[1] | N. Thakur, A. Singh, A.L. Sangal, Cloud services selection: A systematic review and future research directions, Computer Science Review 46 (2022) 100514. https://doi.org/10.1016/j.cosrev.2022.100514. |
[2] | A. Belgacem, S. Mahmoudi, M. Kihl, Intelligent multi-agent reinforcement learning model for resources allocation in cloud computing, Journal of King Saud University - Computer and Information Sciences 34 (2022) 2391–2404. https://doi.org/10.1016/j.jksuci.2022.03.016. |
[3] | Z. Zhou, L. Zhao, Cloud computing model for big data processing and performance optimization of multimedia communication, Computer Communications 160 (2020) 326–332. https://doi.org/10.1016/j.comcom.2020.06.015. |
[4] | A. Fernandez, S. Garcia, F. Herrera, SMOTE for Learning from Imbalanced Data_ Progress and Challenges, Marking the 15-year Anniversary.pdf, Journal of Artificial Intelligence Research 61 (2018) 863–905. |
[5] | J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, Large Scale Distributed Deep Networks, Advances in Neural Information Processing Systems 25 (2012) 1–9. |
[6] | M. Bahrami, M. Singhal, The Role of Cloud Computing Architecture in Big Data, Studies in Big Data 8 (2015) 275–295. https://doi.org/10.1007/978-3-319-08254-7_13. |
[7] | S.A. El-Seoud, H.F. El-Sofany, M. Abdelfattah, R. Mohamed, Big data and cloud computing: Trends and challenges, International Journal of Interactive Mobile Technologies 11 (2017) 34–52. https://doi.org/10.3991/ijim.v11i2.6561. |
[8] | S.A. Bhat, N.F. Huang, Big Data and AI Revolution in Precision Agriculture: Survey and Challenges, IEEE Access 9 (2021) 110209–110222. https://doi.org/10.1109/ACCESS.2021.3102227. |
[9] | H.K. Mistry, C. Mavani, A. Goswami, R. Patel, The Impact Of Cloud Computing And Ai On Industry Dynamics And Competition, Educational Administration: Theory and Practice 30 (2024). |
[10] | C. Quinn, Future Trends and Emerging Technologies in AI-Driven Healthcare, Artificial Intelligence in Medicine (2024) 295–314. https://doi.org/10.1142/9789811284113_0018. |
[11] | N. Ahmed, A. Abraham, Modeling Cloud Computing Risk Assessment Using Machine Learning, Advances in Intelligent Systems and Computing 334 (2015) 315–325. https://doi.org/10.1007/978-3-319-13572-4. |
[12] | X. Wang, X. Xu, Q.Z. Sheng, Z. Wang, L. Yao, Novel artificial bee colony algorithms for QoS-aware service selection, IEEE Transactions on Services Computing 12 (2019) 247–261. https://doi.org/10.1109/TSC.2016.2612663. |
[13] | I.A. Ansari, M. Pant, Quality assured and optimized image watermarking using artificial bee colony, International Journal of Systems Assurance Engineering and Management 9 (2018) 274–286. https://doi.org/10.1007/s13198-016-0568-2. |
[14] | L.A. Tawalbeh, R. Mehmood, E. Benkhlifa, H. Song, Mobile Cloud Computing Model and Big Data Analysis for Healthcare Applications, IEEE Access 4 (2016) 6171–6180. https://doi.org/10.1109/ACCESS.2016.2613278. |
[15] | N. Thakur, A.K. Sharma, Data Integrity Techniques in Cloud Computing: An Analysis, International Journal of Advanced Research in Computer Science and Software Engineering 7 (2017) 121. https://doi.org/10.23956/ijarcsse.v7i8.36. |
[16] | N. Thakur, A. Singh, A.L. Sangal, Comparison of Multi-Criteria Decision-Making Techniques for Cloud Services Selection, Lecture Notes in Electrical Engineering 855 (2022) 669–682. https://doi.org/10.1007/978-981-16-8892-8_51. |
[17] | N. Thakur, A.K. Sharma, DATA INTEGRITY CHECK IN CLOUD COMPUTING: A, International Journal of Computer Engineering and Applications XI (2017). |
[18] | S. Kumar, W.M. Lim, U. Sivarajah, J. Kaur, Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis, Information Systems Frontiers (2022). https://doi.org/10.1007/s10796-022-10279-0. |
[19] | D.A. Johnson, M.M. Trivedi, Driving style recognition using a smartphone as a sensor platform, in: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2011: pp. 1609–1615. https://doi.org/10.1109/ITSC.2011.6083078. |
[20] | A. Muthanna, A.A. Ateya, A. Khakimov, I. Gudkova, A. Abuarqoub, K. Samouylov, A. Koucheryavy, Secure and reliable IoT networks using fog computing with software-defined networking and blockchain, Journal of Sensor and Actuator Networks 8 (2019). https://doi.org/10.3390/jsan8010015. |
[21] | Y. Lecun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444. https://doi.org/10.1038/nature14539. |
[22] | V.K. Damera, A. Nagesh, M. Nagaratna, Trust evaluation models for cloud computing, International Journal of Scientific and Technology Research 9 (2020) 1964–1971. |
[23] | M. Adel Serhani, H.T. El-Kassabi, K. Shuaib, A.N. Navaz, B. Benatallah, A. Beheshti, Self-adapting cloud services orchestration for fulfilling intensive sensory data-driven IoT workflows, Future Generation Computer Systems 108 (2020) 583–597. https://doi.org/10.1016/j.future.2020.02.066. |
[24] | Y. Chen, Y. Lu, L. Bulysheva, M.Y. Kataev, Applications of Blockchain in Industry 4.0: a Review, Information Systems Frontiers (2022). https://doi.org/10.1007/s10796-022-10248-7. |
[25] | S. Ahmadi, Systematic Literature Review on Cloud Computing Security: Threats and Mitigation Strategies, Journal of Information Security 15 (2024) 148–167. https://doi.org/10.4236/jis.2024.152010. |
[26] | S. Lins, K.D. Pandl, H. Teigeler, S. Thiebes, C. Bayer, A. Sunyaev, Artificial Intelligence as a Service, Business & Information Systems Engineering 63 (2021) 441–456. https://doi.org/10.1007/s12599-021-00708-w. |
[27] | Maintained and managed Code reference GitHub link: https://github.com/RaviKcse08/datascience_projs/blob/main/CC_FraudDetection_dataSimulator.ipynb. |