J. Sport Nutr. Exerc. Met., 26(1), 65-70. |
[39] | Ferguson-Stegall L., McCleave E.L., Ding Z., Doerner I.P.G., Wang B., Liao Y.H., 2011, Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J. Strength Cond. Res., 25(5), 1210-1224. |
[40] | Karp J.R., Johnston J.D., Tecklenburg S., Mickleborough T.D., Fly A.D., Stager J.M., 2006, Chocolate milk as a post-exercise recovery aid. Int. J. Sport Nutr. Exerc. Met., 16(1), 78-91. |
[41] | Potter J., Fuller B., 2015, The effectiveness of choco late milk as a post-climbing recovery aid. J. Sports Med. Phys. Fitness., 55(12), 1438-1444. |
[42] | Sudsa-ard K., Kijboonchoo K., Chavasit V., Chaunchaiyakul R., Nio A.Q.X., Lee J.K.W., 2014, Lactose-free milk prolonged endurance capacity in lactose intolerant Asian males. J. Int. Soc. Sports Nutr., 11(1), 49. |
[43] | Burd N.A., Tang J.E., Moore D.R., Phillips S.M., 2009, Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J. Appl. Physiol., 106(5), 1692-1701. |
[44] | Phillips S.M., Tipton K.D., Aarsland A., Wolf S.E., Wolfe R.R., 1997, Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am. J. Physiol., 273(1), E99-E107. |
[45] | Phillips S.M., 2006, Dietary protein for athletes: from requirements to metabolic advantage. Appl. Physiol. Nutr. Met., 31(6), 647-654. |
[46] | Biolo G., Tipton K., Klein S., Wolfe R., 1997, An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am. J. Physiol., 36(1), E122-E129. |
[47] | Volpi E., Ferrando A.A., Yeckel C.W., Tipton K.D., Wolfe R.R., 1998, Exogenous amino acids stimulate net muscle protein synthesis in the elderly. J. Clin. Investig., 101(9), 2000. |
[48] | Pennings B., Boirie Y., Senden J.M.G., Gijsen A.P., Kuipers H., van Loon L.J.C., 2011, Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr., 93(5), 997-1005. |
[49] | Dickinson J., Fry C., Drummond M., Gundermann D., Walker D., Glynn E., 2011, Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J. Nutr., 141(5), 856-862. |
[50] | Wilkinson S.B., Phillips S.M., Atherton P.J., Patel R., Yarasheski K.E., Tarnopolsky M.A., 2008, Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J. Physiol., 586(15), 3701-3717. |
[51] | Bergström J., Hermansen L., Hultman E., Saltin B., 1967, Diet, muscle glycogen and physical performance. Acta. Physiol. Scand., 71(2), 140-150. |
[52] | Ahlborg B., Bergström J., Ekelund L.G., Hultman E., 1967, Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta. Physiol. Scand., 70(2), 129-142. |
[53] | Burke L.M., Hawley J.A., Wong S.H., Jeukendrup A.E., 2011, Carbohydrates for training and competition. J. Sports Sci., 29(sup1), S17-S27. |
[54] | Betts J.A., Williams C., 2010, Short-Term recovery from prolonged exercise. Sports Med., 40(11), 941-959. |
[55] | van Loon L.J.C., Saris W.H.M., Verhagen H., Wagenmakers A.J.M., 2000, Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr., 72(1), 96. |
[56] | Cartee G.D., Young D.A., Sleeper M.D., Zierath J., Wallberg-Henriksson H., Holloszy J.O., 1989, Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. Am. J. Physiol., 256(4), E494-E499. |
[57] | Zawadzki K.M., Yaspelkis I.B.B., Ivy J.L., 1992, Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J. Appl. Physiol., 72(5), 1854-1859. |
[58] | Roy B.D., Tarnopolsky M.A., 1998, Influence of differing macronutrient intakes on muscle glycogen resynthesis after resistance exercise. J. Appl. Physiol., 84(3), 890. |
[59] | Ivy, J.L., Goforth, H.W., Damon, B.M., McCauley, T.R., Parsons, E.C., and Price, T.B., 2002, Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J. Appl. Physiol., 93(4), 1337-1344. |
[60] | Shirreffs S.M., Maughan R.J., 1998, Volume repletion after exercise-induced volume depletion in humans: Replacement of water and sodium losses. Am. J. Physiol., 274(5), F868-F875. |
[61] | Shirreffs S.M., Aragon-Vargas L.F., Keil M., Love T.D., Phillips S., 2007, Rehydration after exercise in the heat: a comparison of 4 commonly used drinks. Int. J. Sport Nutr. Exerc. Metab., 17(3), 244-258. |
[62] | Hunt J., Stubbs D., 1975, The volume and energy content of meals as determinants of gastric emptying. J. Physiol., 245(1), 209-225. |
[63] | Armstrong L.E., 2007, Assessing hydration status: the elusive gold standard. J. Am. Coll. Nutr., 26(sup5), 775S-784S. |
[64] | Owen, J.A., Fortes, M.B., Rahman, S.U., Jibani, M., Walsh, N.P., and Oliver, S.J., 2019, hydration marker diagnostic accuracy to identify mild intracellular and extracellular dehydration. Int. J. Sport Nutr. Exerc. Metab., In press. |
[65] | Alcock, R., McCubbin, A., Camões-Costa, V., and Costa, R.J.S., 2018, CASE STUDY. Nutritional support for self-sufficient multi-stage ultra-marathon: Rationed versus full energy provisions. Wilderness. Envrion. Med., 29(4), 508-520. |
[66] | Costa R.J.S., Teixeira A., Rama L., Swancott A.J.M., Hardy L.D., Lee B., 2013, Water and sodium intake habits and status of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment: an observational field based study. Nutr. J., 12(1). |
[67] | Costa R.J.S., Snipe R.M.J., Camões-Costa V., Scheer V., Murray A., 2016, The impact of gastrointestinal symptoms and dermatological injuries on nutritional intake and hydration status during ultramarathon events. Sports Med. -Open, 2(1):16. |
[68] | Costa, R.J.S., Gaskell, S.K., McCubbin, A.J., and Snipe R.M.J., 2019, Exertional-heat stress associated gastrointestinal perturbations- management strategies for athletes preparing for and competing in the 2020 Tokyo Olympic Games. Temp., In press. |
[69] | Lang J.A., Gisolfi C.V., Lambert G.P., 2006, Effect of exercise intensity on active and passive glucose absorption. Int. J. Sport Nutr. Exerc. Metab., 16(5), 485-493. |
[70] | van Wijck K., Pennings B., van Bijnen A.A., Senden J.M.G., Buurman W.A., Dejong C.H.C., 2013, Dietary protein digestion and absorption are impaired during acute postexercise recovery in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol., 304(5), R356-R361. |
[71] | Huschtscha, Z., Russo, I., Snipe, R.M.J., Dixon, D., Camões-Costa, V., and Costa, R.J.S., 2019, Exercise-induced dehydration causes malabsorption of carbohydrate rich pre-exercise meal. Int. J. Sport Nutr. Exerc. Metab., In press (abstract). |
[72] | Walsh N.P., Gleeson M., Shephard R.J., Gleeson M., Woods J.A., Bishop N., 2011, Position statement part one: immune function and exercise. Exerc. Immunol. Rev., 17, 6-63. |
[73] | Peake J.M., Della Gatta P., Suzuki K., Nieman D.C., 2015, Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc. Immunol. Rev., 21, 8-25. |
[74] | Costa R.J.S., Oliver S.J., Laing S.J., Walters R., Bilzon J.L.J., Walsh N.P., 2009, Influence of timing of postexercise carbohydrate-protein ingestion on selected immune indices. Int. J. Sport Nutr. Exerc. Metab., 19(4), 366-384. |
[75] | Costa R.J.S., Walters R., Bilzon J.L.J., Walsh N.P., 2011, Effects of immediate postexercise carbohydrate ingestion with and without protein on neutrophil degranulation. Int. J. Sport Nutr. Exerc. Metab., 21(3), 205-213. |
[76] | Costa R.J.S., Fortes M.B., Richardson K., Bilzon J.L.J., Walsh N.P., The effects of postexercise feeding on saliva antimicrobial proteins. Int. J. Sport Nutr. Exerc. Metab., 22(3), 184-191. |
[77] | Camões-Costa, V., Snipe, R., Dixon, D., Costa, R.J.S., 2017, Dairy milk beverage enhances neutrophil function after immuno-depressive exercise in response to a bacterial challenge. Sports Dietitians Australian Conference (abstract). |
[78] | Burke L., 2010, Fueling strategies to optimize performance: training high or training low? Scand. J. Med. Sci. Sports., 20(S2), 48-58. |
[79] | Hawley J.A., Burke L.M., 2010, Carbohydrate availability and training adaptation: effects on cell metabolism. Exerc. Sport. Sci. Rev., 38(4), 152-160. |
[80] | Costa, R.J.S. Swancott, A., Gill, S., Hankey, J., Scheer, V., Murray, A., and Thake, D., 2013, Compromised energy and nutritional intake of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment. Int. J. Sports Sci., 3(2), 51-61. |
[81] | Gill, S.K., Teixeira, A., Rama, L., Rosado, F., Hankey, J., Scheer, V., Hemmings, K., Ansley-Robson, P., and Costa, R.J.S., 2015, Circulatory endotoxin concentration and cytokine profile in response to exertional-heat stress during a multi-stage ultra-marathon competition. Exerc. Immunol. Rev., 21, 114-128. |
[82] | Snipe, R.M.J., and Costa, R.J.S., 2018. Does biological sex impact intestinal epithelial injury, small intestine permeability, gastrointestinal symptoms and systemic cytokine profile in response to exertional-heat stress? J. Sports Sci., 36(4), 2827-2835. |
[83] | Snipe, R., Khoo, A., Kitic, C., Gibson, P., and Costa, R.J.S., 2017, Carbohydrate and protein intake during exertional-heat stress ameliorates intestinal epithelial injury and small intestine permeability. Appl. Physiol. Nutr. Metab., 42(12), 1283-1292. |
[84] | Snipe R.M.J., Costa R.J.S., 2018, Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? J. Sci. Med. Sport., 21(8), 771-776. |