[1] | Billat, L.V. (2001) Interval Training for Performance: A Scientific and Empirical Practice: Special Recommendations for Middle-and Long-Distance Running. Part I: Aerobic Interval Training. Sports Med 31, 13-31. |
[2] | Seiler, S., Tønnessen, E. (2009) Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience 13, 32–53. |
[3] | Buchheit, M., Laursen, P.B. (2013) High-intensity interval training, solutions to the programming puzzle. Part I: Cardiopulmonary Emphasis. Sports Med 43, 313-338. |
[4] | Reindell, H., Roskamm, H. (1959) Ein Beitrag zu den physiologischen Grundlagen des intervall training unter besonderer berucksichtigung des Kreilaufes. Schweiz Z Sportmed 7, 01-08. |
[5] | Reindell, H., Roskamm, W. Gerschle Das intervall training. Munchen (Germany): John Ambrosius Barth Publishing, 1962. |
[6] | Astrand, I., Astrand, P.O., Christensen, E.H., Hedman, R. (1960) Intermittent muscular work. Acta Physiol Scand 48, 448-53. |
[7] | Christensen, E.H., Hedman, R., Saltin, B. (1960) Intermittent and continuous running. Acta Physiol Scand 50, 269-286. |
[8] | Ross, A., Leveritt, M. (2001) Long-term metabolic and skeletal mucle adaptations to short-sprint training. Sports Med 31, 1063-1082. |
[9] | Spencer, M., Bishop, D., Dawson, B., Goodman, C. (2005) Physiological and metabolic responses of repeated-sprint activities. Sports Med 35, 1025-1044. |
[10] | Glaister, M. (2005) Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 35,757-777. |
[11] | Mayers, J.N. (2001) The physiology behind exercise testing. Prim Care 28, 5-28. |
[12] | CRISP, A.H., Verlengia, R., Sindorf, M.A.G., Germano, M.D., César, M.C., Lopes, C.R. (2013) Time to exhaustion at VO2max velocity in basketball and soccer athletes JEPonline 15,82-91. |
[13] | Wasserman, K., Hansen, J.E., Sue, D.Y., Casaburi, R., Whipp, B.J. (1999) Principles of Exercise Testing and Interpretation. 3. ed., Baltimore: Lippincott Williams & Wilkins. |
[14] | Bassett, D.R. Jr., Howley, E.T. (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32, 70-84. |
[15] | Lourenço, T.F., Tessutti, L.S., Martins, L.E.B., Brenzikofer, R., Macedo, D.V. (2007) Metabolic interpretation of ventilatory parameters measured during maximal exercise test and its application in sport. Rev Bras de Cine e Des Humano 9, 310-317. |
[16] | Lucía A., Rivero, J.L., Pérez, M., Serrano, A.L., Calbet, J.A., Santalla, A., Chicharro, J.L. (2002) Determinants of VO(2) kinetics at high power outputs during a ramp exercise protocol. Med Sci Sports Exerc, 34, 326-331. |
[17] | Robergs RA, Ghiasvand F, Parker D. (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287, 502-516. |
[18] | Pilegaard H, Domino K, Noland T, Juel C, Hellsten Y, Halestrap AP, Bangsbo J. (1999) Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am J Physiol, 276, E255-261. |
[19] | BROOKS, G.A. (200) Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 32, 790-799. |
[20] | CERRETELLI, P.; SAMAJA, M. (2003) Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the “lactate paradox”. Eur J Appl Physiol 90, 431-448. |
[21] | Juel, C., Klarskov, C., Nielsen, J.J., Krustrup, P., Mohr, M., Bangsbo, J. (2004) Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab, 286, E245-251. |
[22] | Gladden, L.B. (2000) Muscle as a consumer of lactate. Med Sci Sports Exerc 32, 764-771. |
[23] | Péronnet, F., Aguilaniu, B. (2006) Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: A critical reappraisal. Respir Physiol Neurobiol 150, 4-18. |
[24] | Bosquet, L., Léger, L., Legros, P. (2002) Methods to determine aerobic endurance. Sports Med 32, 675-700. |
[25] | Meyer, T., Lucía, A., Earnest, C.P., Kindermann, W. (2005) A conceptual framework for performance diagnosis and training prescription from sub maximal parameters – theory and application. Int J Sports Med 26, S38-48. |
[26] | Beaver, W.L, Wasserman, K, Whipp, B.J. (1986) Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol (1985), 60, 472-478. |
[27] | Amann, M., Subudhi, A.W., Walker, J., Eisenman, P., Shultz, B., Foster, C. (2004) An evaluation of predictive validity and reliability of ventilatory threshold. Med Sci Sports Exerc 36, 1716-1722. |
[28] | Dekerle, J., de Souza, K.M., de Lucas, R.D., Guglielmo, L.G., Greco, C.C., Denadai, B.S. (2015) Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant. PLoS One 25 e0138428. |
[29] | Laursen, P.B., Jenkins, D.G. (2002) The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32, 53–73. |
[30] | Robinson, D.M., Robinson, S.M., Hume, P.A., Hopkins, W.G. (1991). Training intensity of elite male distance runners. Med Sci Sports Exerc . 23, 1078–1082. |
[31] | Baquet, G., Berthoin, S., Dupont, G., Blondel, N., Fabre, C., van Praagh, E. (2002) Effects of high intensity intermittent training on peak VO(2) in prepubertal children. Int J Sports Med. 23, 439–444. |
[32] | Dupont, G., Berthoin, S. (2004) Time spent at a high percentage of VO2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol 29, S3–S16. |
[33] | Tabata, I., Irisawa, K., Kouzaki, M., Nishimura, K., Ogita, F., Miyachi, M. (1997) Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 29, 390-395. |
[34] | Billat, L.V. (1996) Use of blood lactate measurements for prediction of exercise performance and for control of training: Recommendations for long-distance running. Sports Med, 22,157-175. |
[35] | Billat, V., Faina, M., Sardella, F., Marini, C., Fanton, F., Lupo, S., Faccini, P., de Angelis, M., Koralsztein, J.P., Dalmonte, A. (1996) A comparison of time to exhaustion at VO2max in élite cyclist, kayak paddlers, swimmers and runners. Ergonomics 39, 267-277. |
[36] | Smith, T.P., McNaughton, L.R., Marshall, K.J. (1999) Effects of 4-wk training using Vmax/Tmax on VO2max and performance in athletes. Med Sci Sports Exerc 31, 892–896. |
[37] | Helgerud, J. (2001) Aerobic endurance training improves soccer performance. Med Sci Sports Exerc 33, 1925-1931. |
[38] | Dupont, G., Moalla, W., Guinhouya, C., Ahmaidi, S., Berthoin, S. (2004) Passive versus Active Recovery during High-IIntensity Intermittent Exercises. Med Sci Sports Exerc 36, 302-308. |
[39] | Wakefield, B.R., Glaister, M. (2009) Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. J Strength Cond Res 23, 2548-2554. |
[40] | Edge, J., Eynon, N., McKenna, M.J., Goodman, C.A., Harris, R.C., Bishop, D.J. (2013) Altering the rest interval during high-intensity interval training does not affect muscle or performance adaptations. Exp Physiol 98, 481-490. |
[41] | Billat, V.L., Slawinski, J., Bocquet, V., Demarle, A., Lafitte, L., Chassaing, P., Koralsztein, J.P. (2000) Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 81,188-96. |
[42] | Green, H.J. (1997) Mechanisms of muscle fatigue in intense exercise. J Sports Sci 15, 247–256. |
[43] | Macedo, D.V., Lazarim, F.L., Catanho da Silva, F.O., Tessuti, L.S., Hohl, R. (2009) Is lactate production related to muscular fatigue? A pedagogical proposition using empirical facts. Adv Physiol Educ 33, 302-307. |
[44] | Brooks, G.A. (1996) Exercise physiology: Human bioenergetics and its application. 2 ed. Mountain View: Mayfield Publishing Company. |
[45] | Franch, J., Madsen, K., Djurhuus, M.S., Pedersen, P.K. (1998) Improved running economy following intensified training correlates with reduces ventilatory demands. Med Sci Sports Exerc, 30, 1250-1256. |
[46] | Millet, G.P., Libicz, S., Borrani, F., Fattori, P., Bignet, F., Candau, R. (2003) Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol 90, 50-57. |
[47] | McKenna, M.J., Bangsbo, J., Renaud, J.M. (2008)Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985) 104, 288-295. |
[48] | Mckenna, M.J, Hargreaves, M. (2008) Resolving fatigue mechanisms determining exercise performance: integrative physiology at its finest! J Appl Physiol (1985)104, 286-287. |
[49] | Saraslanidis, P., Petridou, A., Bogdanis, G.C., Galanis, N., Tsalis, G., Kellis, S., Mougios, V. (2011) Muscle metabolism and performance improvement after two training programmes of sprint running differing in rest interval duration. J Sports Sci 29, 1167-1174. |
[50] | Bonen, A., Belcastro, A.N. (1976) Comparison of self-selected recovery methods on lactic-acid removal rates. Med Sci Sports Exerc 8,176-178. |
[51] | Gupta, S., Goswami, A., Sadhukhan, A.K., Mathur, D.N. (1996) Comparative study of lactate removal in short massage of extremities, active recovery and a passive recovery period after supramaximal exercise sessions. Int J Sports Med 17, 106–110. |
[52] | Taoutaou, Z., Granier, P., Mercier, B., Mercier, J., Ahmaidi, S., Prefaut, C. (1996) Lactate kinetics during passive and partially active recovery in endurance and sprint athletes. Eur J Appl Physiol Occup Physiol 73, 465–470. |
[53] | Dorado, C., Sanchis-Moysi, J., Calbet, J.A. (2004) Effects of recovery mode on performance, O2 uptake, and O2 deficit during highintensity intermittent exercise. Can J Appl Physiol 29, 227–244. |
[54] | Toubekis, A.G., Douda, H.T., Tokmakidis, S.P. (2005) Influence of different rest intervals during active or passive recovery on repeated sprint swimming performance. Eur J Appl Physiol 93, 694-700. |
[55] | Bangsbo, J., Gunnarsson, T.P., Wendell, J., Nybo, L., Thomassen, M. (2009) Reduced volume and increased training intensity elevate muscle Na+-K+ pump alpha2-subunit expression as well as short- and long-term work capacity in humans. J Appl Physiol (1985) 107, 1771-1780. |
[56] | Dupont, G., Blondel, N., Berthoin, S. (2003) Performance for short intermittent runs: active recovery vs. passive recovery. Eur J Appl Physiol 89, 548-554. |
[57] | Dupont, G., Akakpo, K., Berthoin, S. (2004) The effect of inseason, high-intensity interval training in soccer players. J Strength Cond Res 18, 584–589. |
[58] | Zafeiridis, A., Sarivasiliou, H., Dipla, K., Vrabas, I.S. (2010) The effects of heavy continuous versus long and short intermittentaerobic exercise protocols on oxygen consumption, heart rate,and lactate responses in adolescents. Eur J Appl Physiol 110, 17-26. |
[59] | Bogdanis, G.C., Nevill, M.E., Boobis, L.H., Lakomy, H.K. (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985) 80, 876-884. |
[60] | Tardieu-Berger, M., Thevenet, D., Zouhal. H., Prioux, J. (2004) Effects of active recovery between series on performance during an intermittent exercise model in young endurance athletes. Eur J Appl Physiol 93, 145–152. |
[61] | Gorostiaga, E.M., Walter, C.B., Foster, C., Hickson, R.C. (1991) Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol Occup Physiol 63, 101-107. |
[62] | Thevenet, D., Tardieu-Berger, M., Berthoin, S., Prioux, J. (2007) Influence of recovery mode (passive vs. active) on time spentat maximal oxygen uptake during an intermittent sessionin young and endurance-trained athletes. Eur J Appl Physiol 99, 133-142. |
[63] | GERMANO. Effects of different pauses in interval training high intensity cardiorespiratory parameters, metabolic and performance. 2014. Dissertation (Masters in Human Movement and Sport) - Human Performance Laboratory, Universidade Metodista de Piracicaba, Piracicaba, Brasil. |